

Water Resources Data Alaska Water Year 2002

By D.F. Meyer, J.S. Brinton, D.L. Hess, and C.W. Smith

Water-Data Report AK-02-1

CALENDAR FOR WATER YEAR 2002

2001

		OC	тові	ER					NO	VEMI	BER					DE	CEM	BER		
S	М	Τ	W	T	F	S	S	М	T	W	T	F	S	S	М	Т	W	T	F	S
	1	2	3	4	5	6					1	2	3							1
7	8	9	10	11	12	13	4	5	6	7	8	9	10	2	3	4	5	6	7	8
14	15	16	17	18	19	20	11	12	13	14	15	16	17	9	10	11	12	13	14	15
21	22	23	24	25	26	27	18	19	20	21	22	23	24	16	17	18	19	20	21	22
28	29	30	31				25	26	27	28	29	30		23	24	25	26	27	28	29
														30	31					
										2002	2									
		JA	NUA	RY					FEE	BRUA	RY					N	1ARC	Н		
S	М	T	W	T	F	S	S	М	T	W	T	F	S	S	М	Т	W	T	F	S
		1	2	3	4	5						1	2						1	2
6	7	8	9	10	11	12	3	4	5	6	7	8	9	3	4	5	6	7	8	9
13	14	15	16	17	18	19	10	11	12	13	14	15	16	10	11	12	13	14	15	16
20	21	22	23	24	25	26	17	18	19	20	21	22	23	17	18	19	20	21	22	23
27	28	29	30	31			24	25	26	27	28			24	25	26	27	28	29	30
														31						
		ļ	APRIL						I	МАҮ						J	UNE			
S	М	Τ	W	T	F	S	S	М	T	W	T	F	S	S	Μ	Τ	W	T	F	S
	1	2	3	4	5	6				1	2	3	4							1
7	8	9	10	11	12	13	5	6	7	8	9	10	11	2	3	4	5	6	7	8
14	15	16	17	18	19	20	12	13	14	15	16	17	18	9	10	11	12	13	14	15
21	22	23	24	25	26	27	19	20	21	22	23	24	25	16	17	18	19	20	21	22
28	29	30					26	27	28	29	30	31		23	24	25	26	27	28	29
														30						
		,	JULY						Αl	JGUS	T					SEP1	EMB	ER		
S	М	T	W	T	F	S	S	М	T	W	T	F	S	S	М	T	W	T	F	S
	1	2	3	4	5	6					1	2	3	1	2	3	4	5	6	7
7	8	9	10	11	12	13	4	5	6	7	8	9	10	8	9	10	11	12	13	14
14	15	16	17	18	19	20	11	12	13	14	15	16	17	15	16	17	18	19	20	21
21	22	23	24	25	26	27	18	19	20	21	22	23	24	22	23	24	25	26	27	28
28	29	30	31				25	26	27	28	29	30	31	29	30					

UNITED STATES DEPARTMENT OF THE INTERIOR

GALE A. NORTON, Secretary

U.S. GEOLOGICAL SURVEY

Charles G. Groat, Director

For additional information write to:
Chief, Water Resources Office, Alaska Science Center
U.S. Geological Survey
4230 University Drive -- Suite 201
Anchorage, Alaska 99508 - 4664
Electronic mail: ak_dc@usgs.gov

See additional USGS information on water resources of Alaska on the World Wide Web at http://ak.water.usgs.gov

PREFACE

This volume of the annual hydrologic data report of Alaska is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each state, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by state, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources.

The report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey (USGS) who collected, compiled, analyzed, verified, and organized the data, and who revised, edited, typed, illustrated, and assembled the report. The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines. Most of the data were collected, computed, and processed from field offices. Chiefs-in-charge of the field offices are:

Bruce Bigelow, Juneau Matt Schellekens, Fairbanks Ronald Rickman, Anchorage

The data were collected, computed, and processed by the following personnel:

J.A. Bjorholm**	R.L. Glass	D. Long	C.W. Smith
T.P. Brabets	J.M. Goetz	R.S. March	R.L. Snyder**
J. S. Brinton	L.L. Harris	J.A. McIntire	G.L. Solin
R.L. Burrows	D.L. Hess	D.F. Meyer	F.W. Sondrud
B.A. Carr**	R.H. Host	E.H. Moran	P.M. Strelakos
M.R. Carr	G.R. Jackson	Z.J. Munstermann	S. Swanner**
M.E. Castor	M.L. Jackson	R.P. Murray	W.C. Swanner
C.H. Coffeen	M.C. Kane	E.G. Neal	W.A. Swenson
J.S. Conaway	R.T. Kemnitz	R.T. Ourso	C.B. Talley
C.S. Couvillion	B.W. Kennedy	L.D. Patrick	D.S. Thomas
D.L. Curfew	E.L. Kletka	J.A. Roberts	D.C. Trabant
J.D. Eash	A.E. Knust	M.F. Schellekens	M.S. Whitman
J. Fila	J.J. Kocsis	T.C. Schwarz	J.M. Wiles
Z. Frederick	D.E. Langley	C.M. Severtson	

^{**} Volunteer

This report was prepared in cooperation with the State of Alaska and with other agencies under the general supervision of Steven A. Frenzel, Chief, Water Resources Office, and William Sexton, Regional Hydrologist, Western Region.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE January 2004	3. REPORT TYPE AND E Annual October	pates covered 1, 2001 to September 30, 2002
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Water Resources Data for Ala	ska, Water Year 2002		
6. AUTHOR(S) D.F. Meyer, J.S. Brinton, D.L	. Hess, C.W. Smith		
U.S. Geological Survey, Water			
7. PERFORMING ORGANIZATION NAME(S U.S. Geological Survey, Wate 4230 University Drive, Suite 2 Anchorage, Alaska 99508-466	r Resources Office 201		8. PERFORMING ORGANIZATION REPORT NUMBER USGS-WRD-AK-02-1
9. SPONSORING / MONITORING AGENCY			10. SPONSORING / MONITORING AGENCY REPORT NUMBER
U.S. Geological Survey, Wate 4230 University Drive, Suite 2 Anchorage, AK 99508-4664			USGS-WRD-AK-02-1
11. SUPPLEMENTARY NOTES Prepared in cooperation with t	he State of Alaska and with	n other agencies	
12a. DISTRIBUTION / AVAILABILITY STA	FEMENT		12b. DISTRIBUTION CODE
No restriction on distribution. Technical Information Service			
13. ABSTRACT (Maximum 200 words)			
streams; stages of lakes; and w discharge at 109 gaging station water levels for 45 observation water data were collected at v as miscellaneous measuremen	rater levels and water qualitins; stage or contents only at n wells. Also included are arious sites not involved in its and analyses. Some data t part of the National Water	y of ground water. This v 5 gaging stations; water data for 32 crest-stage pa the systematic data-colle collected during 2002 wi	e, discharge, and water quality of olume contains records for water quality at 26 gaging stations; and artial-record stations. Additional ction program and are published ll be published in subsequent retre the U.S. Geological Survey and
14. SUBJECT TERMS *Alaska, *Hydrologic data, *S	Surface water. *Ground wat	er. *Water quality Flow	rate, 15. NUMBER OF PAGES 432
Gaging stations, Lakes, Chemsites, Water levels, Water and	ical analyses, Sediments, V		
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT

CONTENTS

Preface	iii
List of surface-water stations, in downstream order, for which records are published in	
this volume	vii
List of ground-water wells, by subregion, for which records are published in this volume.	xi
List of discontinued surface-water discharge or stage-only stations	xiii
List of discontinued surface-water-quality stations	XXV
Introduction	1
Cooperation	2
Acknowledgments	3
Summary of hydrologic conditions	4
Surface water	4
Ground water	5
Water quality	5
General overview	5
Remark codes	7
Dissolved trace-element concentrations	7
Water quality-control data	7
Water use	9
Special networks and programs	12
Explanation of the records	14
Station identification numbers	14
Downstream order system	14
Latitude-longitude system	15
Local number	15
Records of stage and water discharge	16
Data collection and computation	16
Methodology	16
Computation	16
Winter discharge measurements	17
Estimates for periods of no data	17
Data presentation	17
Station manuscript	18
Data table of daily mean values	20
Statistics of monthly mean data	20
Summary statistics	20
Identifying estimated daily discharge	23
Accuracy of the records	23
Other data available	23
Records of surface-water quality	24
Classification of records	24
Arrangement of records	24
On-site measurements and sample collection	24
Water temperature	26
Sediment	26

Laboratory measurements	27
Records of ground-water levels	27
Data collection and computation	27
Data presentation	28
Records of ground-water quality	29
Data collection and computation	29
Data presentation	29
Access to USGS water data	29
Definition of terms	30
Publications on Techniques of Water-Resources Investigations	44
Station records, surface water	52
Discharge at partial-record stations and miscellaneous sites	288
Crest-stage partial record stations	288
Miscellaneous sites	300
Analyses of samples collected at miscellaneous sites	319
Analyses of samples collected at miscellaneous lake sites	347
Station records, ground water levels	355
Index	394
FIGURES	
Figure 1. Map showing locations of gaging stations	50
Figure 2. Map showing locations of crest-stage partial-record stations	286
Figure 3. Map showing locations of ground-water wells	352
ILLUSTRATIONS	
Graph of monthly mean water withdrawal rate for public supply in the Anchorage,	
Fairbanks, and Juneau areas, 1990-2002	1.
Map showing locations of gaging stations in the Sitka area	108
Graph of Solomon Gulch profile and schematic diagram of flows	154
Map showing location of the Bradley Lake Hydroelectric Project area	165
River ice break-up hydrograph for Kuskokwim River at Dike at Aniak, 2002	233
Map showing locations of wells in the Mendenhall Valley	354

SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

Note--Data for partial-record stations and miscellaneous sites for both surfacewater quantity and quality are published in separate sections of the data report. See end of this list for page numbers for these sections.

[Letters after station name designate type of data: (d) discharge, (c) chemical, (i) intragravel-water temperature, (m) microbiological, (t) water temperature, (s) sediment, (e) elevation, gage height, (b) biological or contents]

Station number

SOUTHEAST ALASKA

ALLEN AND GERELANG		
MAINLAND STREAMS	15010000	50
Tyee Lake Outlet near Wrangell (d)		52
Harding River near Wrangell (d)		54
Stikine River near Wrangell (d)		56
Dorothy Lake Outlet (head of Dorothy Creek) near Juneau (d)		57
Dorothy Creek near Juneau (d)		59
Taku River near Juneau (d, t, c)		60
Gold Creek at Juneau (d)		66
Salmon Creek near Juneau (d)		68
Jordan Creek below Egan Drive near Auke Bay (d, t)	15052475	69
Mendenhall River		
Nugget Creek above Diversion near Auke Bay (d)		73
Mendenhall River near Auke Bay (d)	15052500	74
Montana Creek near Auke Bay (d, c)		76
Duck Creek below Nancy Street near Auke Bay (d)	15053200	79
Antler River below Antler Lake near Auke Bay (d)	15055500	80
Kakuhan Creek near Haines (d, t)	15056030	81
Kahtaheena River above Upper Falls near Gustavus (d, t)	15057580	86
STREAMS ON REVILLAGIGEDO ISLAND		
Swan Lake near Ketchikan (d, e)	15070000	90
Fish Creek near Ketchikan (d)	15072000	91
STREAMS ON PRINCE OF WALES ISLAND		
Staney Creek		
North Fork Staney Creek near Klawock (d, t)	15081495	93
Staney Creek near Klawock (d, t)		97
Threemile Creek near Klawock (d)	15081610	101
Halfmile Creek above diversion near Klawock (d)	15081614	102
Reynolds Creek below Lake Mellen near Hydaburg (d)	15081995	103
Old Tom Creek near Kasaan (d, t)		104
Indian River near Sitka (d, t, c, s)		109
Indian River at Sitka (d, t, c, s)		116

Sawmill Creek near Sitka (d)	15088000	122
Silver Bay Tributary at Bear Cove near Sitka (d)		124
STREAMS ON BARANOF ISLAND		
Green Lake near Sitka (d)	15090000	125
STREAMS ON ADMIRALTY ISLAND		
Greens Creek at Greens Creek Mine near Juneau (d)	15101490	126
STREAMS ON CHICHAGOF ISLAND		
Favorite Creek near Angoon (d, c)	15102200	128
Kadashan River above Hook Creek near Tenakee (d, t)	15106920	130
Middle Basin Creek near Tenakee (d, t)	15106970	134
STREAMS ON DOUGLAS ISLAND		
Peterson Creek below North Fork near Auke Bay (d, c)	15109048	138
MAINLAND STREAMS		
Alsek River near Yakutat (d)	15129000	142
Situk River near Yakutat (d, t)	15129500	143
Ophir Creek near Yakutat (d)	15129600	147
Russell Lake near Yakutat (d)	15130000	148
SOUTH-CENTRAL ALASKA		
MAINLAND STREAMS		
Copper River		
Gulkana River at Sourdough (d)	15200280	150
Nicolet Creek near Cordova (d)		152
Solomon Lake (head of Solomon Gulch) near Valdez (e)		155
Solomon Gulch tailrace near Valdez (d)		156
Solomon Gulch at top of falls near Valdez (d)		157
Solomon Gulch near Valdez (d)		158
Wolverine Creek near Lawing (d)		160
Resurrection River		
Salmon Creek		
Lost Creek		
Grouse Creek at Grouse Lake Outlet near Seward (d)	15237730	162
Spruce Creek near Seward (d)	15238600	163
Upper Nuka River near park boundary near Homer (d)	15238648	166
Battle Creek		
Battle Creek diversion above Bradley Lake near Homer (d)	15238978	168
Bradley River		
Upper Bradley River near Nuka Glacier near Homer (d)	15238990	170
Bradley River near Homer (d, e)		172
Bradley River below dam near Homer (d)	15239001	173
Middle Fork Bradley River near Homer (d)	15239050	174
Middle Fork Bradley River below North Fork Bradley River near		
Homer (d)	15239060	176
Bradley River near Tidewater near Homer (d)	15239070	177
Ninilchik River at Ninilchik (d, t)	15241600	179

Kenai River		
Snow River near Seward (d)	15243900	182
Kenai River at Cooper Landing (d)		183
Cooper Creek at mouth near Cooper Landing (d, t)		185
Kenai River below Skilak Lake Outlet near Sterling (d)		188
Kenai River below mouth of Killey River near Sterling (d)		189
Kenai River at Soldotna (d)		190
Sixmile Creek near Hope (d)		192
Portage Creek at Portage Lake outlet near Whittier (d)		194
Twentymile River below Glacier River near Portage (d, t)		196
Ship Creek near Anchorage (d)		200
Eklutna Lake (head of Eklutna River) near Palmer (e)		202
Eklutna River at Old Glenn Highway at Eklutna (d)		203
Matanuska River	13200200	203
Knik River near Palmer (d)	15281000	204
Matanuska River at Palmer (d)		204
Little Susitna River near Palmer (d)		208
Susitna River at Gold Creek (d)		210
Talkeetna River near Talkeetna (d)		210
• /		211
Willow Creek near Willow (d)		
Johnson River above Lateral Glacier near Tuxedni Bay (d)	15294700	214
STREAMS ON KODIAK ISLAND	15205700	215
Terror River at mouth near Kodiak (d, t)	1529570U	215
SOUTHWEST ALASKA		
MAINLAND STREAMS		
Russell Creek near Cold Bay (d, t)	15297610	219
Kvichak River	15277014	21)
Iliamna River near Pedro Bay (d)	15300300	223
Nuyakuk River near Dillingham (d)		224
Kuskokwim River	13302000	<i></i>
Takotna River		
Tatalina River near Takotna (d, t)	15303700	226
Kuskokwim River at Liskys Crossing near Stony River (e)	15303700	229
Kuskokwim River at Crooked Creek (d)		230
Kuskokwim River at Crooked Creek (d)		232
Ruskokwiiii Rivei at Alliak (e, t)	13304000	232
YUKON ALASKA		
Yukon River at Eagle (d, c, s)	15356000	235
Porcupine River near International Boundary, Yukon Territory (d)		240
Yukon River near Stevens Village (d, c, s)		242
Tanana River	10 100000	
Goodpaster River		
Liese Creek near Big Delta (d)	15477730	246
Liebe Crock near Dig Delta (a)	15 17775G	<u>~</u> TU

Goodpaster River near Big Delta (d)	247
Upper West Creek near Big Delta (d)	248
Central Creek	
Sonora Creek above tributary near Big Delta (d) 15477768	249
Sonora Creek near Big Delta (d)	250
Central Creek near Big Delta (d)	251
Delta River	
Salcha River near Salchaket (d)	252
Tanana River at Fairbanks (d)	254
Chena River	
Chena River near Two Rivers (d)	255
Little Chena River near Fairbanks (d)	256
Chena River at Fairbanks (d)	257
Tanana River at Nenana (d, c, s)	258
Nenana River	
Lignite Creek above mouth near Healy	263
Koyukuk River	
Middle Fork Koyukuk River	
Slate Creek at Coldfoot (d, t)	264
Yukon River at Pilot Station (d,c,s)	268
1 water 1 at 1 at 2 at 2 at 2 at 3 at 4 at 5 at 6 at 7	_00
NORTHWEST ALASKA	
Unalakleet River above Chiroskey River near Unalakleet (d, t)	273
Kobuk River near Kiana (d)	277
Wulik River above Ferric Creek near Kivalina (d)	278
Ikalukrok Creek below Red Dog Creek near Kivalina (d)	279
Wulik River below Tutak Creek near Kivalina (d)	280
wullk Rivel below Tutak Cleek lieat Rivallia (d)	200
ARCTIC SLOPE ALASKA	
Nunavak Creek near Barrow (d)	282
Kuparuk River near Deadhorse (d)	
Ruparuk River near Deadnorse (d)	200
* * * * * * * * * * *	
Discharge at partial-record stations and miscellaneous sites	288
Crest-stage partial-record stations	288
Miscellaneous sites	300
Analyses of samples collected at water-quality miscellaneous sites	319
Analyses of samples collected at miscellaneous lake sites	347
	,

GROUND-WATER WELLS, BY HYDROLOGIC SUBREGION, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

GROUND-WATER LEVELS

SOUTHEAST ALASKA	
Juneau	
WELL 582136134344802. Local number, CD04006631ACBC1015	355
WELL 582146134351701. Local number, CD04006631BBDD1016	355
WELL 582147134351401. Local number, CD04006631BBDB1017	356
WELL 582154134350501. Local number, CD04006630CDCB1027	356
WELL 582156134351701. Local number, CD04006631BBBA1018	357
WELL 582158134352001. Local number, CD04006630CCCD2017	357
WELL 582203134351601. Local number, CD04006630CCDB1028	358
WELL 582203134351701. Local number, CD04006630CCBD3015	358
WELL 582203134351901. Local number, CD04006630CCBD2015	359
WELL 582206134351401. Local number, CD04006630CCAC1029	359
WELL 582208134351201. Local number, CD04006630CCAB1030	360
WELL 582208134352601. Local number, CD04006630CCBB1031	360
WELL 582215134350501. Local number, CD04006630CBAD1032	361
WELL 582240134344501. Local number, CD04006630BADA2033	362
WELL 582240134352901. Local number, CD04006630BBCB1036	363
WELL 582314134344801. Local number, CD04006619BDDD1055	364
WELL 582314134351201. Local number, CD04006619BCDD2020	365
WELL 582322134341001. Local number, CD04006619ACAB1050	366
WELL 582326134341901. Local number, CD04006619ADBA1011	366
WELL 582359134352103. Local number, CD04006618CBCA3019 85177	367
COLUMN CENTRO AL ALACIZA	
SOUTH-CENTRAL ALASKA	
Municipality of Anchorage	266
WELL 611725149335401. Local number, SB01400223BCCD1003	368
YUKON ALASKA	
Fairbanks North Star Borough	
WELL 644321147163801. Local number, FD00200223DDBA1003	369
WELL 644331147183901. Local number, FD00200222DABD1006	370
WELL 644345147172101. Local number, FD00200223BDAD1002	371
WELL 644400147151501. Local number, FD00200224ABBB1001 51659	372
WELL 644401147193801. Local number, FD00200222BABA1005	373
WELL 644402147132801. Local number, FD00200319BAAB1001	374
WELL 644402147150401. Local number, FD00200224ABBA1002	375
WELL 644402147182601. Local number, FD00200222AAAA1004	376
WELL 644403147112901. Local number, FD00200317CDDD1005	377
WELL 644408147162001. Local number, FD00200214DDDA1003	378
WELL 644423147124601. Local number, FD00200318DABC1006	379
WELL 644435147141901. Local number, FD00200213ADAD1007	380
WELL 644435147141902. Local number, FD00200213ADAD2007	381

WELL 644435147172001. Local number, FD00200214ACBC1002	382
WELL 644444147143901. Local number, FD00200213AACD1005	383
WELL 644446147120901. Local number, FD00200317BBCA1001	384
WELL 644450147131201. Local number, FD00200318ABBD1005	385
WELL 644454147151701. Local number, FD00200213ABBB1006	386
WELL 644528147131201. Local number, FD00200307ACBD1001 51660	387
WELL 644531147130801. Local number, FD00200307ACBA1007	388
WELL 644547147141801. Local number, FD00200306CCCC1002	389
WELL 644603147131401. Local number, FD00200306DBCA1001	390
WELL 644603147151801. Local number, FD00200201DBCB1002	391
WELL 645434147385101. Local number, FB00100113DDBC2001 50673	392

DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS

The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Alaska have been discontinued. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. Those stations with an asterisk (*) after the station number are currently operated as crest-stage partial-record stations. Short-term, seasonal, and fragmented records for data collected at 190 sites in Alaska west of 141 degrees longitude during water years 1906-14 have not been entered into NWIS and are not included in this list. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report.

[Letters after station name designate type of data collected: (d) discharge, (e) elevation (stage only)]

* Currently operated as a crest-stage partial-record station
Discontinued surface-water discharge or stage-only stations

[Footnotes at end of table on p. xxiv]

Station name	Station number	Drainage area (mi ²)	Period of record
SOUTHEA	ST ALASKA		
Salmon River near Hyder (d)	15008000	a94	1963-73
Davis River near Hyder (d)	15010000	a80	1930-40
Red River near Metlakatla (d)	15011500	45.3	1963-78
White Creek near Ketchikan (d)	15011870	2.70	1977-84
Keta River near Ketchikan (d)	15011880	74.2	1977-84
Blossom River near Ketchikan (d)	15011894	68.1	1981-84
Winstanley Creek near Ketchikan (d)	15012000	15.5	1936-38 1947-75
Punchbowl Lake Outlet near Ketchikan (d)	15014000	a12	1924-30
Klahini River near Bell Island (d)	15015600	58.0	1967-73
Short Creek near Bell Island at Short Bay (d)	15016000	a20	1922-26
Shelokum Lake Outlet near Bell Island (d)	15018000	15.6	b1915-25
Tyee Creek near Wrangell (d)	15020000	ar15.2	c1922-27
Tyee Creek at Mouth near Wrangell (d)	15020100	16.1	1963-69
East Fork Bradfield River near Wrangell (d)	15020500	63.3	1979-81
Mill Creek near Wrangell (d)	15024000	a37	1915-17 c1923-28
Goat Creek near Wrangell (d)	15024750	17.3	1976-86
Cascade Creek near Petersburg (d)	15026000	23.0	1918-29 1947-73
Scenery Creek near Petersburg (d)	15028000	30.0	1949-52
Farragut River near Petersburg (d)	15028300	151	1977-93
Sweetheart Falls Creek near Juneau (d)	15030000	r36.3	b1915-27
Long Lake near Juneau (e)	15031700	30.2	1965-75
Long Lake Outlet near Juneau (d)	15032000	30.2	1913-16
Long River near Juneau (d)	15034000	32.5	1916-24 b1927-33 1952-68 R1969-73
Speel River near Juneau (d)	15036000	226	1916-18 1960-75
Crater Creek near Juneau (d)	15038000	11.4	b1913-21 c1923-24 1927-33

Discontinued surface-water discharge or stage-only stations--Continued [Footnotes at end of table on p. xxiv]

Station name	Station number	Drainage area (mi ²)	Period of record
SOUTHEAST ALA	ASKAContinued		
Dorothy Creek near Juneau (d)	15040000	15.2	1929-41 c1942-44 1945-67
Carlson Creek at Sunny Cove near Juneau (d)	15042000	22.3	c1914 b1916-21
Carlson Creek near Juneau (d)	15044000	24.3	1951-61
Grindstone Creek near Juneau (d)	15046000	r3.75	1916-21
Sheep Creek near Juneau (d)	15048000	4.57	1911-14 1916-21 1947-73
Gold Creek near Juneau (d)**	15049900	8.41	1984-97
Salmon Creek above Canyon Mouth near Juneau (d)	15051008	9.50	R1982-90
Lemon Creek near Juneau (d)	15052000	12.1	b1951-73
Lemon Creek near Mouth near Juneau (d)	15052009	22.9	1983-86
Montana Creek near Auke Bay (d)	15052800*	15.5	1965-75 1983-87
Lake Creek at Auke Bay (d)	15053800	2.50	1964-73
Auke Creek at Auke Bay (d)	15054000	3.96	1947-50 1962-75
Herbert River near Auke Bay (d)	15054200	56.9	1967-71
Bridget Cove Tributary near Auke Bay (d)	15054600	0.95	1971-73
Davies Creek near Auke Bay (d)	15054990	15.2	1970-72
Sherman Creek at Comet (d)	15056000	3.65	1914-17
Dayebas Creek near Haines (d)	15056070	9.33	1980-81
Goat Lake Outlet near Skagway (d)	15056095	2.92	1991-97
Skagway River at Skagway (d)	15056100	a145	1964-86
West Creek near Skagway (d)	15056200	43.2	1962-77
Taiya River near Skagway (d)	15056210	179	1970-78
Upper Chilkoot Lake Outlet near Haines (d)	15056280	4.59	1993-97
Chilkat River at Gorge near Klukwan (d)	15056400	a190	1962-68
Chilkat River near Klukwan (d)	15056500	a760	1959-61
Klehini River near Klukwan (d)	15056560	284	1982-93
Kahtaheena River near Gustavus	15057590	10.7	1998-2001
Purple Lake Outlet near Metlakatla (d)	15058000	6.67	1947-56
Whipple Creek near Ward Cove (d)	15059500	5.29	1968-80
Perseverance Creek near Wacker (d)	15060000	2.81	b1932-39 1947-69
Ward Creek near Wacker (d)	15062000	14.0	1949-53 R1954-58

Station name	Station number	Drainage area (mi ²)	Period of record
SOUTHEAST ALA	ASKAContinued		
Ketchikan Creek at Ketchikan (d)	15064000	13.5	R1910-12 bR1915-20 R1965-67
Beaver Falls Creek near Ketchikan (d)	15066000	5.8	c1917 1920-26 1928-32
Upper Mahoney Lake Outlet near Ketchikan (d)	15067900	2.03	1977-89
Mahoney Creek near Ketchikan (d)	15068000	5.70	b1920-34 1948-58 1978-81
Swan Lake (Falls Creek) near Ketchikan (d)	15070000#	36.5	b1916-34 1947-59
Ella Creek near Ketchikan (d)	15074000	19.7	1928-38 1947-58
Manzanita Creek near Ketchikan (d)	15076000	33.9	1928-37 1947-67
Grace Creek near Ketchikan (d)	15078000	30.2	1928-37 1964-69
Orchard Creek near Bell Island (d)	15080000	a59	1915-27
Traitors River near Bell Island (d)	15080500	20.8	1964-68
Staney Creek near Craig (d)	15081500	51.6	1965-81
Bonnie Creek near Klawock (d)	15081510	2.72	1981
Black Bear Lake Outlet near Klawock (d)	15081580	1.82	1980-91
Klawak River near Klawock (d)	15081620	46.1	1977
North Branch Trocadero Creek near Hydaburg (d)	15081800	17.4	1967-73
Reynolds Creek near Hydaburg (d)	15082000	a5.7	1951-56
Perkins Creek near Metlakatla (d)	15083500	3.38	1976-93
Myrtle Creek at Niblack (d)	15084000		1917-21
Saltery Creek near Kasaan (d)	15085000	5.53	1962-64
Cabin Creek near Kasaan (d)	15085300	8.83	1962-64
Virginia Creek near Kasaan (d)	15085400	3.08	1962-64
Indian Creek near Hollis (d)	15085600	8.82	1949-64
Harris River near Hollis (d)	15085700	28.7	1949-64
Maybeso Creek at Hollis (d)	15085800	15.1	1949-63
Wolf Lake Outlet near Hollis (d)	15085900	1.64	1995-98
Karta River near Kasaan (d)	15086000	49.5	1915-23
Neck Creek near Point Baker (d)	15086500	17.0	1960-67
Big Creek near Point Baker (d)	15086600	11.2	1964-81
Sunrise Lake Outlet near Wrangell	150086960	1.17	1976-80 1997-2001
Mill Creek at Wrangell (d)	15087000	0.09	1965-67

Discontinued surface-water discharge or stage-only stations--Continued [Footnotes at end of table on p. xxiv]

Station name	Station number	Drainage area (mi ²)	Period of record
SOUTHEAST ALASKA-	-Continued		
Hammer Slough at Petersburg (d)	15087200	1.46	1965-67
Municipal Watershed Creek near Petersburg (d)	15087545	2.20	1979-88
No Name Creek near Petersburg (d)	15087560	3.17	1971-73
Hamilton Creek near Kake (d)	15087570	65.0	1977-86 1988-96
Rocky Pass Creek near Point Baker (d)	15087590	2.72	1977-88
Nakwasina River near Sitka (d)	15087610	31.9	1977-82
Sawmill Creek near Sitka (d)	15088000	39.0	c1920-23 1928-42 1946-57
Green Lake (outlet) near Sitka (d)	15090000#	r22.8	1915-25
Maksoutof River near Port Alexander (d)	15092000	a26	1951-56
Betty Lake Outlet near Port Armstrong (d)	15093200	2.66	1978-81
Sashin Creek near Big Port Walter (d)	15093400	3.72	1965-73 1975-80
East Branch Lovers Cove Creek Diversion near Big Port Walter (d)	15093600		1965-71
Deer Lake Outlet near Port Alexander (d)	15094000	7.41	1951-68
Coal Creek near Baranof (d)	15096000	28.5	b1922-27
Baranof River at Baranof (d)	15098000	32.0	1915-28 1958-74
Takatz Creek near Baranof (d)	15100000	17.5	1951-69
Nichols Creek near Angoon (d)	15100500	a0.12	1981
Stephens Creek near Angoon (d)	15100510	a0.14	1981
Kalinin Bay Tributary near Sitka (d)	15101200	2.28	1976-80
Greens Creek near Juneau (d)	15101500	22.8	1979-92
Hasselborg Creek near Angoon (d)	15102000	56.2	1951-68
Porcupine River near Chichagof (d)	15104000	7.12	1918-20
Falls Creek near Chichagof (d)	15106000	6.48	1918-20
Black River near Pelican (d)	15106100	24.7	1978-82
Hook Creek above Tributary near Tenakee (d)	15106940	4.48	1967-80
Hook Creek near Tenakee (d)	15106960	8.00	1966-80
Tonalite Creek near Tenakee (d)	15106980	14.5	1968-88
Kadashan River near Tenakee (d)	15107000	37.7	1964-79
West Fork Indian River near Tenakee (d)	15107910	3.02	1979-81
Indian River near Tenakee (d)	15107920	12.9	1976-82
Pavlof River near Tenakee (d)	15108000	24.3	1957-81
Hilda Creek near Douglas (d)	15108600	2.62	1967-71
Lawson Creek at Douglas (d)	15108800	2.98	1967-71
Fish Creek near Auke Bay (d)	15109000	13.6	1959-78

Station name	Station number	Drainage area (mi ²)	Period of record
SOUTH-CENTRAL A	LASKA		
Dick Creek near Cordova (d)	15195000	7.95	1970-81
Gakona River at Gakona (d)	15200000	a620	c1970
Tazlina River near Glennallen (d)	15202000	a2670	1949-50 1952-72
Klutina River at Copper Center (d)	15206000	a880	c1913 1949-67 c1970
Little Tonsina River near Tonsina (d)	15207800	22.7	1972-78
Tonsina River at Tonsina (d)	15208000	a420	b1950-82
Squirrel Creek at Tonsina (d)	15208100	70.5	1965-75
West Fork Kennicott River at McCarthy (d)	15209700		c1992-95
East Fork Kennicott River at McCarthy (d)	15209800		c1991-92
Tebay River near Chitina (d)	15211500	a55.4	1962-65
Copper River near Chitina (d)	15212000	a20600	c1950 c1952-53 1956-90
Copper River at Million Dollar Bridge near Cordova (d)	15214000	24200	b1907-10 c1913 1988-95
Heney Creek at canyon mouth near Cordova (d)	15215992	1.53	1992-93
Power Creek near Cordova (d)	15216000	20.5	c1913 1947-95
Middle Arm Eyak Lake Tributory near Cordova (d)	15216003	2.90	1992-93
Murchison Creek near Cordova (d)	15216008	a0.37	1992-93
Humpback Creek near Cordova (d)	15216100	4.37	c1913 1974-75
West Fork Olsen Bay Creek near Cordova (d)	15219000	4.78	1964-81
Duck River at Silver Lake Outlet near Valdez (d)	15223900	25.1	1982-85
Duck River near Tidewater near Valdez (d)	15224000	26.7	c1913-14 1982-85
Solomon Gulch Bypass near Valdez (d)	15225998		c1986-94
Lowe River near Valdez (d)	15226500	201	1971-74
Lowe River in Keystone Canyon near Valdez (d)	15226600	222	1975-76
Hobo Creek near Whittier (d)	15236000	5.53	c1913 1990-2000
Nellie Juan River near Hunter (d)	15237000	133	1961-65
Main Bay Creek near Port Nellie Juan (d)	15237020	5.93	1981-84
San Juan River near Seward (d)	15237360	12.4	1986-96
Resurrection River at Seward (d)	15237700	169	1965-68
Bear Creek Tributary near Seward (d)	15237800	1.63	1967-68
Lost Creek near Seward (d)	15238000	8.42	1948-50

Discontinued surface-water discharge or stage-only stations--Continued [Footnotes at end of table on p. xxiv]

Station name	Station number	Drainage area (mi ²)	Period of record
SOUTH-CENTRAL A	ALASKAContinued		
Lowell Creek above city wells at Seward (d)	1523849020	3.73	1993-95
Lowell Creek at Seward (d)	15238500	4.02	1965-68 1991-93
Nuka River near Tidewater near Homer (d)	15238653	a38	1984-85
Seldovia River near Seldovia (d)	15238795	26.2	1979-80
Barabara Creek near Seldovia (d)	15238820	20.7	1972-92
Tutka Lagoon Creek near Homer (d)	15238860	10.8	1973-76
Battle Creek below Glacier near Homer (d)	15238982	g11.8	1991-93
South Fork Battle Creek near Homer (d)	15238984	a6.5	1991-93
Battle Creek near Tidewater near Homer (d)	15238985	ag21	1991-93
Fritz Creek near Homer (d)	15239500*	10.4	1967-70 1986-92
Twitter Creek near Homer (d)	15239880	16.1	1971-73
Anchor River near Anchor Point (d)	15239900*	137	1965-73 1979-86 1991-92
Anchor River at Anchor Point (d)	15240000	224	1953-66
Kasilof River near Kasilof (d)	15242000	738	1949-70
Snow River near Divide (d)	15243500	a99.8	1961-65
Ptarmigan Creek at Lawing (d)	15244000	32.6	1947-58
Grant Creek near Moose Pass (d)	15246000	44.2	1947-58
Trail River near Lawing (d,e)	15248000	181	d1947-74 e1975-77
Crescent Creek near Moose Pass (d)	15253000	21.4	1957-60
Crescent Creek near Cooper Landing (d)	15254000	31.7	1949-66
Cooper Creek near Cooper Landing (d)	15260000	31.8	1949-59
Stetson Creek near Cooper Landing (d)	15260500	a8.6	1958-63
Russian River near Cooper Landing (d)	15264000	61.8	1947-54
Beaver Creek near Kenai (d)	15266500	a51	1968-78
Bernice Lake near Kenai (e)	15266895		1977-79
Bishop Creek near Kenai (d)	15267000	a24.2	1977-79
Resurrection Creek near Hope (d)	15267900	149	1968-86
Resurrection Creek at Hope (d)	15268000	162	1950-51
Glacier Creek at Girdwood (d)	15272550	r58.2	1965-78
Rabbit Creek at Anchorage (d)	15273050	a15	1979-80 1984-85
Little Rabbit Creek above Goldenview Drive at Anchorage (d)	15273095	5.06	1981-85
Little Rabbit Creek at Anchorage (d)	15273102	5.94	1979-80
Rabbit Creek at New Seward Highway at Anchorage (d)	15273105	a24.5	1984-86

Station name	Station number	Drainage area (mi ²)	Period of record
SOUTH-CENTRAL ALASKAC	Continued		
South Fork Campbell Creek at Canyon Mouth near Anchorage (d)	15273900	25.2	1967-79
South Fork Campbell Creek near Anchorage (d)	15274000	29.2	1947-71 1999-2001
North Fork Campbell Creek near Anchorage (d)	15274300	13.4	1974-84
Little Campbell Creek at Nathan Drive near Anchorage (d)	15274550	a15	c1981 1986-92
Campbell Creek near Spenard (d)	15274600	69.7	1966-93
Sand Lake near Spenard (e)	15274700		c1967-74
South Branch South Fork Chester Creek near East 20th Ave. at Anchorage (d)	15274798	9.39	1981-84
Chester Creek at Anchorage (d)	15275000	20.0	1958-76
Chester Creek at Arctic Boulevard near Anchorage (d)	15275100	27.4	1966-86 1987-93 1999-2001
Ship Creek at Elmendorf Air Force Base near Anchorage (d)	15276500	113	1963-71
Ship Creek below Power Plant at Elmendorf Air Force Base (d)	15276570	115	1971-81
Ditch on Elmendorf Air Force Base (d)	15276650	3.73	1973-75
Eagle River at Eagle River (d)	15277100	a192	1966-81
Peters Creek near Birchwood (d)	15277410	87.8	1973-83
East Fork Eklutna Creek near Palmer (d)	15277600	538.2	1960-62 1985-89
West Fork Eklutna Creek near Palmer (d)	15277800	25.4	1960-62 1985-89
Eklutna Creek near Palmer (d)	15280000	119	1947-54 R1955-62
Knik River near Palmer (d)	15281000	a1180	1960-88 1992
Caribou Creek near Sutton (d)	15282000	289	1955-78
Moose Creek near Palmer	15283700	47.3	1997-2001
Palmer Hayflat at railroad near Palmer (e)	15284500		1992-97
Cottonwood Creek near Wasilla (d)	15286000	28.5	1949-54 1998-2000
Susitna River near Denali (d)	15291000	a950	1957-66 1968-86
Maclaren River near Paxson (d)	15291200	a280	1958-86
Susitna River near Cantwell (d)	15291500	a4140	1961-72 1980-86
Chulitna River near Talkeetna (d)	15292400	a2570	1958-72 1980-86
Susitna River at Sunshine (d)	15292780	a11100	1981-86
Deception Creek near Willow (d)	15294010	48.0	1978-85
Deshka River near Willow (d)	15294100	591	1979-86 1999-2001

Discontinued surface-water discharge or stage-only stations--Continued [Footnotes at end of table on p. xxiv]

Station name	Station number	Drainage area (mi ²)	Period of record
SOUTH-CENTRAL ALA	SKAContinued		
Skwentna River near Skwentna (d)	15294300	a2250	1960-82
Yentna River near Susitna Station (d)	15294345	a6180	1981-86
Susitna River at Susitna Station (d)	15294350	a19400	1975-93
Capps Creek below North Capps Creek near Tyonek (d)	15294410	10.5	1979-85
Chuitna River near Tyonek (d)	15294450	131	1976-86
Chakachatna River near Tyonek (d)	15294500	a1120	1959-72
Montana Bill Creek at pipeline near Kenai (d)	15294585		c1991-92
Paint River near Kamishak (d)	15294900	205	1983-85 1989 1991-95
Little Kitoi Creek near Afognak (d)	15295500	2.63	1960-61
Terror River near Kodiak (d)	15295600	15.0	1962-68 1978-82 R1983-86
Uganik River near Kodiak (d)	15296000	123	1951-78
Spiridon Lake Outlet near Larsen Bay (d)	15296300	23.3	1962-65
Larsen Bay Creek near Larsen Bay (d)	15296480	3.92	1980-84
Falls Creek near Larsen Bay (d)	15296500	5.67	1974-75
Canyon Creek near Larsen Bay (d)	15296520	8.82	1974-76
Upper Thumb River near Larsen Bay (d)	15296550	18.8	1974-82
Karluk River at Outlet near Larsen Bay (d)	15296600	100	1975-76 1979-82
Akalura Creek at Olga Bay (d)	15296950	18.4	1975-76
Dog Salmon Creek near Ayakulik (d)	15297000	72.9	1960-61
Hidden Basin Creek near Port Lions (d)	15297100	3.01	1982-84
Hidden Basin Creek near Mouth near Kodiak (d)	15297110	11.9	1983-84
Myrtle Creek near Kodiak (d)	15297200*	4.74	1963-86
Middle Fork Pillar Creek near Kodiak (d)	15297450	2.02	1969-70
Monashka Creek near Kodiak (d)	15297470	5.51	1972 R1973-76
Falls Creek near Port Lions (d)	15297482	a4.3	1981-83
Kizhuyak River near Port Lions (d)	15297485	42.5	1980-94
SOUTHWEST A	LASKA		
Whiskey Bills Creek near Sand Point (d)	15297602	a0.30	1983-84
Humboldt Creek at Sand Point (d)	15297603	a5.2	1983-84
Sweeper Creek at Adak (d)	15297617	1.0	1992-96
Moffett Creek at Adak (d)	15297625	4.5	1993-96
Limpet Creek on Amchitka Island (d)	15297640	1.69	1968-72
Falls Creek on Amchitka Island (d)	15297650	0.86	1968-72

Station name	Station number	Drainage area (mi ²)	Period o record
SOUTHWEST ALASK	XAContinued		
Clevenger Creek on Amchitka Island (d)	15297655	0.28	1968-74
Constantine Spring Creek on Amchitka Island (d)	15297660		1968-73
Bridge Creek on Amchitka Island (d)	15297680	3.03	1968-74
White Alice Creek on Amchitka Island (d)	15297690	0.79	1968-74
Lake Creek at Shemya Air Force Base (d)	15297767	a1.0	1971-73
Gallery Spring at Shemya Air Force Base (d)	15297771		1971-72
Gallery Creek at Shemya Air Force Base (d)	15297773	a1.0	1971-73
Eskimo Creek at King Salmon (d)	15297900	16.1	1973-76 1978-84
Tanalian River near Port Alsworth (d)	15298000	a200	1951-56
Tazimina River near Nondalton (d)	15299900	327	1981-86
Newhalen River near Iliamna (d)	15300000	3478	1951-67 1982-86
Kvichak River at Igiugig (d)	15300500	a6500	1967-87
Allen River near Aleknagik (d)	15301500	278	1963-66
Nushagak River at Ekwok (d)	15302500	a9850	1978-93
Grant Lake Outlet near Aleknagik (d)	15302800	r34.3	1959-65
Elva Lake Outlet near Aleknagik (d)	15302840	9.00	1980-82
Wood River near Aleknagik (d)	15303000	a1110	1957-70
Silver Salmon Creek near Aleknagik (d)	15303010	4.46	1985-86 c1988-89
Wood River Tributary near Aleknagik (d)	15303011	3.35	c1990 c1992-93
East Creek near Dillingham (d)	15303100	2.12	1973-75
Snake River near Dillingham (d)	15303150	113	1973-83
Kuskokwim River at McGrath (d)	15303600	a11700	1963-73
Kisaralik River near Akiak (d)	15304200	265	1980-87
Browns Creek near Bethel (d)	15304293	4.79	c1985-94
Browns Creek at Bethel (d)	15304298	10.5	c1985
YUKON ALA	ASKA		
King Creek near Dome Creek (d)	15344000*	5.87	1983-90
Fortymile River near Steele Creek (d)	15348000	a5880	c1910-12 1976-82
Porcupine River at Old Crow, Yukon Territory, Canada (d)	15388950	a21400	f1980-89
Porcupine River near Fort Yukon (d)	15389000	a29500	1964-79
Chandalar River near Venetie (d)	15389500	a9330	1963-73
Boulder Creek near Central (d)	15439800*	31.3	1966-82 1984-86
Hess Creek near Livengood (d)	15457800	662	1970-78 1982-86

Discontinued surface-water discharge or stage-only stations--Continued [Footnotes at end of table on p. xxiv]

Station name	Station number	Drainage area (mi ²)	Period of record
YUKON ALASKA	AContinued		
Yukon River at Rampart (d)	15468000	a199400	1955-67
Chisana River at Northway Junction (d)	15470000	a3280	1949-71
Tanana River near Tok Junction (d)	15472000	a6800	1950-53
Tok River near Tok Junction (d)	15474000	a930	1952-54
Tanana River near Tanacross (d)	15476000	a8550	1953-90
Berry Creek near Dot Lake (d)	15476300*	65.1	1971-81
Dry Creek near Dot Lake (d)	15476400	57.6	1966-69
Clearwater Creek near Delta Junction (d)	15477500	a360	1977-79
Tanana River at Big Delta (d)	15478000	a13500	1949-52 1954-57
Tanana River near Harding Lake (e)	15481000	17240	c1968-82
Moose Creek at Eielson Air Force Base (d)	15485000	136	1964-65
Garrison Slough at Eielson Air Force Base (d)	15485200	6.24	1964-65
Chena River near North Pole (d)	15493500	r1445	1972-80
Chena River below Moose Creek Dam (d)	15493700	1,460	1979-96
Wood River near Fairbanks (d)	15514500	855	1968-78
Seattle Creek near Cantwell (d)	15515800	36.2	1966-75
Nenana River near Windy (d)	15516000	a710	1950-56
Nenana River near Healy (d)	15518000	a1910	1951-79
Healy Creek at Suntrana	15518020	a110	1998-2001
Nenana River at Healy (d)	15518040	a2100	1990-91
Nenana River near Rex (d)	15518300	a2450	1965-68
Teklanika River near Lignite (d)	15518350	490	1965-74
Chatanika River above Poker Creek near Chatanika (d)	15534800	419	1996
Poker Creek near Chatanika (d)	15534900	23.1	1971-78
Caribou Creek near Chatanika (d)	15535000	9.19	1970-84
Long Creek at Long near Ruby	15564450	25.4	1995-97
Melozitna River near Ruby (d)	15564600	2693	1961-73
Yukon River at Ruby (d)	15564800	a259000	1957-78
Middle Fork Koyukuk River near Wiseman (d)	15564875	a1200	1970-78 1984-87
Wiseman Creek at Wiseman (d)	15564877	49.2	1970-78
Jim River near Bettles (d)	15564885	465	1970-77
Koyukuk River at Hughes (d)	15564900	a18400	1960-82
Yukon River near Kaltag (d)	15565200	a296000	1957-66
Ophir Creek near Takotna (d)	15565235	6.19	1975-80
NORTHWEST.	ALASKA		
Snake River near Nome (d)	15621000	85.7	1965-81 1982-91

Station name	Station number	Drainage area (mi ²)	Period of record
NORTHWEST ALASI	KAContinued		
Eldorado Creek near Teller (d)	15635000	5.83	1988-90 1992-98
Gold Run Creek near Teller (d)	15637000*	24.2	c1986-88
Crater Creek near Nome (d)	15668200	21.9	1975-85
Kuzitrin River near Nome (d)	15712000	a1720	c1908-10 1962-73
Humboldt Creek near Serpintine Hot Springs near Nome (d)	15716010	8.15	c1992-93
June Creek near Kotzebue (d)	15743000	10.9	1965-67
Kobuk River at Ambler (d)	15744000	a6570	1965-78
Noatak River at Noatak (d)	15746000	a12000	c1965-71
Ikalukrok Creek above Red Dog Creek near Kivalina(d)	15746980	59.2	1991-92
Red Dog Mine clean water ditch near Kivalina(d)	15746983	4.74	1991-92
North Fork Red Dog Creek near Kivalina (d)	15746988*	15.9	1991-92
Red Dog Creek above mouth near Kivalina(d)	15746990	24.6	1991-92
Ogotoruk Creek near Point Hope (d)	15748000	a35	c1958-62
ARCTIC SLOPE	ALASKA		
Esatkuat Creek near Barrow (d)	15799000	a1.46	c1972-73
Esatkuat Lagoon Outlet at Barrow (d)	15799300	a3.52	c1972-73
Meade River at Atkasuk (d)	15803000	a1800	c1977
Teshekpuk Lake Outlet near Lonely (e)	15829995	a1400	c1977
Miguakiak River near Teshekpuk Lake near Lonely (d)	15830000	a1460	c1977
Colville River near Nuiqsut (d)	15880000	20670	c1977
Putuligayuk River near Deadhorse (d)	15896700	a176	1970-79 c1980 1982-86 c1987-95
Atigun River near Pump Station 4 (d)	15904800	48.7	1991-94
Atigun River Tributary near Pump Station 4 (d)	15904900*	32.6	1977-86
Sagavanirktok River near Sagwon (d)	15910000	2208	1970-78
Chamberlin Creek near Barter Island (d)	15975000	1.46	c1958
Neruokpukkoonga Creek near Barter Island (d)	15976000	123	c1958

WATER RESOURCES DATA FOR ALASKA, 2002

Discontinued surface-water discharge or stage-only stations--Continued

[Footnotes at end of table on p. xxiv]

Station name	Station number	Drainage area (mi ²)	Period o record
Footnotes			
** Currently operated as a water-quality partial record station			
# Currently operated as a monthly discharge and reservoir elevation sta-			
tion			
a Approximately			
b Break in record			
c Fragmentary or seasonal			
f Additional record for water years 1961-79 available from discharge			
records of Water Survey of Canada			
g Prior to diversion upstream			
r Revised			
R Regulated			

DISCONTINUED SURFACE-WATER-QUALITY STATIONS

The following continuous-record surface-water-quality stations in Alaska have been discontinued. Daily records of temperature, specific conductance, or sediment were collected and published for the period of record shown for each station. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report.

[Type of record: Temp. (temperature), S.C. (specific conductance), Sed. (sediment)]

Discontinued continuous record surface-water-quality stations [Footnotes at end of table on p. xxix]

Station name	Station number	Drainage area (mi ²)	Type of record	Period of record (water years)
	SOUTHEAST ALASKA	A		
White Creek near Ketchikan	15011870	2.70	Temp., S.C.	1978-83
Keta River near Ketchikan	15011880	74.2	Temp., S.C.	1978-81, 1983-84
Blossom River near Ketchikan	15011894	68.1	Temp., S.C.	1981-84
Stikine River near Wrangell	15024800	a19,920	Temp. Sed.	1976-82 1982
Speel River near Juneau	15036000	226	Temp., Sed.	1960
Dorothy Lake Outlet (head of Dorothy Creek) near Juneau	15039900	11.0	Temp	1996-99
Duck Creek below Nancy Street near Auke Bay	15053200		Temp	1997-99
Lake Creek at Auke Bay	15053800	2.50	Temp	1963-73
Auke Creek at Auke Bay	15054000	3.96	Temp.	1962-75
Davies Creek near Auke Bay	15054990	15.2	Temp.	1969-72
Skagway River at Skagway	15056100	a145	Temp., S.C.	1979-82 1980-82
Taiya River near Skagway	15056210	149	Temp.	1971-74, 1977
Chilkat River at Gorge near Klukwan	15056400	a190	Temp.	1962-67
Chilkat River near Klukwan	15056500	a760	Temp., Sed., S.C.	1960
Kahtaheena River near Gustavus	15057590	10.7	Temp.	1998-2001
Grace Creek near Ketchikan	15078000	30.2	Temp.	1965-69
Traitors River near Bell Island	15080500	20.8	Temp.	1965-68
Staney Creek near Craig	15081500	51.6	Temp.	1966-79
Klawak River near Klawock	15081620	46.1	Temp.	1976-77
Perkins Creek near Metlakatla	15083500	3.38	Temp.	1976-93
Saltery Creek near Kasaan	15085000	5.53	Temp.	1962-64
Cabin Creek near Kasaan	15085300	8.83	Temp.	1962-64
Virginia Creek near Kasaan	15085400	3.08	Temp.	1962-64
Big Creek near Point Baker	15086600	11.2	Temp.	1963-80
Sunrise Lake Outlet near Wrangell	15086960	1.17	Temp.	1978, 1980, 1998- 2001
Zarembo Creek near Point Baker	15087110	1.27	Temp.	1979-80
Hamilton Creek near Kake	15087570	65.0	Temp.	1982-86, 1989-96
Rocky Pass Creek near Point Baker	15087590	2.72	Temp.	1978-79, 1981-82
Nakwasina River near Sitka	15087610	31.9	Temp.	1976-82
Betty Lake outlet at Port Armstrong	15093200	2.66	Temp.	1978-81

Station name	Station number	Drainage area (mi ²)	Type of record	Period of record (water years)
SOU	JTHEAST ALASKACor	ntinued		
Sashin Creek near Big Port Walter	15093400	3.72	Temp.	1966-77
East Branch Lovers Cove Creek Diversion near Big Port Walter	15093600		Temp.	1965-71
Kalinin Bay tributary near Sitka	15101200	2.28	Temp.	1976-79
Greens Creek near Juneau	15101500	22.8	Temp. S.C.	1978-84 1979-85
Wheeler Creek near Douglas	15101600	57.1	Temp.	1970-73
North Arm Creek near Angoon	15102350	8.64	Temp.	1971-78
Hood Bay Creek near Angoon	15102400		Temp.	1970-71
Hook Creek above tributary near Tenakee	15106940	4.48	Temp.	1967-80
Hook Creek near Tenakee	15106960	8.00	Temp.	1966-78
Tonalite Creek near Tenakee	15106980	14.5	Temp. S.C., Sed.	1968-84, 1986-88 1972
Kadashan River near Tenakee	15107000	37.7	Temp.	1966-79
S	OUTH-CENTRAL ALAS	KA		
Dick Creek near Cordova	15195000	7.95	Temp.	1971-79
Gakona River at Gakona	15200000	a620	Temp., S.C.	1953-54
Gulkana River at Sourdough	15200280	1,770	Temp.	1972-78
Klutina River at Copper Center	15206000	a880	Temp, S.C.	1953
Little Tonsina River near Tonsina	15207800	22.7	Temp.	1973-78
Tonsina River at Tonsina	15208000	a420	Temp., S.C.	1953, 1959-66
Copper River near Chitina	15212000	a20,600	Temp Sed. S.C.	1957, 1964-65, 1979-81 1957, 1963-65
Humpback Creek near Cordova	15216100	4.37	Temp.	1973-75
West Fork Olsen Bay Creek near Cordova	15219000	4.78	Temp.	1964-79
Duck River at Silver Lake outlet near Valdez	15223900	25.1	Temp.	1982-84
Duck River near tidewater near Valdez	15224000	26.7	Temp.	1982-84
Duck River above the Lagoon near Valdez	15224002		Temp.	1982-84
Lowe River in Keystone Canyon near Valdez	15226600	222	Temp.	1975-76
Tutka Lagoon Creek near Homer	15238860	10.8	Temp.	1973-76
Upper Bradley River near Homer	15238990	a10.0	Temp.	1979-90
Bradley River below dam near Homer	15239001	a66.0	Temp	1990-99
Bradley River near Tidewater near Homer	15239070		Temp	1986-99
Anchor River at Anchor Point	15240000	224	Temp., S.C.	1954, 1959-66
Ninilchik River at Ninilchik	15241600	131	Temp. Sed.	1963, 1965 1963-65
Trail River near Lawing	15248000	181	Temp.	1959-67
Kenai River at Cooper Landing	15258000	634	Temp., S.C.	1950

Station name	Station number	Drainage area (mi ²)	Type of record	Period of record (water years)
SOUTH-C	ENTRAL ALASKAC	Continued		
Kenai River below Skilak Lake Outlet near Sterling	15266110	1206	Temp.	1999-2001
Kenai River at Soldotna	15266300	1,950	Temp. Sed.	1999-2001 1979-80, 1999-2001
Beaver Creek near Kenai	15266500	a51	Temp.	1970-75
Bishop Creek near Kenai	15267000	a24.2	S.C.	1977-79
Rabbit Creek at Anchorage	15273050	a15	Temp.	1984-86
Little Rabbit Creek above Goldenview Drive at Anchorage	15273095	5.06	Temp.	1983-86
Rabbit Creek at New Seward Highway at Anchorage	15273105	a24.5	Temp.	1984-86
South Fork Campbell Creek near Anchorage	15274000	29.2	Temp.	1999-2001
Little Campbell Creek at Nathan Drive near Anchorage	15274550	a15.0	Temp. Sed.	1986-87 b1988-91
Campbell Creek near Spenard	15274600	69.7	Sed.	1986, 1988
Middle Fork Chester Creek at Nichols Street at Anchorage	611207149483600		Temp.	1982
Chester Creek at Anchorage	15275000	20.0	Temp.	1982
Chester Creek at Arctic Boulevard at Anchorage	15275100	27.4	Temp. Sed. S.C.	1981-86, 1999-2001 b1988-91 1981-86, 2000-01
Ship Creek near Anchorage	15276000	90.5	Temp.	1949-50
Ship Creek below powerplant at Elmendorf Air Force Base	15276570	115	Temp.	1970-80
Eagle River at Eagle River	15277100	a192	Temp. Sed., S.C.	1968-69, 1971 1967-69, 1971
East Fork Eklutna Creek near Palmer	15277600	38.2	Sed.	1985-87
West Fork Eklutna Creek near Palmer	15277800	25.4	Sed.	1985-87
Eklutna Creek near Palmer	15280000	119	Temp.	1950
Knik River near Palmer	15281000	a1,180	Temp. Sed. S.C.	1963, 1965 1962-66 1972
Chickaloon River near Sutton	15282800		Temp.	1953-54
Matanuska River at Palmer	15284000	a2,070	Temp. Sed. S.C.	1952-53, 1959-66 1953-54, 1959-66 1965-67, 1972
Susitna River near Denali	15291000	a950	Temp.	1974-82
Susitna River near Cantwell	15291500	a4,140	Temp.	1980, b1982-86
Susitna River at Gold Creek	15292000	a6,160	Temp. Sed.	1957, 1974-80, 1982-85 1952, 1957
Chulitna River near Talkeetna	15292400	a2,570	Temp.	b1982-86
Talkeetna River near Talkeetna	15292700	2,006	Temp.	1954
Susitna River at Sunshine	15292780	a11,100	Temp.	b1981-85

Station name	Station number	Drainage area (mi ²)	Type of record	Period of record (water years)
SOUTE	H-CENTRAL ALASKAC	Continued		
Willow Creek near Willow	15294005	166	Temp.	b1978-90
Deception Creek near Willow	15294010	48.0	Temp.	b1978-85
Deshka River near Willow	15294100	591	Temp.	1999-2001
Yentna River near Susitna Station	15294345	a6,180	Temp.	b1981-86
Susitna River at Susitna Station	15294350	a19,400	Temp.	1975-80, b1983-86
Chuitna River near Tyonek	15294450	131	Temp.	1976-78
Falls Creek near Larsen Bay	15296500	5.67	Temp.	1974-75
Canyon Creek near Larsen Bay	15296520	8.82	Temp.	1974-76
East Fork Upper Thumb River near Larsen Bay	15296545	8.99	Temp.	1979-82
Upper Thumb River near Larsen Bay	15296550	18.8	Temp.	1974-82
Thumb River near Larsen Bay	15296554	25.3	Temp.	1979-82
Karluk River at outlet near Larsen Bay	15296600	100	Temp.	1975-76, 1978-82
Akalura Creek at Olga Bay	15296950	18.4	Temp.	1975-76
Kizhuyak River near Port Lions	15297485	c42.5	Temp.	b1980-86, 1987-94
	SOUTHWEST ALASKA	<u>.</u>		
Tazimina River near Nondalton	15299900	327	Temp.	1982-86
Nushagak River at Ekwok	15302500	a9,850	Temp.	1979-80, 1982
East Creek near Dillingham	15303100	2.12	Temp.	1973-76
Snake River near Dillingham	15303150	113	Temp.	1974-80
Kuskokwim River at Medfra	630615154424500		Temp.	1954
Kuskokwim River at Crooked Creek	15304000	a31,100	Temp. S.C.	1957-67, 1977-79 1957-67
	YUKON ALASKA			
Yukon River at Eagle	15356000	a113,500	Temp.	1951-52, 1962-63, 1965-66
			Sed.	1962-66
Hess Creek near Livengood	15457800	662	Temp.	1971-72, 1976-77
Yukon River at Rampart	15468000	a199,400	Temp., S.C.	1954-56, 1961-64
Tanana River near Tok Junction	15472000	a6,800	Temp., S.C.	1951-53
Tanana River near Tanacross	15476000	a8,550	Temp., S.C. Sed.	1954, 1957-66
Tanana River at Big Delta	15478000	13,500	Temp. S.C.	1949-51 1949-52
Chena River near North Pole	15493500	1,430	Temp.	1972-79
Little Chena River near Fairbanks	15511000	372	Temp.	1972-81

Station name	Station number	Drainage area (mi ²)	Type of record	Period of record (water years)
	YUKON ALASKAConti	nued		
Chena River at Fairbanks	15514000	a1,980	Temp. Sed. S.C.	1953, 1962-66, 1969-71 1962-71 1968-71
Tanana River at Nenana	15515500	a25,600	Temp. S.C.	1954-56 1954-57
Nenana River near Healy	15518000	a1,910	Temp. Sed., S.C.	1957-66 1953-66
Nenana River at Healy	15518040	a2,100	Temp.	1949
Caribou Creek near Chatanika	15535000	9.19	Temp.	1972-73
Long Creek at Long near Ruby	15564450	25.4	Temp.	1995-97
Yukon River at Ruby	15564800	a259,000	Temp. S.C.	1966-67, 1969-74 1966-74
Yukon River at Galena	15564860		Temp., S.C.	1954
Middle Fork Koyukuk River near Wiseman	15564875	a1,200	Temp.	1971-72, 1976-79
Wiseman Creek at Wiseman	15564877	49.2	Temp.	1973, 1976
Jim River near Bettles	15564885	11.7	Temp.	1971-76
Yukon River at Pilot Station	15565447	a321,000	Temp.	1976, 1978
	NORTHWEST ALASK	A		
Eldorado Creek near Teller	15635000	5.83	Temp.	1995-98
Kobuk River near Kiana	15744500	a9,520	Temp.	1978-81
Ogotoruk Creek near Hope	15748000	a35	Temp., Sed.	1959
	ARCTIC SLOPE ALASI	ζA		
Kuparuk River near Deadhorse	15896000	3,130	Temp.	1971-72, 1976, 1978-79
Putligayuk River near Deadhorse	15896700	a176	Temp.	1976
Sagavanirktok River near Sagwon	15910000	229	Temp.	1971

Footnotes

- a Approximately
- b Seasonal
- c After diversion upstream beginning 1985

1

INTRODUCTION

The Water Resources Division of the U.S. Geological Survey, in cooperation with State and other agencies, obtains a large amount of data pertaining to the water resources of Alaska each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled "Water Resources Data - Alaska."

Water resources data for the 2002 water year for Alaska consist of records of stage, discharge, and water quality of streams; stages of lakes; and water levels and water quality of ground water. This volume contains records for water discharge at 109 gaging stations; stage or contents only at 5 gaging stations; water quality at 26 gaging stations; and water levels for 45 observation wells. Also included are data for 32 crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. Some data collected during 2002 will be published in subsequent reports. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Alaska.

Records of discharge and stage of streams, stage of lakes, chemical quality, water temperatures, and suspended sediment were first published in U.S. Geological Survey Water-Supply Papers. Through September 30, 1960, these data were published in seven Water-Supply Papers entitled "Quantity and Quality of Surface Waters of Alaska" (through 1950, 1951-53, 1954-56, 1957, 1958, 1959, 1960). Since 1960, streamflow records and related data were published in a five-year series of Water-Supply Papers for 1961-65 and 1966-70 entitled "Surface Water Supply of the United States." Water-quality records were published in a Water-Supply Paper entitled "Quality of Surface Waters of Alaska, 1961-63" and after then until 1970 in an annual series of Water-Supply Papers entitled "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1949 to 1974 in a series of Water-Supply Papers entitled "Ground-Water Levels in the United States." Water-Supply Papers may be consulted in the libraries of the principal cities in the United States or may be purchased from U.S. Geological Survey, Branch of Information Services, Box 25286, Denver, CO 80225.

For water years 1961 through 1970, streamflow data were also released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1971 water year, water data for streamflow, water quality, and ground water are published in official Survey reports on a State-boundary basis. These official Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this report is identified as "U.S. Geological Survey Water-Data Report AK-02-1." These water-data reports are for sale, in paper copy or in microfiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161. Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (907) 786-7100.

The USGS is continually updating the availability of its information on the World Wide Web. Current streamflow conditions (via satellite) for Alaska and other Alaskan water resource information can be found at http://ak.water.usgs.gov/

Nationwide information on water resources, including real-time and historic streamflow data, water-use data, publications and USGS program activities, can be found at http://water.usgs.gov/

COOPERATION

The U.S. Geological Survey and organizations of the State of Alaska have had cooperative agreements since 1958 for the systematic collection of streamflow records, water-quality records, and ground-water levels. Organizations that assisted in collecting data contained in this report through cooperative agreements with the USGS are:

Alaska Department of Community and Economic Development, Deborah B. Sedwick, Commissioner

Alaska Industrial Development and Export Authority, Alaska Energy Authority, Robert Poe, Jr., Executive Director

Alaska Department of Environmental Conservation, Michele Brown, Commissioner

Alaska Department of Fish and Game, Frank Rue, Commissioner

Alaska Department of Natural Resources, Division of Mining and Water Management, Pat Pourchot, Commissioner

Alaska Department of Transportation and Public Facilities, Joseph L. Perkins, Commissioner, in cooperation with the U.S. Department of Transportation, Federal Highway Administration

Central Council of Tlingit and Haida Indian Tribes of Alaska, Desiree Welch, Native Lands and Resources Manager

City and Borough of Juneau, Sally Smith, Mayor

City and Borough of Sitka, Valorie Nelson, Mayor

City and Borough of Yakutat, Tom Maloney, Mayor

City of Klawock, Donna Williams, Mayor

City of Wrangell, Fern Neimeyer, Mayor

Alaska Native Tribal Health Consortium, Paul Sherry, President/CEO

Haida Corporation, John Bruns, Resource Manager

Kenai Peninsula Borough, Dale Bagley, Mayor

Municipality of Anchorage, George Wuerch, Mayor

University of Alaska Southeast, John Pugh, Chancellor

The following Federal agencies assisted in the data-collection program by providing funds or services:

- U.S. Army Corps of Engineers
- U.S. Army Corps of Engineers, Cold Regions Research & Engineering Laboratory
- U.S. Department of Agriculture, Forest Service
- U.S. Department of the Interior, Bureau of Land Management
- U.S. Department of the Interior, National Park Service

ACKNOWLEDGMENTS

Assisting in the collection of the data were the following gage observers:

Richard Kemnitz, Colville River at Umiat

Ed LaChapelle, McCarthy Creek near McCarthy

Dick Levitt, Kahtaheena River near Gustavus

Brian Omann, Sawmill Creek and Blue Lake near Sitka

Dean Orbison, Sawmill Creek and Green Lake near Sitka

Steve Paustian, Kadashan River near Tenakee

Alan Peck, Moody Creek near Aleknagik

Eric Sundberg, Greens Creek at Greens Creek Mine near Juneau

Tom Walters, Terror River near Kodiak

Bob Walworth, Tatalina River near Takotna

Ray Williams, Iliamna River near Pedro Bay

John Borg, Yukon River at Eagle

Rob Gieck, Sagavanirktok River Tributary near Pump Station 3

Sandy Hamilton, Nation and Kandik Rivers near Nation, and Kobuk River near Kiana

Vince Harkey, Ophir Creek near Yakutat

John Martinisko, Ikalukrok River below Red Dog Creek near Kivalina

Lorry Schuerch, Kobuk River near Kiana

Jennifer Williams, Indian River sites near Sitka

Organizations that supplied data are acknowledged in station descriptions.

SUMMARY OF HYDROLOGIC CONDITIONS

Surface Water

Alaska contains more than 40 percent of the Nation's surface-water resources. The highest runoff rates per unit area are in southeast Alaska and in other areas influenced by the maritime climate of the northern Pacific Ocean and the Gulf of Alaska. In the interior and northern parts of the State, runoff rates are markedly lower than in the maritime-influenced areas. Runoff generally increases with altitude throughout the State, and year-to-year runoff variability increases from south to north.

Seasonal runoff characteristics differ from southern to northern Alaska. Areas influenced by maritime climates usually have two periods with high runoff: a spring snowmelt period and a fall rainfall period. High water can occur throughout the year, but the highest instantaneous peak discharges are more prevalent in the fall months; low-water periods usually occur in late spring and mid-summer, prior to the rainy fall period. Farther north, most of the total runoff and floods occur in the period from May through September; low-flow periods usually occur during late winter, shortly before spring snowmelt.

Cold spring temperatures throughout Alaska, following a relatively normal winter, resulted in low and record low monthly flows in March and April, in southeast Alaska, through June, in interior Alaska. Cold temperatures delayed spring breakup in south-central and interior rivers. During spring 2002, ice remained strong until rapid warming induced snowmelt runoff that initiated breakup. Large ice blocks formed ice jams throughout southwest, western, and interior Alaska. A Federal Disaster was declared for villages along the Tanana, Kuskokwim, and Yukon Rivers and scattered villages in southwest Alaska. The USGS operates few streamflow gaging stations in this region, and the existing stations are generally sited to avoid reaches affected by frequent ice jams. An elevation station, Kuskokwim at Aniak, 15304060, recorded a peak of record on May 18 as a result of ice-jam flooding. Water backed up behind the ice jam at Aniak overtopped a flood control dike for most of 3 days, May 13-15. Other areas in the state affected by ice-jam flooding were not measured by USGS.

Summer storms in arctic Alaska resulted in record high August monthly flows and a maximum daily flow for non-snowmelt periods on the Kuparuk River. During the same week, separate storms in the Chena River basin flooded local roads and campgrounds, but Moose Creek Flood Control Project regulated flows in Fairbanks.

Hubbard Glacier, the largest calving glacier in North America (25 percent larger than Rhode Island), advanced across the entrance to 35-mile-long Russell Fiord during June, temporarily turning it into a lake. Hubbard Glacier has been advancing for more than 100 years and has twice closed the entrance to Russell Fiord during the last 16 years, during the summers of 1986 and 2002. Water flowing into the cutoff fiord from mountain streams and glacier melt causes the level of Russell Lake to rise. A stage-only gage on Russell Fiord/Lake documented both rises, and are presented here. However, both dams failed before the lake altitude rose enough for water to spill over a low pass at the far end of the fiord and enter the Situk River drainage, a world-class sport and commercial fishery near Yakutat.

Ground Water

Alaska's vast area and small population preclude a comprehensive evaluation of its ground-water resources. Throughout much of the State, aquifers are poorly defined. In many areas, wells have not been drilled and little is known about seasonal and long-term changes in ground-water storage. During water year 2002, the long-term monitoring of water levels in one well in Juneau, one well in Anchorage, and three wells in Fairbanks continued. Water levels were also measured in 21 wells in Fairbanks to monitor ground water levels in the vicinity of the Chena River dam. Water levels were measured intermittently in 15 wells and continuously in 4 wells in Juneau for studies of the interaction between ground water and water in anadromous fish streams.

Water levels in the long-term monitoring wells in Juneau, Anchorage, and Fairbanks were within the range of historical values. Water levels in wells in the Duck and Jordan Creek watersheds in Juneau are closely related to the infiltration of rain and snowmelt and the level of water in nearby streams. Some of these wells are in stream channels or on flood plains and are intermittently flooded; most water levels in these wells were within 10 feet of land surface. Spring 2002 recorded record low flows in these channels and extreme low water levels in some of these wells.

Water Ouality

General Overview

Information on the concentration and composition of constituents in Alaska's surface water is markedly variable in coverage. Some subregions have had regular or periodic sampling for many years at many stream points and at a number of lakes. Information in other subregions consists of only a few miscellaneous samples. Although the chemical characteristics of water in the streams and lakes of Alaska seem variable, the ranges in concentration are not as great as those found in the conterminous United States. Most Alaskan streams above tidal reaches contain water of a calcium bicarbonate type, generally containing less than 200 mg/L dissolved solids. In these streams, the hardness generally increases with increased dissolved-solids content. The streams draining lowlands and intermontane basins usually contain harder water than the streams in the higher mountains. Some streams, especially those draining areas overlain by organic-rich deposits, can have excessive iron content.

In Alaska, the mineral content of water in lakes is more variable than that in rivers. The water in some mountain lakes is very low in dissolved-solids content and is little more concentrated than rainwater. Other lakes occupying lowlands near the sea, including many near the Arctic coastal plain, have become mineralized periodically by salts brought in from the sea either by overland flooding during storms or as ocean spray. The water in lakes in the lowlands remote from the sea is commonly very similar in chemical character to water in the larger rivers adjacent to them.

The character and distribution of suspended sediment are relatively complex in Alaska because glaciers contribute large amounts of very fine material (glacial flour) to many streams. In general, during the summer, suspended-sediment concentrations in nonglacial streams seldom exceed 100 mg/L, but can be greater than 2,000 mg/L for glacial streams. Nonglacial streams often transport the highest sediment loads during the spring breakup or during periods of high rainfall, where-

as glacial streams transport the greatest sediment loads during periods of maximum glacial melting, usually in middle or late summer. The normal suspended-sediment concentration between January and April is usually less than 20 mg/L for most nonurban streams. Thus, less than 15 percent of the annual suspended-sediment load is carried during this period. The percentage of material finer than 0.062 millimeter (the silt-clay fraction as generally defined) transported by nonglacial streams is less than 50 percent in contrast to more than 50 percent for glacial streams.

Outside of the major urban areas, almost all ground water is obtained from unconsolidated aquifers. Most sampled water contains less than the State's recommended limit of 500 mg/L dissolved solids. Calcium and magnesium, which along with bicarbonate contribute to the hardness of water, are the major dissolved ions. In most wells, hardness concentrations are about 60 to 80 percent of dissolved-solids concentrations. Water of sodium bicarbonate or sodium chloride type is present in numerous community wells drilled near the coast.

Iron is present in high concentrations in a large number of shallow wells in most areas of the State. Concentrations in excess of 1.0 mg/L are common. Iron concentrations of more than about 0.3 mg/L can cause staining of laundry and plumbing fixtures and impart an unpleasant taste to the water.

The bedrock aquifers in most of Alaska are undeveloped and very little is known about their water quality. In general, the concentration of dissolved solids in water from bedrock aquifers is higher than that found in the unconsolidated aquifers and the chemical quality of water in bedrock aquifers is more variable.

Most of the State's ground-water resources have, for the present, been unaffected by humans. However, in the major urban areas and in some outlying villages, ground-water quality has been locally degraded, primarily from septic systems, landfills, and abandoned fuel storage tanks. Most ground-water contamination problems in Alaska are caused by petroleum products, primarily from leaky fuel tanks.

In 2002 as part of the Clean Water Action Plan, water-quality, and bed-material samples were collected at sites in Gates of the Arctic National Park and Preserve, Cape Krusenstern National Monument, and Sitka National Historical Park.

In 2002 sampling at 5 stations in the Yukon Basin continued as part of the National Stream-Quality Assessment Program (NASQAN), the second year of a five year monitoring program. The Alaska District is also collecting samples for personnel from the National Research Program to help extend the normal NASQAN data and assisted on 2 synoptic sampling trips from Yukon River at Eagle to Yukon River near Stevens Village.

A majority of stream temperatures at continuous water temperature stations had their maximum annual water temperature occur on August 3-5, 2002. Nearly the whole state had clear skies during this period.

Water-quality sampling is also done for projects throughout Alaska. The analyses for these samples are published in reports discussing these projects. For more information on reports published in 2002, contact the Chief, Water Resources Office (see p. ii) or the Alaska Water Resources Office webpage at http://ak.water.usgs.gov.

Remark Codes

The following remark codes may appear with the water-quality data in this section:

PRINTED OUTPUT REMARK

E	Value is estimated.
>	Actual value is known to be greater than the value shown.
<	Actual value is known to be less than the value shown.
M	Presence of material verified, but not quantified.
N	Presumptive evidence of presence of material.
U	Material specifically analyzed for, but not detected.
A	Value is an average.
V	Analyte was detected in both the environmental sample and
	the associated blanks.
S	Most probable value.

Dissolved Trace-Element Concentrations

Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter (μ g/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's and 100's of nanograms per liter (ng/L). Present data above the μ g/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes. However, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994. Full implementation of the protocols took place during the 1995 water year.

Quality-control data

Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this District are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples.

BLANK SAMPLES – blank samples are collected and analyzed to ensure that environmental samples have not been contaminated by the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank samples for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. There

are many types of blank samples possible, each designed to segregate a different part of the overall data-collection process. The types of blank samples collected in this District are:

<u>Source solution blank</u> – a blank solution that is transferred to a sample bottle in an area of the office laboratory with an atmosphere that is relatively clean and protected with respect to target analytes.

<u>Ambient blank</u> – a blank solution that is put in the same type of bottle used for an environmental sample, kept with the set of sample bottles before sample collection, and opened at the site and exposed to the ambient conditions.

<u>Field blank</u> – a blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample.

<u>Trip blank</u> – a blank solution that is put in the same type of bottle used for an environmental sample and kept with the set of sample bottles before and after sample collection.

<u>Equipment blank</u> – a blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office.)

<u>Sampler blank</u> – a blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample.

<u>Pump blank</u> – a blank solution that is processed through the same pump-and-tubing system used for an environmental sample.

<u>Standpipe blank</u> – a blank solution that is poured from the containment vessel (stand-pipe) before the pump is inserted to obtain the pump blank.

<u>Filter blank</u> – a blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample.

<u>Splitter blank</u> - a blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample.

<u>Preservation blank</u> – a blank solution that is treated with the sampler preservatives used for an environmental sample.

<u>Canister blank</u> – a blank solution that is taken directly from a stainless steel canister just before the VOC sampler is submerged to obtain a field blank sample.

REFERENCE SAMPLES – Reference material is a solution or material prepared by a laboratory whose composition is certified for one or more properties so that it can be used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties.

REPLICATE SAMPLES—Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. There are many types of replicate samples possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this district are:

<u>Concurrent sample</u> – a type of replicate sample in which the samples are collected simultaneously with two or more samplers or by using one sampler and alternating collection of samples into two or more compositing containers.

<u>Sequential sample</u> – a type of replicate sample in which the samples are collected one after the other, typically over a short time.

<u>Split sample</u> – a type of replicate sample in which a sample is split into subsamples contemporaneous in time and space.

SPIKE SAMPLES – Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis.

<u>Concurrent sample</u> – a type of spike sample that is collected at the same time with the same sampling and compositing devices then spiked with the same spike solution containing laboratory-certified concentrations of selected analytes.

<u>Split sample</u> – a type of spike sample in which a sample is split into subsamples contemporaneous in time and space then spiked with the same spike solution containing laboratory-certified concentrations of selected analytes.

Water Use

Water use in the broad sense deals with man's interaction with and influence on the hydrologic cycle. In a technical sense, water use refers to water that is actually used for a specific purpose, such as domestic use, commercial needs, or industrial processing. The offstream water use for the state of Alaska was estimated for the year 2000. Fewer water use categories were estimated in 2000 than in previous surveys.

The largest water uses are probably instream uses for hydroelectric power generation, and fish and wildlife resources. The Alaska Water Use Act was amended in 1980 to include instream flow as a use. The amendments provide the opportunity for private individuals, and local, State, and Federal governments to legally acquire instream flow water rights. Either one or a combination of the four following types of uses can be acquired: 1) protection of fish and wildlife habitat, migration, and propagation; 2) recreation and parks; 3) navigation and transportation; and 4) sanitation and water quality. Eleven instream flow rights applications have been granted.

From 1990-2002, Alaska's population increased 17 percent, which was one of the Nation's larger percentage increases. In 2002, Alaska's population increased by 2 percent. In 2002, about 60 percent of the State's population lived in the Anchorage, Fairbanks, and Juneau areas.

Because of the population increase and building water supply distribution systems in many villages in rural Alaska, public-supply use of water is also increasing. In 2000, 67 percent of the State's population received their water from a public-supply utility; the remainder supplied their own water. Mining was the largest category of water use in 2000 when including saline water use. This use was mostly production of hard rock minerals and fossil fuels.

In 2000, the water utilities in the Anchorage, Fairbanks, and Juneau areas used 61 percent of all water withdrawn in the State for public supply. The monthly mean rate of water withdrawn by the principal public-supply utilities servicing these three areas from January 1990 to September 2002 is shown in figure 1. (Data are from Municipality of Anchorage, Fort Richardson, City of Fairbanks, and City and Borough of Juneau.) The higher usage shown during the summer months in Anchorage and Fairbanks is probably due to tourism and other commercial activity, increased industrial activity, and seasonal climatic effects.

The State's 2000 average use from public supply was 190 gallons per day per person, while the nation's average is 180 gallons per day. One of the nation's lowest per capita use of all public-supply customers of 10 gallons per day has been reported on the North Slope.

Surface water is the source for around 60 percent of the 2002 State's public-water supply in these three cities, while ground water is the source for the remainder. Anchorage receives 87 percent of its water from surface-water sources. Surface water became the primary source when water from Eklutna Lake was brought into production in 1988. Juneau obtained 71 percent of public-supply water from ground-water sources in 2002. Juneau has reduced using its surface-water source because of cost to meet water-quality regulations. Fairbanks obtains 100 percent of public-supply water from ground-water sources. Of the water withdrawn in Fairbanks, about two-thirds is treated to be suitable for domestic use, and the other one-third is for thermoelectric power use.

Monthly mean water withdrawal rate for public supply in the Anchorage, Fairbanks, and Juneau area, 1990 to 2002.

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Benchmark Network is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the streamflow representative of undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities. At 10 of these sites, water-quality information is being gathered on major ions and nutrients, primarily to assess the effects of acid deposition on stream chemistry. Additional information on the Hydrologic Benchmark Program can be found at http://water.usgs.gov/hbn/.

National Stream-Quality Accounting Network (NASQAN) monitors the water quality of large rivers within the Nation's largest river basins. From 1995 through 1999, a network of approximately 40 stations was operated in the Mississippi, Columbia, Colorado, and Rio Grande basins. For the period 2000 through 2004, sampling was reduced to a few index stations on the Colorado and Columbia so that a network of 5 stations could be implemented on the Yukon River. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and re-mobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals. Additional information about the NASQAN Program can be found at http://water.usgs.gov/nasqan/.

The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical constituents in precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of 225 precipitation chemistry monitoring sites. This long-term, nationally consistent monitoring program, coupled with ecosystem research, provides critical information toward a national scorecard to evaluate the effectiveness of ongoing and future regulations intended to reduce atmospheric emissions and subsequent impacts to the Nation's land and water resources. Reports and other information on the NADP/NTN Program, as well as all data from the individual sites, can be found at http://bqs.usgs.gov/acidrain/.

The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies.

Assessment activities are being conducted in 59 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will

13

provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest. Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies. Additional information about the NAWQA Program can be found at http://water.usgs.gov/nawqa/.

EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for the 2002 water year that began October 1, 2001, and ended September 30, 2002. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface and ground water, and ground-water-level data. The locations of the stations and wells where the data were collected are shown in figures 1, 2 and 3. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

Station Identification Numbers

Each data station, whether stream site, lake, reservoir, spring, or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells, lakes, reservoirs, springs, and for surface-water stations where only miscellaneous measurements and/or water-quality samples are collected.

Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in USGS reports is in a down-stream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indentation in the "List of Stations" in the front of this report. Each indentation represents one rank. This downstream order and system of indentation show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated. Stations located on islands in Alaska are in downstream order starting at the most westerly point on the island and moving around the island in a counterclockwise direction (stations on Kodiak Island start at the most northerly point).

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between regular stations and partial-record stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Water-quality stations located at or near regular stations or partial-record stations have the same number as the regular or partial-record station. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 15303600, which appears just to the left of the station name, includes the two-digit Part number "15" plus the six-digit downstream order number "303600." The Part number designates the State of Alaska. Occasionally, the downstream order number consists of eight digits.

Latitude-Longitude System

The identification numbers for miscellaneous surface-water sites, wells, springs, lakes, and reservoirs are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1-second grid. This site-identification number, once assigned, is a pure number, and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description and also stored in the computerized data base files. See the accompanying diagram.

Local Number

The local number, which is assigned to well and spring sites, is derived in part from the rectangular subdivision of public lands and is used in Alaska as the site name. The first two letters indicate the principal meridian and the quadrant formed by the intersection of the base line and the principal meridian. The first three digits indicate the township in which the well or spring is located, the next three digits the range, and the last two digits the section. The letters following the section number indicate the quarter section, the quarter-quarter section, and so forth to the fourth order subdivision. Each of these subdivisions is lettered counter-clockwise, from the northeast corner. Each site within the smallest order of subdivision is then given a sequential number. Finally, each well within a section is assigned a sequential map number indicated by the last three digits. Thus, SB00601115BCAD1 001 denotes the Seward meridian (S), the northwest quadrant (B), township 6 north, range 11 west, section 15; and the site is in the SE^1_4 of NE^1_4 of the SW^1_4 of the NW^1_4 (BCAD) of the section. It was the first site in the 2.5 acre "D" subdivision assigned a sequential number (1). The next space is left blank. The next three digits, 001, indicate the sequence in which a site was located on a map. Thus, 001 indicates the first site plotted in the one-square-mile section. The next space is left blank. The last five digits, such as 00114, are the Alaska (AK) register number. Therefore, the local number is SB00601115BCAD1 001 00114. The local number for springs

is the same, except for the last three digits and the Alaska (AK) register number, as indicated by the following example: SB00601115BCAD1S 4065S. Note: Public-land surveys have not been completed for a large portion of Alaska, therefore, some "local numbers" reflect this in an abbreviated form, e.g., SB00601115.

Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those at which daily mean discharges can be computed or estimated with reasonable accuracy from the supporting data and information. Because the daily mean discharges commonly are published, the stations are referred to as "daily stations."

By contrast, partial records are obtained through discrete measurements and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial records" or "Low-flow partial records." Records of miscellaneous discharge measurements or from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Periodic lake-level measurements are also presented separately. Locations of all complete-record and crest-stage partial record stations for which data are given in this report are shown in figures 2 and 3, respectively.

Data Collection and Computation

Methodology

The base data collected at gaging stations consist of stage records and discharge measurements of streams, and stage of lakes. In addition, observations of factors affecting the stage-discharge relation, weather records, and other information are used to supplement base data in determining the daily flow. Records of stage are obtained from direct readings on a nonrecording gage or from a water-stage recorder that gives either a continuous graph of the fluctuations, a tape punched at selected time intervals, or an electronic data logger. Measurements of discharge are made with a current meter, using the general methods adopted by the U.S. Geological Survey. These methods are described in standard textbooks, in U.S. Geological Survey Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water Resources Investigations, Book 3, Chapter A6.

Computation

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) results of indirect measurements of peak discharge, such as slope-area or flow-through-culvert measurements and computations of flow-over-dams or weirs; (3) step-backwater techniques; or (4) velocity-area studies.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent

or continual change in the physical features that form the control, the daily mean discharge is determined by shifting control method, in which correction factors based on the individual discharge measurements and notes of the person who made the measurement are added (or subtracted) to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of debris or aquatic growth on the control.

In computing records of reservoir contents, it is necessary to have curves or tables defining the relation of stage and contents (from prior survey and computations). The application of stage to stage-content curves or tables gives the contents from which daily, monthly, or yearly changes can be determined. Discharges over lake or reservoir spillways are computed from stage-discharge relations much as other stream discharges are computed. Discharge through hydro-power plants can be calculated indirectly by using the theoretical relation of flow-rates with the amount of power being generated by each turbine, the reservoir level, and the estimated efficiency of each turbine. It is necessary to have tables, curves, or formulas relating the above variables (usually supplied by the manufacturer of the turbine). It is also necessary to have records of reservoir elevation, either from periodic observations or continuous records, and power-generation records (usually furnished by the operators of the power plant).

Winter discharge measurements

At most stream-gaging stations in Alaska, the stage-discharge relation is affected by ice in the winter, and it becomes impossible to compute the discharge in the usual manner. Discharge for periods of ice effect is computed or estimated on the basis of the available gage-height record and occasional winter discharge measurements. Consideration is given to the available information on temperature and precipitation, notes by gage observers and hydrographers, and comparable records of discharge for other stations in the same or nearby basins. Determinations of 0.0 or no flow may indicate a lack of distinguishable velocity, but do not necessarily describe a dewatered channel.

Estimates for periods of no data

For some gaging stations there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to compute daily discharge. This happens when the recorder is stopped for the winter or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated on the basis of recorded range in stage, prior and subsequent records, discharge measurements, weather records, and comparison with records for other stations in the same or nearby basins. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" ("REMARKS" paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

Streamflow data in this report are presented in a format that is considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent

the results of a pilot program to reformat the annual water-data report to meet current user needs and data presentation.

The records published for each continuous-record surface-water discharge station (gaging station) now consist of four parts: the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimum, and flow duration. Occasionally, data for other than the current year are published, usually to present unpublished data.

Station manuscript

The manuscript provides, under various headings, descriptive information, such as location of station; drainage area; period of record; record accuracy; and other remarks pertinent to station operation and regulation. For some stations, historical extremes outside the period of record and peak discharges greater than base discharge for the station are given. The following information, as appropriate, is provided with each continuous record of discharge, stage, or reservoir contents. Comments to clarify information presented under the various headings of the station description follow:

LOCATION.--Information on locations is obtained from the most accurate maps available. The USGS topographic map showing the location of the station is included in parentheses for many sites, e.g. (Livengood E-1). The location of the gage with respect to the cultural and physical features nearby and to the reference place mentioned in the station name is given.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another or because of difficulties in determining drainage boundaries, the accuracy of drainage-area determinations likewise varies. As appropriate, some drainage-area figures are qualified by "approximately." Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--This indicates the period for which published records are available for the station or for an equivalent station. An equivalent station is one that was in operation at a time the present station was not, and whose location was such that records from it can be considered reasonably equivalent with records from the current station. Some daily stations were previously operated as partial-record stations or had only monthly discharge records published. These periods are included in the paragraph.

REVISED RECORDS.--Published records occasionally are found to be incorrect, usually because of new information, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual discharge figures, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to sea level (see "Definition of Terms"), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--Periods of estimated daily discharge will be identified by date in this paragraph for selected stations. For all stations, estimated daily discharge will be flagged in the daily discharge table. (See next section "Identifying Estimated Daily Discharge.") If a REMARKS paragraph is used to identify estimated record, this information would be the first entry. This paragraph is also used to present information relative to the accuracy of the records, to the special methods of computation, to conditions that affect natural flow at the station, and to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose (use) of the reservoir.

COOPERATION.--Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here. Also, if data or information are supplied which aid in the computation of the record, the agency providing the information is named.

EXTREMES FOR PERIOD OF RECORD.--This paragraph is included in the station manuscript for stations for which tabular summary statistics are not appropriate because they have short records, seasonal records, or regulated flow.

EXTREMES OUTSIDE PERIOD OF RECORD.--Information about floods or unusually low flows that have occurred outside the stated period of record is included. The information may or may not have been obtained by the U.S. Geological Survey.

EXTREMES FOR CURRENT YEAR or EXTREMES FOR CURRENT PERIOD.--This paragraph is included in the station manuscript for selected sites where peaks above base discharge are published and for stations for which tabular summary statistics are not appropriate because they have short records, seasonal records, or regulated flow. For records that meet certain criteria, all peak discharges and stages greater than a selected base discharge during the water year are given. The peaks greater than the base discharge, excluding the highest one, are called secondary peaks. The time that the peak occurred is expressed in 24-hour local standard time; for example, 12:30 a.m. is 0030 and 1:30 p.m. is 1330. Except for stations for which tabular summary statistics are not appropriate, the maximum and minimum for the current water year appears below the daily values table in the tabular summaries.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. For these stations, there may be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry; users of data for these stations who obtained the record for previously published data reports may wish to contact the District Office (address given on the back of the title page of this report) to determine if the published records were ever revised after the station was discontinued. If the data for a discontinued station were obtained by computer

retrieval, the data would be current because any previously published data are automatically accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

Headings that appeared in reports before water year 1991 for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, and EXTREMES FOR CURRENT YEAR have been deleted and the information contained in these paragraphs, except for the listing of secondary instantaneous peak discharges in the EXTREMES FOR CURRENT YEAR paragraph, is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate, except for stations for which tabular summary statistics are not appropriate. No changes have been made to the data presentation of lake contents.

Data table of daily mean values

The daily table of discharge records for stream-gaging stations gives the mean discharge for each day of the water year. In the monthly summary for the daily table, the line headed "TOTAL" gives the sum of the daily figures for each month; the line headed "MEAN" gives the average flow in cubic feet per second for the month; and the lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month also may be expressed in acre-feet (line headed "AC-FT"), in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion, if the contributing drainage area or boundaries are unknown, or if the flow is mostly from a spring. At some stations, monthly and (or) yearly discharges are adjusted for diversions or changes in reservoir contents.

Statistics of monthly mean data

A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR WATER YEARS ______, BY WATER YEAR (WY)," and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all the station records within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript.

Summary statistics

A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year.

nated period, as appropriate. The designated period selected, "WATER YEARS ______" will consist of all of the station records within the specific water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (see line headings below), except for the "ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin.

The following summary statistics data, as appropriate, are provided with each continuous record of discharge. The comments clarify information presented under the various line headings of the summary statistics table.

ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations, the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.

ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations, the annual mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.

HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period.

LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period.

HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period.

LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period.

ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1 - March 31). The date shown in the summary statistics table is the initial

date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)

MAXIMUM PEAK FLOW.—The maximum instantaneous peak discharge occurring for the water year or designated period. Occasionally the maximum flow for a year may occur at midnight at the beginning or end of the year, on a recession from or rist toward a higher peak in the adjoining year. In this case, the maximum peak flow is given in the table and the maximum flow may be reported in a footnote or in the REMARKS paragraph in the manuscript.

MAXIMUM PEAK STAGE.--The maximum instantaneous peak stage occurring for the water year or designated period. Occasionally the maximum stage for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak stage is given in the table and the maximum stage may be reported in the REMARKS paragraph in the manuscript or in a footnote. If the dates of occurrence of the maximum peak stage and maximum peak flow are differend, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information. (For Alaska, a second line heading, MAXIMUM PEAK STAGE, is used for stations where the peak stage was from a backwater condition and had a different date from the peak discharge.)

INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period.

ANNUAL RUNOFF.--Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data:

Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equal to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile area drained, assuming the runoff is distributed uniformly in time and area.

Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it.

10 PERCENT EXCEEDS.--The discharge that has been exceeded 10 percent of the time for the designated period.

50 PERCENT EXCEEDS.--The discharge that has been exceeded 50 percent of the time for the designated period.

90 PERCENT EXCEEDS.--The discharge that has been exceeded 90 percent of the time for the designated period.

Data collected at partial-record stations follow the information for continuous-record sites. In prior years, data for low-flow partial-record stations have been published, but no stations were in oper-

ation in the current water year. Data are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage partial-record stations. The second is a table of discharge measurements made at crest-stage partial-record stations and miscellaneous sites. Occasionally, a series of discharge measurements are made within a short time period to investigate the seepage gains or losses along a reach of a stream or to determine the low-flow characteristics of an area. Such measurements are given in special tables following the listing of miscellaneous measurements. Lake-level data collected at miscellaneous selected lakes are included. The data are being collected at these selected lakes to define lake-level changes in response to seasonal variations, the effects of man, droughts, and changes in the ground-water system. The lake-level data follow the water-quality data tables for miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values in the current annual data report are identified by the "e" notation next to each mean daily discharge in the daily values tables. Prior to the report for the 1985 water year, estimated daily-discharge values were not specifically identified.

Accuracy of the Records

The accuracy of streamflow data depends primarily on: (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records.

The station description under "REMARKS" states the degree of accuracy of the records. "Excellent" means that about 95 percent of the daily discharges are within 5 percent of the true value; "good" within 10 percent; and "fair" within 15 percent. Records are rated as "poor" when they do not meet the criteria above. Different accuracies may be attributed to different parts of a given record.

Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 ft³/s; to the nearest tenth between 1.0 and 10 ft³/s; to whole numbers between 10 and 1,000 ft³/s; and to 3 significant figures above 1,000 ft³/s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous measurement sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, flow from springs, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions or for other factors that might affect the flows. At those stations where adjustments are made, large errors in computed runoff may occur if adjustments are large in comparison to observed discharge. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents.

Other Data Available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating ta-

bles, is filed in the field offices at Anchorage, Fairbanks, and Juneau for their areas of responsibility. Also, most of the daily mean discharges are in computer files and can be retrieved for statistical analyses. Information on the availability of unpublished data or statistical analyses may be obtained from the District Office in Anchorage.

Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A <u>continuing-record station</u> is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A <u>partial-record station</u> is a site where water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A <u>miscellaneous</u> sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values recorded at short intervals. Some records of water quality, such as temperature and specific conductance, may be obtained by continuous recordings; however, because of costs, most data are obtained only monthly or less frequently.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

On-Site Measurements and Sample Collection

To assure the data obtained represent the *in situ* quality of the water, certain measurements, such as water temperature, pH, alkalinity, and dissolved oxygen, are made onsite when the samples are collected. To assure that measurements made in the laboratory also represent the *in situ* water, prescribed procedures are followed in collecting, treating, and shipping the samples to prevent changes in quality pending analysis in the laboratory. These procedures are given in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 1, Chapter D2; Book 3, Chapter C2; Book 5, Chapters A1, A3, and A4.

One sample can adequately define the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. For the tables of surface-water quality that are published in this report, parameter code 82398 (SAMPLING METHOD, CODES) lists a numeric value which corresponds to the following explanation:

```
10 - Equal width increment (EWI)
```

- 20 Equal discharge increment (EDI)
- 25 Timed sampling interval
- 30 Single vertical
- 40 Multiple verticals
- 50 Point sample
- 60 Weighted bottle
- 70 Grab sample (dip)
- 80 Discharge integrated, equal transit rate (ETR)
- 90 Discharge integrated, centroid
- 100 Van Dorn sampler
- 110 Sewage sampler
- 120 Velocity integrated
- 8010 Other

To better define the sample, parameter code 84164 (SAMPLER TYPE) lists a numeric value which corresponds to the following explanation:

100 - Van Dorn sampler	3045 - US DH -81 with Teflon cap and nozzle
110 - Sewage sampler	3050 - Collpsible Teflon Bag in Frame Sampler
3001 - Sampler, US DH-48	3053 - US D-95 Teflon bottle
3002 - Sampler, US DH-59	3054 - US D-95 Teflon bottle
3003 - Sampler, US DH-75P	3055 - US D-96 Teflon bag
3004 - Sampler, US DH-75Q	3060 - Weighted Bottle Sampler
3007 - Sampler, US D-49	3070 - Grab Sampler
3009 - Sampler, US D-74	4020 - Open top bailer
3011 - Sampler, US D-77	4025 - Double valve bailer
3015 - Sampler, US P-63	4041 - Submersible Helical Rotor Pump
3016 - Sampler, US P-72	4080 - Peristaltic pump
3042 - Sampler, US P-61	4100 - Flowing Well
3044 - US DH-81	8010 - Other

For further explanation on sampling methods, see Techniques of Water-Resources Investigations, Book 3, Chapter C2, "Field Methods for Measurement of Fluvial Sediment."

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are sometimes taken at the time of discharge measurements at water-discharge stations. Large streams have a small daily temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where temperature recording instruments are used, maximum and minimum temperatures for each day are published. Mean temperatures are published when diurnal variations are greater than 2.0 °C more than 5 percent of the water year. Water temperatures measured at the time of water-discharge measurements are on file in the District field offices.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of quantities of suspended sediment, records of periodic measurements of the particle-size distribution of the suspended sediment and bed material are included.

Laboratory Measurements

Sediment samples are analyzed in the U.S. Geological Survey laboratory in Vancouver, Washington. Methods used in analyzing sediment samples and computing sediment records are given in Techniques of Water-Resources Investigations, Book 5, Chapter C1. Methods used by the Geological Survey laboratory are given in TWRI, Book 1, Chapter D2; Book 3, Chapter C2; Book 5, Chapters A1, A3, and A4.

Records of Ground-Water Levels

Ground-water level data from a statewide network of observation wells are published in this report. This network consists of observation wells (figure 3) located either in important aquifers or in areas of significant water use.

Data Collection and Computation

Water-level measurements are made in many types of wells, under varying conditions of access and weather conditions. However, the equipment and measuring techniques used at each observation well assure that the measurements are of consistent accuracy and reliability.

Tables of water-level data are presented by Hydrologic Subregion. The station-identification number for a given well is the 15-digit number that appears in the upper left corner of the station description. The secondary identification number is the local number, an alphanumeric number, derived from the township-range location of the well.

Water-level records are obtained from direct measurements with a steel tape, battery-operated electric tape, or from a water-stage recorder that gives a continuous graph of water-level fluctuations, a paper tape punched at selected time intervals, or data stored at selected time intervals on an electronic data logger. The water-level measurements in this report are given in feet with reference to either sea level or land-surface datum. Sea level is the datum plane on which the national network of precise levels is based; land-surface datum is a datum plane that is approximately at land surface at each well. The altitude of the land-surface datum is given in the well description. The height of the measuring point above or below land-surface datum is also given in each well description. Water levels in wells equipped with recording gages are the highest ground-water level recorded in the well on the day indicated.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet and if an electric water sensor is used, the error in determining the absolute value of the total depth to water may be a few tenths of a foot. However, the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water, the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some may be given only to a tenth of a foot.

Data Presentation

Each well record consists of the station description and the data table of water levels observed during the water year. The description of the well is presented through use of descriptive headings preceding the tabular data. Clarification of each heading is given below.

LOCATION.--This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes, and seconds); the Hydrologic Unit; the distance and direction from a geographic point of reference; and the owner's name.

AQUIFER.--This entry designates by name (if a name exists) and geologic age the aquifer(s) open to the well.

WELL CHARACTERISTICS.--This entry describes the well in terms of depth, diameter, casing depth and/or screened interval, method of construction, and additional information such as casing breaks, collapsed screen, and other changes since construction.

INSTRUMENTATION.--This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on weekly, monthly, or some other frequency of measurement.

DATUM.--This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in top of casing, plug in pump base and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above sea level; it is reported with a precision depending on the method of determination.

REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that also are water-quality observation wells and may be used to acknowledge the assistance of local (non-Survey) observers.

PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the start of publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the U.S. Geological Survey, may be noted.

EXTREMES FOR PERIOD OF RECORD.--This entry contains the highest and lowest water levels of the period of record, with respect to land-surface datum or sea level, and the dates of their occurrence.

A table of water levels follows the station description for each well. Water levels are reported in feet above or below land-surface datum. Water levels that are above land-surface datum have negative values. For wells equipped with recorders, water level values listed are the highest recorded in the well on the day indicated. Missing records are indicated by dashes in place of the water level.

Information of a more detailed nature than that published, such as well depths and water levels from other ground-water sites throughout the State, is filed in the Anchorage field office. Much of the data are in computer files and can be retrieved for analysis. Information on the availability of unpublished data may be obtained from the District Office in Anchorage.

Records of Ground-Water Quality

Records of ground-water quality in this report differ from other types of records in that for most sampling sites they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes slowly; therefore, for most general purposes one annual sampling, or a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem, such as monitoring for trends in nitrate concentration. In special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes.

Data Collection and Computation

The records of ground-water quality in this report were obtained mostly as a part of special studies in specific areas. Consequently, a number of chemical analyses are presented for some areas but none for other areas. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality statewide. Such a view can be attained only by considering records for this year in context with similar records obtained for these and other areas in earlier years.

Data Presentation

The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed by Hydrologic Subregion, and are identified by well number. The station-identification number for wells sampled is the 15-digit number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water.

ACCESS TO USGS WATER DATA

The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the Internet. These data may be accessed at:

http://water.usgs.gov

Some water-quality and ground-water data also are available through the Internet. In addition, data can be provided in various machine-readable formats on compact disk. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division District Offices (see address on the back of the title page).

DEFINITION OF TERMS

Specialized technical terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. Definitions of common terms such as algae, water level, and precipitation are given in standard dictionaries. Not all terms defined in this alphabetical list apply to every State. See also table for converting inch/pound units to International System (SI) units on the inside of the back cover.

Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity).

Acre-foot (AC-FT, acre-ft) is a unit of volume, commonly used to measure quantities of water used or stored, equivalent to the volume of water required to cover 1 acre to a depth of 1 foot and equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. (See also "Annual runoff")

Adenosine triphosphate (ATP) is an organic, phosphaterich compound important in the transfer of energy in organisms. Its central role in living cells makes ATP an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample. (See also "Biomass" and "Dry weight")

Alkalinity is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample.

Annual runoff is the total quantity of water that is discharged ("runs off") from a drainage basin in a year. Data reports may present annual runoff data as volumes in acrefeet, as discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches.

Annual 7-day minimum is the lowest mean value for any 7-consecutive-day period in a year. Annual 7-day minimum values are reported herein for the calendar year and the water year (October 1 through September 30). Most low-flow frequency analyses use a climatic year (April 1-March 31), which tends to prevent the low-flow period from being artificially split between adjacent years. The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day, 10-year low-flow statistic.)

Aroclor is the registered trademark for a group of polychlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type, and the last two digits represent the percentage weight of the hydrogen-substituted chlorine.

Artificial substrate is a device that is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is collected. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. (See also "Substrate")

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500 °C for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²). (See also "Biomass" and "Dry mass")

Aspect is the direction toward which a slope faces with respect to the compass.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, whereas others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Bankfull stage, as used in this report, is the stage at which a stream first overflows its natural banks formed by floods with 1- to 3-year recurrence intervals.

Base discharge (for peak discharge) is a discharge value, determined for selected stations, above which peak discharge data are published. The base discharge at each station is selected so that an average of about three peak flows per year will be published. (See also "Peak flow")

Base flow is sustained flow of a stream in the absence of direct runoff. It includes natural and human-induced streamflows. Natural base flow is sustained largely by ground-water discharge.

Bedload is material in transport that is supported primarily by the streambed. In this report, bedload is considered to consist of particles in transit from the bed to an elevation equal to the top of the bedload sampler nozzle (ranging from 0.25 to 0.5 foot) that are retained in the bedload sampler. A sample collected with a pressure-differential bedload sampler also may contain a component of the suspended load.

Bedload discharge (tons per day) is the rate of sediment moving as bedload, reported as dry weight, that passes through a cross section in a given time. NOTE: Bedload discharge values in this report may include a component of the suspended-sediment discharge. A correction may be necessary when computing the total sediment discharge by summing the bedload discharge and the suspended-sediment discharge. (See also "Bedload," "Dry weight," "Sediment," and "Suspended-sediment discharge")

Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed. (See also "Bedload" and "Sediment")

Benthic organisms are the group of organisms inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat.

Biomass pigment ratio is an indicator of the total proportion of periphyton that are autotrophic (plants). This is also called the Autotrophic Index.

Blue-green algae (*Cyanophyta*) are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Bottom material (See "Bed material")

Bulk electrical conductivity is the combined electrical conductivity of all material within a doughnut-shaped volume

surrounding an induction probe. Bulk conductivity is affected by different physical and chemical properties of the material including the dissolved solids content of the pore water and lithology and porosity of the rock.

Cells/volume refers to the number of cells of any organism that is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample volume, and are generally reported as cells or units per milliliter (mL) or liter (L).

Cells volume (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are frequently used in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume (µm³) is determined by obtaining critical cell measurements or cell dimensions (for example, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows:

sphere $4/3 \pi r^3$ cone $1/3 \pi r^2 h$ cylinder $\pi r^2 h$.

pi (π) is the ratio of the circumference to the diameter of a circle; pi = 3.14159....

From cell volume, total algal biomass expressed as biovolume (μ m³/mL) is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes for all species.

Cfs-day (See "Cubic foot per second-day")

Channel bars, as used in this report, are the lowest prominent geomorphic features higher than the channel bed.

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. [See also "Biochemical oxygen demand (BOD)"]

Clostridium perfringens (C. perfringens) is a spore-forming bacterium that is common in the feces of human and other warmblooded animals. Clostridial spores are being used experimentally as an indicator of past fecal contamination and presence of microorganisms that are resistant to disinfection and environmental stresses. (See also "Bacteria")

Coliphages are viruses that infect and replicate in coliform bacteria. They are indicative of sewage contamination of water and of the survival and transport of viruses in the environment.

Color unit is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Confined aquifer is a term used to describe an aquifer containing water between two relatively impermeable boundaries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases, the water level can rise above the ground surface, yielding a flowing well.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuous-record station is a site where data are collected with sufficient frequency to define daily mean values and variations within a day.

Control designates a feature in the channel that physically affects the water-surface elevation and thereby determines the stage-discharge relation at the gage. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure, as used in this report, is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater.

Cubic foot per second (CFS, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second or approximately 449 gallons per minute, or 0.02832 cubic meters per second. The term "second-foot" sometimes is used synonymously with "cubic foot per second" but is now obsolete.

Cubic foot per second-day (CFS-DAY, Cfs-day, [(ft³/s)/d]) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.98347 acre-feet, 646,317 gallons, or 2,446.6 cubic meters. The daily mean discharges reported in the daily value data tables are numerically equal to the daily volumes in cfs-days, and the totals also represent volumes in cfs-days.

Cubic foot per second per square mile [CFSM, (ft³/s)/mi²] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming

the runoff is distributed uniformly in time and area. (See also "Annual runoff")

Daily mean suspended-sediment concentration is the time-weighted concentration of suspended sediment passing a stream cross section during a 24-hour day. (See also "Sediment" and "Suspended-sediment concentration")

Daily-record station is a site where data are collected with sufficient frequency to develop a record of one or more data values per day. The frequency of data collection can range from continuous recording to periodic sample or data collection on a daily or near-daily basis.

Data collection platform (DCP) is an electronic instrument that collects, processes, and stores data from various sensors, and transmits the data by satellite data relay, line-of-sight radio, and/or landline telemetry.

Data logger is a microprocessor-based data acquisition system designed specifically to acquire, process, and store data. Data are usually downloaded from onsite data loggers for entry into office data systems.

Datum is a surface or point relative to which measurements of height and/or horizontal position are reported. A vertical datum is a horizontal surface used as the zero point for measurements of gage height, stage, or elevation; a horizontal datum is a reference for positions given in terms of latitude-longitude, State Plane coordinates, or UTM coordinates. (See also "Gage datum," "Land-surface datum," "National Geodetic Vertical Datum of 1929," and "North American Vertical Datum of 1988")

Diatoms are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Diel is of or pertaining to a 24-hour period of time; a regular daily cycle.

Discharge, or flow, is the rate that matter passes through a cross section of a stream channel or other water body per unit of time. The term commonly refers to the volume of water (including, unless otherwise stated, any sediment or other constituents suspended or dissolved in the water) that passes a cross section in a stream channel, canal, pipeline, etc., within a given period of time (cubic feet per second). Discharge also can apply to the rate at which constituents, such as suspended sediment, bedload, and dissolved or suspended chemicals, pass through a cross section, in which cases the quantity is expressed as the mass of constituent that passes the cross section in a given period of time (tons per day).

Dissolved refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal and State agencies that collect water-quality data. Determinations of "dissolved" constituent concentrations are made on sample water that has been filtered.

Dissolved oxygen (DO) is the molecular oxygen (oxygen gas) dissolved in water. The concentration in water is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved-solids concentration. Photosynthesis and respiration by plants commonly cause diurnal variations in dissolved-oxygen concentration in water from some streams.

Dissolved-solids concentration in water is the quantity of dissolved material in a sample of water. It is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. In the mathematical calculation, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to convert it to carbonate. Alternatively, alkalinity concentration (as mg/L CaCO₃) can be converted to carbonate concentration by multiplying by 0.60.

Diversity index (H) (Shannon index) is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\overline{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n} ,$$

where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

Drainage area of a stream at a specific location is that area upstream from the location, measured in a horizontal plane, that has a common outlet at the site for its surface runoff from precipitation that normally drains by gravity into a stream. Drainage areas given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

Drainage basin is a part of the Earth's surface that contains a drainage system with a common outlet for its surface runoff. (See "Drainage area")

Dry mass refers to the mass of residue present after drying in an oven at 105 °C, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. (See also "Ash mass," "Biomass," and "Wet mass")

Dry weight refers to the weight of animal tissue after it has been dried in an oven at 65 °C until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue. (See also "Wet weight")

Embeddedness is the degree to which gravel-sized and larger particles are surrounded or enclosed by finer-sized particles. (See also "Substrate embeddedness class")

Enterococcus bacteria are commonly found in the feces of humans and other warmblooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at 41 °C on mE agar (nutrient medium for bacterial growth) and subsequent transfer to EIA medium. Enterococci include *Streptococcus feacalis, Streptococcus feacium, Streptococcus avium,* and their variants. (See also "Bacteria")

EPT Index is the total number of distinct taxa within the insect orders Ephemeroptera, Plecoptera, and Trichoptera. This index summarizes the taxa richness within the aquatic insects that are generally considered pollution sensitive; the index usually decreases with pollution.

Escherichia coli (E. coli) are bacteria present in the intestine and feces of warmblooded animals. E. coli are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5 °C on mTEC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Estimated (E) concentration value is reported when an analyte is detected and all criteria for a positive result are met. If the concentration is less than the method detection limit (MDL), an 'E' code will be reported with the value. If the analyte is qualitatively identified as present, but the quantitative determination is substantially more uncertain, the National Water Quality Laboratory will identify the result with an 'E' code even though the measured value is greater than the MDL. A value reported with an 'E' code should be used with caution. When no analyte is detected

in a sample, the default reporting value is the MDL preceded by a less than sign (<).

Euglenoids (*Euglenophyta*) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark. (See also "Phytoplankton")

Extractable organic halides (EOX) are organic compounds that contain halogen atoms such as chlorine. These organic compounds are semivolatile and extractable by ethyl acetate from air-dried streambed sediment. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of the streambed sediment.

Fecal coliform bacteria are present in the intestines or feces of warmblooded animals. They often are used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 °C plus or minus 0.2 °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Fecal streptococcal bacteria are present in the intestines of warmblooded animals and are ubiquitous in the environment. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at 35 °C plus or minus 1.0 °C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Fire algae (*Pyrrhophyta*) are free-swimming unicells characterized by a red pigment spot. (See also "Phytoplankton")

Flow-duration percentiles are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates.

Gage datum is a horizontal surface used as a zero point for measurement of stage or gage height. This surface usually is located slightly below the lowest point of the stream bottom such that the gage height is usually slightly greater than the maximum depth of water. Because the gage datum itself is not an actual physical object, the datum usually is defined by specifying the elevations of permanent reference marks such as bridge abutments and survey monuments, and the gage is set to agree with the reference marks. Gage datum is a local datum that is maintained

independently of any national geodetic datum. However, if the elevation of the gage datum relative to the national datum (North American Vertical Datum of 1988 or National Geodetic Vertical Datum of 1929) has been determined, then the gage readings can be converted to elevations above the national datum by adding the elevation of the gage datum to the gage reading.

Gage height (G.H.) is the water-surface elevation, in feet above the gage datum. If the water surface is below the gage datum, the gage height is negative. Gage height often is used interchangeably with the more general term "stage," although gage height is more appropriate when used in reference to a reading on a gage.

Gage values are values that are recorded, transmitted, and/or computed from a gaging station. Gage values typically are collected at 5-, 15-, or 30-minute intervals.

Gaging station is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained.

Gas chromatography/flame ionization detector (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride.

Geomorphic channel units, as used in this report, are fluvial geomorphic descriptors of channel shape and stream velocity. Pools, riffles, and runs are types of geomorphic channel units considered for National Water-Quality Assessment (NAWQA) Program habitat sampling.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Habitat, as used in this report, includes all nonliving (physical) aspects of the aquatic ecosystem, although living components like aquatic macrophytes and riparian vegetation also are usually included. Measurements of habitat are typically made over a wider geographic scale than are measurements of species distribution.

Habitat quality index is the qualitative description (level 1) of instream habitat and riparian conditions surrounding the reach sampled. Scores range from 0 to 100 percent with higher scores indicative of desirable habitat conditions for aquatic life. Index only applicable to wadable streams.

Hardness of water is a physical-chemical characteristic that commonly is recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations (primarily calcium and

magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO₃).

High tide is the maximum height reached by each rising tide. The high-high and low-high tides are the higher and lower of the two high tides, respectively, of each tidal day. *See NOAA web site:*

http://www.co-ops.nos.noaa.gov/tideglos.html

Hilsenhoff's Biotic Index (HBI) is an indicator of organic pollution that uses tolerance values to weight taxa abundances; usually increases with pollution. It is calculated as follows:

$$HBI = sum \frac{(n)(a)}{N}$$
,

where n is the number of individuals of each taxon, a is the tolerance value of each taxon, and N is the total number of organisms in the sample.

Horizontal datum (See "Datum")

Hydrologic index stations referred to in this report are continuous-record gaging stations that have been selected as representative of streamflow patterns for their respective regions. Station locations are shown on index maps.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the USGS. Each hydrologic unit is identified by an 8-digit number.

Inch (IN., in.), as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were uniformly distributed on it. (See also "Annual runoff")

Instantaneous discharge is the discharge at a particular instant of time. (See also "Discharge")

Island, as used in this report, is a mid-channel bar that has permanent woody vegetation, is flooded once a year on average, and remains stable except during large flood events.

Laboratory reporting level (LRL) is generally equal to twice the yearly determined long-term method detection level (LT-MDL). The LRL controls false negative error. The probability of falsely reporting a nondetection for a sample that contained an analyte at a concentration equal to or greater than the LRL is predicted to be less than or equal to 1 percent. The value of the LRL will be reported with a "less than" (<) remark code for samples in which the analyte was not detected. The National Water Quality Lab-

oratory (NWQL) collects quality-control data from selected analytical methods on a continuing basis to determine LT-MDLs and to establish LRLs. These values are reevaluated annually on the basis of the most current quality-control data and, therefore, may change. [Note: In several previous NWQL documents (NWQL Technical Memorandum 98.07, 1998), the LRL was called the nondetection value or NDV—a term that is no longer used.]

Land-surface datum (lsd) is a datum plane that is approximately at land surface at each ground-water observation well.

Latent heat flux (often used interchangeably with latent heat-flux density) is the amount of heat energy that converts water from liquid to vapor (evaporation) or from vapor to liquid (condensation) across a specified cross-sectional area per unit time. Usually expressed in watts per square meter.

Light-attenuation coefficient, also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation:

$$I = I_{o}e^{-\lambda L}$$
,

where I_o is the source light intensity, I is the light intensity at length L (in meters) from the source, λ is the light-attenuation coefficient, and e is the base of the natural logarithm. The light-attenuation coefficient is defined as

$$\lambda = -\frac{1}{L} \log_e \frac{I}{I_o} \ .$$

Lipid is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic.

Long-term method detection level (LT-MDL) is a detection level derived by determining the standard deviation of a minimum of 24 method detection limit (MDL) spike sample measurements over an extended period of time. LT-MDL data are collected on a continuous basis to assess year-to-year variations in the LT-MDL. The LT-MDL controls false positive error. The chance of falsely reporting a concentration at or greater than the LT-MDL for a sample that did not contain the analyte is predicted to be less than or equal to 1 percent.

Low tide is the minimum height reached by each falling tide. The high-low and low-low tides are the higher and lower of the two low tides, respectively, of each tidal day. See NOAA web site:

http://www.co-ops.nos.noaa.gov/tideglos.html

Macrophytes are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that usually are arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline.

Mean concentration of suspended sediment (Daily mean suspended-sediment concentration) is the time-weighted concentration of suspended sediment passing a stream cross section during a given time period. (See also "Daily mean suspended-sediment concentration" and "Suspended-sediment concentration")

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. (See also "Discharge")

Mean high or **low tide** is the average of all high or low tides, respectively, over a specific period.

Mean sea level is a local tidal datum. It is the arithmetic mean of hourly heights observed over the National Tidal Datum Epoch. Shorter series are specified in the name; for example, monthly mean sea level and yearly mean sea level. In order that they may be recovered when needed, such datums are referenced to fixed points known as benchmarks. (See also "Datum")

Measuring point (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level.

Membrane filter is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Method detection limit (MDL) is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. It is determined from the analysis of a sample in a given matrix containing the analyte. At the MDL concentration, the risk of a false positive is predicted to be less than or equal to 1 percent.

Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of

a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

Micrograms per gram (UG/G, μ g/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

Micrograms per kilogram (UG/KG, μ g/kg) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion.

Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. One microgram per liter is equivalent to 1 part per billion.

Microsiemens per centimeter (US/CM, μ S/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in milligrams per liter and is based on the mass of dry sediment per liter of water-sediment mixture.

Minimum reporting level (MRL) is the smallest measured concentration of a constituent that may be reliably reported by using a given analytical method.

Miscellaneous site, miscellaneous station, or miscellaneous sampling site is a site where streamflow, sediment, and/or water-quality data or water-quality or sediment samples are collected once, or more often on a random or discontinuous basis to provide better areal coverage for defining hydrologic and water-quality conditions over a broad area in a river basin.

Most probable number (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes.

Multiple-plate samplers are artificial substrates of known surface area used for obtaining benthic invertebrate sam-

ples. They consist of a series of spaced, hardboard plates on an eyebolt.

Nanograms per liter (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter.

National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a fixed reference adopted as a standard geodetic datum for elevations determined by leveling. It was formerly called "Sea Level Datum of 1929" or "mean sea level." Although the datum was derived from the mean sea level at 26 tide stations, it does not necessarily represent local mean sea level at any particular place. See NOAA web site: http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88 (See "North American Vertical Datum of 1988")

Natural substrate refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives. (See also "Substrate")

Nekton are the consumers in the aquatic environment and consist of large free-swimming organisms that are capable of sustained, directed mobility.

Nephelometric turbidity unit (NTU) is the measurement for reporting turbidity that is based on use of a standard suspension of formazin. Turbidity measured in NTU uses nephelometric methods that depend on passing specific light of a specific wavelength through the sample.

North American Vertical Datum of 1988 (NAVD 1988) is a fixed reference adopted as the official civilian vertical datum for elevations determined by Federal surveying and mapping activities in the United States. This datum was established in 1991 by minimum-constraint adjustment of the Canadian, Mexican, and United States first-order terrestrial leveling networks.

Open or **screened interval** is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface.

Organic carbon (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediment. May be reported as dissolved organic carbon (DOC), particulate organic carbon (POC), or total organic carbon (TOC).

Organic mass or volatile mass of a living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass. (See also "Ash mass," "Biomass," and "Dry mass")

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m²), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.

Organochlorine compounds are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds.

Parameter code is a 5-digit number used in the USGS computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property.

Partial-record station is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded.

Particle size is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method utilizes the principle of Stokes law to calculate sediment particle sizes. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube, sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification, as used in this report, agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay	>0.00024 - 0.004	Sedimentation
Silt	>0.004 - 0.062	Sedimentation
Sand	>0.062 - 2.0	Sedimentation/sieve
Gravel	>2.0 - 64.0	Sieve
Cobble	>64 - 256	Manual measurement
Boulder	>256	Manual measurement

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. For the sedimentation method, most of the organic matter is removed, and the sample is subjected to mechani-

cal and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

Peak flow (peak stage) is an instantaneous local maximum value in the continuous time series of streamflows or stages, preceded by a period of increasing values and followed by a period of decreasing values. Several peak values ordinarily occur in a year. The maximum peak value in a year is called the annual peak; peaks lower than the annual peak are called secondary peaks. Occasionally, the annual peak may not be the maximum value for the year; in such cases, the maximum value occurs at midnight at the beginning or end of the year, on the recession from or rise toward a higher peak in the adjoining year. If values are recorded at a discrete series of times, the peak recorded value may be taken as an approximation of the true peak, which may occur between the recording instants. If the values are recorded with finite precision, a sequence of equal recorded values may occur at the peak; in this case, the first value is taken as the peak.

Percent composition or **percent of total** is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, mass, or volume.

Percent shading is a measure of the amount of sunlight potentially reaching the stream. A clinometer is used to measure left and right bank canopy angles. These values are added together, divided by 180, and multiplied by 100 to compute percentage of shade.

Periodic-record station is a site where stage, discharge, sediment, chemical, physical, or other hydrologic measurements are made one or more times during a year but at a frequency insufficient to develop a daily record.

Periphyton is the assemblage of microorganisms attached to and living upon submerged solid surfaces. Although primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality.

Pesticides are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

pH of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7.0 standard units are termed "acidic," and solutions with a pH greater than 7.0 are termed "basic." Solutions with a pH of 7.0 are neutral. The presence and concentration of many dissolved chemical constituents found in water are affected, in part, by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of

the water to organisms also are affected, in part, by the hydrogen-ion activity of water.

Phytoplankton is the plant part of the plankton. They are usually microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and commonly are known as algae. (See also "Plankton")

Picocurie (PC, pCi) is one trillionth (1 x 10⁻¹²) of the amount of radioactive nuclide represented by a curie (Ci). A curie is the quantity of radioactive nuclide that yields 3.7 x 10¹⁰ radioactive disintegrations per second (dps). A picocurie yields 0.037 dps, or 2.22 dpm (disintegrations per minute).

Plankton is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample.

Polychlorinated biphenyls (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Polychlorinated naphthalenes (PCNs) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations.

Pool, as used in this report, is a small part of a stream reach with little velocity, commonly with water deeper than surrounding areas.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants.

Primary productivity (carbon method) is expressed as milligrams of carbon per area per unit time [mg C/(m²/time)] for periphyton and macrophytes or per volume [mg C/(m³/time)] for phytoplankton. The carbon method defines the amount of carbon dioxide consumed as measured by radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use with unenriched water samples.

Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

Primary productivity (oxygen method) is expressed as milligrams of oxygen per area per unit time [mg O/(m²/time)] for periphyton and macrophytes or per volume [mg O/(m³/time)] for phytoplankton. The oxygen method defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

Radioisotopes are isotopic forms of elements that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes.

Reach, as used in this report, is a length of stream that is chosen to represent a uniform set of physical, chemical, and biological conditions within a segment. It is the principal sampling unit for collecting physical, chemical, and biological data.

Recoverable from bed (bottom) material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. (See also "Bed material")

Recurrence interval, also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or nonexceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most of the times being less than the average

and a few being substantially greater than the average. For example, the 100-year flood is the flow rate that is exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost two-thirds of all exceedances of the 100-year flood occur less than 100 years after the previous exceedance, half occur less than 70 years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day, 10-year low flow $(7Q_{10})$ is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-thirds of the nonexceedances of the 7Q₁₀ occur less than 10 years after the previous nonexceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous nonexceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100-year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10-percent chance in any year that the annual minimum 7-day-mean flow will be less than the $7Q_{10}$.

Replicate samples are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition.

Return period (See "Recurrence interval")

Riffle, as used in this report, is a shallow part of the stream where water flows swiftly over completely or partially submerged obstructions to produce surface agitation.

River mileage is the curvilinear distance, in miles, measured upstream from the mouth along the meandering path of a stream channel in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council and typically is used to denote location along a river.

Run, as used in this report, is a relatively shallow part of a stream with moderate velocity and little or no surface turbulence.

Runoff is the quantity of water that is discharged ("runs off") from a drainage basin during a given time period. Runoff data may be presented as volumes in acre-feet, as mean discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. (See also "Annual runoff")

Sea level, as used in this report, refers to one of the two commonly used national vertical datums (NGVD 1929 or NAVD 1988). See separate entries for definitions of these datums.

Sediment is solid material that originates mostly from disintegrated rocks; when transported by, suspended in, or deposited from water, it is referred to as "fluvial sediment." Sediment includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are affected by environmental and land-use factors. Some major factors are topography, soil characteristics, land cover, and depth and intensity of precipitation.

Sensible heat flux (often used interchangeably with latent sensible heat-flux density) is the amount of heat energy that moves by turbulent transport through the air across a specified cross-sectional area per unit time and goes to heating (cooling) the air. Usually expressed in watts per square meter.

Seven-day, 10-year low flow $(7Q_{10})$ is the discharge below which the annual 7-day minimum flow falls in 1 year out of 10 on the long-term average. The recurrence interval of the $7Q_{10}$ is 10 years; the chance that the annual 7-day minimum flow will be less than the $7Q_{10}$ is 10 percent in any given year. (See also "Annual 7-day minimum" and "Recurrence interval")

Shelves, as used in this report, are streambank features extending nearly horizontally from the flood plain to the lower limit of persistent woody vegetation.

Sodium adsorption ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Sodium hazard in water is an index that can be used to evaluate the suitability of water for irrigating crops.

Soil heat flux (often used interchangeably with soil heatflux density) is the amount of heat energy that moves by conduction across a specified cross-sectional area of soil per unit time and goes to heating (or cooling) the soil. Usually expressed in watts per square meter.

Soil-water content is the water lost from the soil upon drying to constant mass at 105 °C; expressed either as mass of water per unit mass of dry soil or as the volume of water per unit bulk volume of soil.

Specific electrical conductance (conductivity) is a measure of the capacity of water (or other media) to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 °C. Specific electrical conductance is a function of the types and quantity of dissolved substances in water and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it

may vary in the same source with changes in the composition of the water.

Stable isotope ratio (per MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific water, to evaluate mixing of different water, as an aid in determining reaction rates, and other chemical or hydrologic processes.

Stage (See "Gage height")

Stage-discharge relation is the relation between the watersurface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

Substrate embeddedness class is a visual estimate of riffle streambed substrate larger than gravel that is surrounded or covered by fine sediment (<2mm, sand or finer). Below are the class categories expressed as the percentage covered by fine sediment:

0 no gravel or larger substrate 3 26-50 percent 1 > 75 percent 4 5-25 percent 2 51-75 percent 5 < 5 percent

Surface area of a lake is that area (acres) encompassed by the boundary of the lake as shown on USGS topographic maps, or other available maps or photographs. Because surface area changes with lake stage, surface areas listed in this report represent those determined for the stage at the time the maps or photographs were obtained.

Surficial bed material is the upper surface (0.1 to 0.2 foot) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is defined operationally as the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative suspended water-sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a

method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by directly analyzing the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. (See also "Suspended")

Suspended sediment is the sediment maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. (See also "Sediment")

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 foot above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The analytical technique uses the mass of all of the sediment and the net weight of the water-sediment mixture in a sample to compute the suspended-sediment concentration. (See also "Sediment" and "Suspended sediment")

Suspended-sediment discharge (tons/d) is the rate of sediment transport, as measured by dry mass or volume, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft³/s) x 0.0027. (See also "Sediment," "Suspended sediment," and "Suspended-sediment concentration")

Suspended-sediment load is a general term that refers to a given characteristic of the material in suspension that passes a point during a specified period of time. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration. (See also "Sediment")

Suspended, total is the total amount of a given constituent in the part of a water-sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" con-

stituents are made either by directly analyzing portions of the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total concentrations of the constituent. (See also "Suspended")

Suspended solids, total residue at 105 °C concentration is the concentration of inorganic and organic material retained on a filter, expressed as milligrams of dry material per liter of water (mg/L). An aliquot of the sample is used for this analysis.

Synoptic studies are short-term investigations of specific water-quality conditions during selected seasonal or hydrologic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources.

Taxa (**Species**) **richness** is the number of species (taxa) present in a defined area or sampling unit.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata*, is the following:

Kingdom: Animal
Phylum: Arthropoda
Class: Insecta

Order: Ephemeroptera
Family: Ephemeridae
Genus: *Hexagenia*

Species: Hexagenia limbata

Thalweg is the line formed by connecting points of minimum streambed elevation (deepest part of the channel).

Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table descriptions and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water resulting from the mixing of flow proportionally to the duration of the concentration.

Tons per acre-foot (T/acre-ft) is the dry mass (tons) of a constituent per unit volume (acre-foot) of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

Tons per day (T/DAY, tons/d) is a common chemical or sediment discharge unit. It is the quantity of a substance in solution, in suspension, or as bedload that passes a stream section during a 24-hour period. It is equivalent to 2,000 pounds per day, or 0.9072 metric tons per day.

Total is the amount of a given constituent in a representative whole-water (unfiltered) sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined at least 95 percent of the constituent in the sample.)

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warmblooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gramnegative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35 °C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35 °C plus or minus 1.0 °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milliliters of sample. (See also "Bacteria")

Total discharge is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total in bottom material is the amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

Total length (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together.

Total load refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load.

Total organism count is the number of organisms collected and enumerated in any particular sample. (See also "Organism count/volume")

Total recoverable is the amount of a given constituent in a whole-water sample after a sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data for whole-water samples, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures may produce different analytical results.

Total sediment discharge is the mass of suspendedsediment plus bed-load transport, measured as dry weight, that passes a cross section in a given time. It is a rate and is reported as tons per day. (See also "Bedload," "Bedload discharge," "Sediment," "Suspended sediment," and "Suspended-sediment concentration")

Total sediment load or total load is the sediment in transport as bedload and suspended-sediment load. The term may be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It differs from total sediment discharge in that load refers to the material, whereas discharge refers to the quantity of material, expressed in units of mass per unit time. (See also "Sediment," "Suspended-sediment load," and "Total load")

Transect, as used in this report, is a line across a stream perpendicular to the flow and along which measurements are taken, so that morphological and flow characteristics along the line are described from bank to bank. Unlike a cross section, no attempt is made to determine known elevation points along the line.

Turbidity is the reduction in the transparency of a solution due to the presence of suspended and some dissolved substances. The measurement technique records the collective optical properties of the solution that cause light to be scattered and attenuated rather than transmitted in straight lines; the higher the intensity of scattered or attenuated light, the higher the value of the turbidity. Turbidity is

expressed in nephelometric turbidity units (NTU). Depending on the method used, the turbidity units as NTU can be defined as the intensity of light of a specified wavelength scattered or attenuated by suspended particles or absorbed at a method specified angle, usually 90 degrees, from the path of the incident light. Currently approved methods for the measurement of turbidity in the USGS include those that conform to U.S. EPA Method 180.1, ASTM D1889-00, and ISO 7027. Measurements of turbidity by these different methods and different instruments are unlikely to yield equivalent values.

Ultraviolet (UV) absorbance (absorption) at 254 or

280 nanometers is a measure of the aggregate concentration of the mixture of UV absorbing organic materials dissolved in the analyzed water, such as lignin, tannin, humic substances, and various aromatic compounds. UV absorbance (absorption) at 254 or 280 nanometers is measured in UV absorption units per centimeter of pathlength of UV light through a sample.

Unconfined aquifer is an aquifer whose upper surface is a water table free to fluctuate under atmospheric pressure. (See "Water-table aquifer")

Vertical datum (See "Datum")

Volatile organic compounds (VOCs) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings. VOC contamination of drinkingwater supplies is a human health concern because many are toxic and are known or suspected human carcinogens.

Water table is that surface in a ground-water body at which the water pressure is equal to the atmospheric pressure.

Water-table aquifer is an unconfined aquifer within which the water table is found.

Water year in USGS reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 2002, is called the "2002 water year."

WDR is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.)

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

Wet mass is the mass of living matter plus contained water. (See also "Biomass" and "Dry mass")

Wet weight refers to the weight of animal tissue or other substance including its contained water. (See also "Dry weight")

WSP is used as an acronym for "Water-Supply Paper" in reference to previously published reports.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and often are large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. (See also "Plankton")

TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY

The USGS publishes a series of manuals titled the "Techniques of Water-Resources Investigations" that describe procedures for planning and conducting specialized work in water-resources investigations. The material in these manuals is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of book 3 (Applications of Hydraulics) pertains to surface water. Each chapter then is limited to a narrow field of the section subject matter. This publication format permits flexibility when revision or printing is required. Manuals in the Techniques of Water-Resources Investigations series, which are listed below, are available online at http://water.usgs.gov/pubs/twri/. Printed copies are available for sale from the USGS, Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (an authorized agent of the Superintendent of Documents, Government Printing Office). Please telephone "1-888-ASK-USGS" for current prices, and refer to the title, book number, section number, chapter number, and mention the "U.S. Geological Survey Techniques of Water-Resources Investigations." Other products can be viewed online at http://www.usgs.gov/sales.html, or ordered by telephone or by FAX to (303)236-4693. Order forms for FAX requests are available online at http://mac.usgs.gov/isb/pubs/forms/. Prepayment by major credit card or by a check or money order payable to the "U.S. Geological Survey" is required.

Book 1. Collection of Water Data by Direct Measurement

Section D. Water Quality

- 1–D1. *Water temperature—Influential factors, field measurement, and data presentation*, by H.H. Stevens, Jr., J.F. Ficke, and G.F. Smoot: USGS–TWRI book 1, chap. D1. 1975. 65 p.
- 1–D2. *Guidelines for collection and field analysis of ground-water samples for selected unstable constituents*, by W.W. Wood: USGS–TWRI book 1, chap. D2. 1976. 24 p.

Book 2. Collection of Environmental Data

Section D. Surface Geophysical Methods

- 2–D1. *Application of surface geophysics to ground-water investigations*, by A.A.R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS–TWRI book 2, chap. D1. 1974. 116 p.
- 2–D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS–TWRI book 2, chap. D2. 1988. 86 p.

Section E. Subsurface Geophysical Methods

- 2–E1. *Application of borehole geophysics to water-resources investigations*, by W.S. Keys and L.M. MacCary: USGS–TWRI book 2, chap. E1. 1971. 126 p.
- 2–E2. *Borehole geophysics applied to ground-water investigations*, by W.S. Keys: USGS–TWRI book 2, chap. E2. 1990. 150 p.

Section F. Drilling and Sampling Methods

2–F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS–TWRI book 2, chap. F1. 1989. 97 p.

Book 3. Applications of Hydraulics

Section A. Surface-Water Techniques

- 3–A1. *General field and office procedures for indirect discharge measurements*, by M.A. Benson and Tate Dalrymple: USGS–TWRI book 3, chap. A1. 1967. 30 p.
- 3–A2. *Measurement of peak discharge by the slope-area method*, by Tate Dalrymple and M.A. Benson: USGS–TWRI book 3, chap. A2. 1967. 12 p.
- 3–A3. *Measurement of peak discharge at culverts by indirect methods*, by G.L. Bodhaine: USGS–TWRI book 3, chap. A3. 1968. 60 p.
- 3–A4. *Measurement of peak discharge at width contractions by indirect methods*, by H.F. Matthai: USGS-TWRI book 3, chap. A4. 1967. 44 p.

- 3–A5. *Measurement of peak discharge at dams by indirect methods*, by Harry Hulsing: USGS–TWRI book 3, chap. A5. 1967. 29 p.
- 3–A6. *General procedure for gaging streams*, by R.W. Carter and Jacob Davidian: USGS–TWRI book 3, chap. A6. 1968. 13 p.
- 3–A7. *Stage measurement at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A7. 1968. 28 p.
- 3–A8. *Discharge measurements at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A8. 1969. 65 p.
- 3–A9. *Measurement of time of travel in streams by dye tracing,* by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS–TWRI book 3, chap. A9. 1989. 27 p.
- 3-Al0. Discharge ratings at gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. Al0. 1984. 59 p.
- 3–A11. *Measurement of discharge by the moving-boat method*, by G.F. Smoot and C.E. Novak: USGS–TWRI book 3, chap. A11. 1969. 22 p.
- 3–A12. *Fluorometric procedures for dye tracing*, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS–TWRI book 3, chap. A12. 1986. 34 p.
- 3–A13. *Computation of continuous records of streamflow*, by E.J. Kennedy: USGS–TWRI book 3, chap. A13. 1983. 53 p.
- 3–A14. *Use of flumes in measuring discharge,* by F.A. Kilpatrick and V.R. Schneider: USGS–TWRI book 3, chap. A14. 1983. 46 p.
- 3–A15. *Computation of water-surface profiles in open channels*, by Jacob Davidian: USGS–TWRI book 3, chap. A15. 1984. 48 p.
- 3–A16. *Measurement of discharge using tracers*, by F.A. Kilpatrick and E.D. Cobb: USGS–TWRI book 3, chap. A16. 1985. 52 p.
- 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI book 3, chap. A17. 1985. 38 p.
- 3–A18. *Determination of stream reaeration coefficients by use of tracers*, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS–TWRI book 3, chap. A18. 1989. 52 p.
- 3-A19. Levels at streamflow gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. A19. 1990. 31 p.
- 3–A20. *Simulation of soluble waste transport and buildup in surface waters using tracers*, by F.A. Kilpatrick: USGS–TWRI book 3, chap. A20. 1993. 38 p.
- 3-A21 Stream-gaging cableways, by C. Russell Wagner: USGS-TWRI book 3, chap. A21. 1995. 56 p.

Section B. Ground-Water Techniques

- 3–B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS–TWRI book 3, chap. B1. 1971. 26 p.
- 3–B2. *Introduction to ground-water hydraulics, a programed text for self-instruction*, by G.D. Bennett: USGS–TWRI book 3, chap. B2. 1976. 172 p.
- 3–B3. *Type curves for selected problems of flow to wells in confined aquifers*, by J.E. Reed: USGS–TWRI book 3, chap. B3. 1980. 106 p.
- 3–B4. *Regression modeling of ground-water flow,* by R.L. Cooley and R.L. Naff: USGS–TWRI book 3, chap. B4. 1990. 232 p.
- 3–B4. Supplement 1. Regression modeling of ground-water flow—Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS–TWRI book 3, chap. B4. 1993. 8 p.
- 3–B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS–TWRI book 3, chap. B5. 1987. 15 p.

- 3–B6. *The principle of superposition and its application in ground-water hydraulics*, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI book 3, chap. B6. 1987. 28 p.
- 3–B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS–TWRI book 3, chap. B7. 1992. 190 p.
- 3–B8. *System and boundary conceptualization in ground-water flow simulation*, by T.E. Reilly: USGS–TWRI book 3, chap. B8. 2001. 29 p.

Section C. Sedimentation and Erosion Techniques

- 3–C1. Fluvial sediment concepts, by H.P. Guy: USGS–TWRI book 3, chap. C1. 1970. 55 p.
- 3–C2. *Field methods for measurement of fluvial sediment*, by T.K. Edwards and G.D. Glysson: USGS–TWRI book 3, chap. C2. 1999. 89 p.
- 3–C3. *Computation of fluvial-sediment discharge*, by George Porterfield: USGS–TWRI book 3, chap. C3. 1972. 66 p.

Book 4. Hydrologic Analysis and Interpretation

Section A. Statistical Analysis

- 4-A1. Some statistical tools in hydrology, by H.C. Riggs: USGS-TWRI book 4, chap. A1. 1968. 39 p.
- 4-A2. Frequency curves, by H.C. Riggs: USGS-TWRI book 4, chap. A2. 1968. 15 p.
- 4–A3. *Statistical methods in water resources*, by D.R. Helsel and R.M. Hirsch: USGS–TWRI book 4, chap. A3. 1991. Available only online at http://water.usgs.gov/pubs/twri/twri4a3/. (Accessed August 30, 2002.)

Section B. Surface Water

- 4-B1. Low-flow investigations, by H.C. Riggs: USGS-TWRI book 4, chap. B1. 1972. 18 p.
- 4–B2. *Storage analyses for water supply*, by H.C. Riggs and C.H. Hardison: USGS–TWRI book 4, chap. B2. 1973. 20 p.
- 4–B3. *Regional analyses of streamflow characteristics*, by H.C. Riggs: USGS–TWRI book 4, chap. B3. 1973. 15 p.

Section D. Interrelated Phases of the Hydrologic Cycle

4–D1. *Computation of rate and volume of stream depletion by wells*, by C.T. Jenkins: USGS–TWRI book 4, chap. D1. 1970. 17 p.

Book 5. Laboratory Analysis

Section A. Water Analysis

- 5–A1. *Methods for determination of inorganic substances in water and fluvial sediments*, by M.J. Fishman and L.C. Friedman, editors: USGS–TWRI book 5, chap. A1. 1989. 545 p.
- 5–A2. *Determination of minor elements in water by emission spectroscopy,* by P.R. Barnett and E.C. Mallory, Jr.: USGS–TWRI book 5, chap. A2. 1971. 31 p.
- 5–A3. *Methods for the determination of organic substances in water and fluvial sediments*, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS–TWRI book 5, chap. A3. 1987. 80 p.
- 5–A4. *Methods for collection and analysis of aquatic biological and microbiological samples*, by L.J. Britton and P.E. Greeson, editors: USGS–TWRI book 5, chap. A4. 1989. 363 p.
- 5–A5. *Methods for determination of radioactive substances in water and fluvial sediments*, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS–TWRI book 5, chap. A5. 1977. 95 p.
- 5–A6. *Quality assurance practices for the chemical and biological analyses of water and fluvial sediments*, by L.C. Friedman and D.E. Erdmann: USGS–TWRI book 5, chap. A6. 1982. 181 p.

Section C. Sediment Analysis

5–C1. *Laboratory theory and methods for sediment analysis*, by H.P. Guy: USGS–TWRI book 5, chap. C1. 1969. 58 p.

Book 6. Modeling Techniques

Section A. Ground Water

- 6–A1. *A modular three-dimensional finite-difference ground-water flow model*, by M.G. McDonald and A.W. Harbaugh: USGS–TWRI book 6, chap. A1. 1988. 586 p.
- 6–A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS–TWRI book 6, chap. A2. 1991. 68 p.
- 6–A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS–TWRI book 6, chap. A3. 1993. 136 p.
- 6–A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS—TWRI book 6, chap. A4. 1992. 108 p.
- 6–A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS–TWRI book 6, chap. A5. 1993. 243 p.
- 6–A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler: USGS–TWRI book 6, chap. A6. 1996. 125 p.
- 6–A7. User's guide to SEAWAT: A computer program for simulation of three-dimensional variable-density ground-water flow, by Weixing Guo and Christian D. Langevin: USGS–TWRI book 6, chap. A7. 2002. 77 p.

Book 7. Automated Data Processing and Computations

Section C. Computer Programs

- 7–C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS–TWRI book 7, chap. C1. 1976. 116 p.
- 7–C2. *Computer model of two-dimensional solute transport and dispersion in ground water*, by L.F. Konikow and J.D. Bredehoeft: USGS–TWRI book 7, chap. C2. 1978. 90 p.
- 7–C3. *A model for simulation of flow in singular and interconnected channels*, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS–TWRI book 7, chap. C3. 1981. 110 p.

Book 8. Instrumentation

Section A. Instruments for Measurement of Water Level

- 8–A1. *Methods of measuring water levels in deep wells*, by M.S. Garber and F.C. Koopman: USGS–TWRI book 8, chap. A1. 1968. 23 p.
- 8–A2. *Installation and service manual for U.S. Geological Survey manometers*, by J.D. Craig: USGS–TWRI book 8, chap. A2. 1983. 57 p.

Section B. Instruments for Measurement of Discharge

8–B2. *Calibration and maintenance of vertical-axis type current meters*, by G.F. Smoot and C.E. Novak: USGS–TWRI book 8, chap. B2. 1968. 15 p.

Book 9. Handbooks for Water-Resources Investigations

Section A. National Field Manual for the Collection of Water-Quality Data

- 9–A1. *National field manual for the collection of water-quality data: Preparations for water sampling*, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A1. 1998. 47 p.
- 9–A2. *National field manual for the collection of water-quality data: Selection of equipment for water sampling*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A2. 1998. 94 p.
- 9–A3. *National field manual for the collection of water-quality data: Cleaning of equipment for water sampling*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A3. 1998. 75 p.
- 9–A4. *National field manual for the collection of water-quality data: Collection of water samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A4. 1999. 156 p.
- 9–A5. *National field manual for the collection of water-quality data: Processing of water samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A5. 1999, 149 p.
- 9–A6. *National field manual for the collection of water-quality data: Field measurements*, edited by F.D. Wilde and D.B. Radtke: USGS–TWRI book 9, chap. A6. 1998. Variously paginated.
- 9–A7. *National field manual for the collection of water-quality data: Biological indicators*, edited by D.N. Myers and F.D. Wilde: USGS–TWRI book 9, chap. A7. 1997 and 1999. Variously paginated.
- 9–A8. *National field manual for the collection of water-quality data: Bottom-material samples*, by D.B. Radtke: USGS–TWRI book 9, chap. A8. 1998. 48 p.
- 9–A9. *National field manual for the collection of water-quality data: Safety in field activities*, by S.L. Lane and R.G. Fay: USGS–TWRI book 9, chap. A9. 1998. 60 p.

Figure 1. Locations of gaging stations

15019990 TYEE LAKE OUTLET NEAR WRANGELL

LOCATION.--Lat $56^{\circ}12'00''$, long $131^{\circ}30'24''$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ sec. 28, T. 65 S., R. 90 E. (Bradfield Canal A-5 quad), Hydrologic Unit 19010101, in Tongass National Forest, on left bank at outlet of Tyee Lake, 1.5 mi south of Bradfield Canal and 37 mi southeast of Wrangell, Alaska.

DRAINAGE AREA. -- 14.7 mi².

PERIOD OF RECORD.--October 1979 to September 1981 and June 1992 to current year. Records for November 1922 to September 1927 and August 1963 to October 1969, published as Tyee Creek at Mouth near Wrangell (station 15020100) are not equivalent owing to inflow between sites.

GAGE.--Water-stage recorder. Elevation of gage is 1,370 ft above sea level from topographic map. Prior to June 9, 1992, at site 500 ft downstream at datum 13.66 ft lower.

REMARKS.--Records fair, except for estimated daily discharges and discharges below 10 ft³/s, which are poor. Water for power generation is diverted from Tyee Lake and discharged into Bradfield Canal. Diversion to hydropower plant began February 1984, and is not included in the discharge records.

		DISCH	ARGE, CU	BIC FEET		D, WATER ILY MEAN	YEAR OCTOR	BER 2001	TO SEPTEM	BER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	488 376 289 225 172	10 11 12 13 10	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 9.7 95 190	328 310 277 247 241	115 106 91 75 61	363 354 301 242 189
6 7 8 9 10	132 112 133 130 128	7.3 5.1 3.6 2.4 1.7	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	224 234 236 271 326	230 210 200 205 208	50 45 85 199 208	146 117 123 179 344
11 12 13 14 15	113 142 144 117 107	2.5 2.4 2.4 7.4 9.9	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	330 319 318 348 392	217 203 198 227 212	185 166 231 236 206	347 297 239 189 209
16 17 18 19 20	134 116 127 145 129	9.2 7.4 5.4 4.1 5.1	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	399 368 353 324 288	206 239 249 239 225	171 138 110 86 66	330 484 497 466 382
21 22 23 24 25	109 90 68 49 33	9.8 15 14 11 7.5	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	256 243 262 311 401	211 210 207 213 219	52 68 257 300 381	395 543 469 371 295
26 27 28 29 30 31	23 17 13 15 13	4.5 2.1 0.65 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	450 408 351 326 330	208 188 188 177 157 134	542 553 549 446 353 356	235 196 179 152 123
TOTAL MEAN MAX MIN AC-FT	3899 126 488 10 7730	196.45 6.55 15 0.00 390	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	8362.70 279 450 0.00 16590	6783 219 328 134 13450	6487 209 553 45 12870	8756 292 543 117 17370
STATIST	ICS OF	MONTHLY ME	EAN DATA	FOR WATER	YEARS 19	92 - 2002	, BY WATER	YEAR (W	Y)#			
MEAN MAX (WY) MIN (WY)	161 264 2000 102 1995	46.1 108 1993 5.10 1997	8.92 38.4 1998 0.000 1995	1.07 6.37 2001 0.000 1993	0.027 0.28 1994 0.000 1993	0.000 0.000 1993 0.000 1993	3.18 24.8 1993 0.000 1994	68.4 247 1993 0.000 2002	266 367 1999 176 1994	190 305 1999 55.2 1998	121 216 2000 28.3 1994	182 298 2001 41.5 1993

[#] Record for 1980 & 1981 water years, prior to diversion of 1984, not included. See Period Of Record
e Estimated

15019990 TYEE LAKE OUTLET NEAR WRANGELL—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER Y	EAR WATER YEARS 199	2 - 2002#
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	38732.00 106	34484.15 94.5	87.1 113	2001
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	628 Sep 23 a0.00 Jan 2 0.00 Jan 22	3 553 Aug L b0.00 Nov 2 0.00 Nov 595 Aug	27 710 Oct 29 c0.00 Dec 29 0.00 Dec 27 d975 Oct	. 27 1993 : 30 1992 : 30 1992
MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) 1.0 PERCENT EXCEEDS	76820 339	25.60 Aug 0.00 Nov 68400 325	27 28.62 Oct 29 0.00 Dec 63080 275	26 1993 30 1992
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	9.8 0.00	0.00 0.00	17 0.00	
PRIOR TO DIVERSION OF 1984				
	WATER YEARS			
ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	179 213 146 1690 f1.4 2.0 1910 12.72 130000 457 86 11	1981 1980 Oct. 7 1980 Apr. 2 1980 Mar.31 1980 Oct. 7 1980 Oct. 7 1980		

[#] Record for 1980 & 1981 water years, prior to diversion of 1984, not included. See Period of Record
a Jan. 01 to Jan. 3 and Jan. 22 to May 10
b Nov. 29 to Jun. 1
C No flow many days during winter months most years
d From rating curve extended above 400 ft³/s
f Apr. 2-3, 1980

15022000 HARDING RIVER NEAR WRANGELL

LOCATION.--Lat $56^{\circ}12'48''$, long $131^{\circ}38'12''$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec. 22, T. 65 S., R. 89 E. (Bradfield Canal A-5 quad), Hydrologic Unit 19010101, in Tongass National Forest, on right bank 1 mi upstream from mouth on north shore of Bradfield Canal, 4 mi downstream from Fall Lake, and 34 mi southeast of Wrangell.

DRAINAGE AREA. -- 67.4 mi².

Date

PERIOD OF RECORD. -- August 1951 to current year.

Time

REVISED RECORDS.--WSP 1640: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 20 ft above sea level, by barometer. Prior to September 30, 1960, at site 300 ft upstream at datum 0.12 ft lower. October 1, 1960, to August 23, 1975, at prior site and present datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES Satellite telemetry at station.

Discharge

height

Date Time

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 4,000 $\mathrm{ft^3/s}$ and maximum (*):

Gage

height

Discharge

	Dat	e	Time	(ft³/s)	height (ft)		Date	Time	(ft ³ /s)	height (ft)	
	Aug	09	0300	6340	10.46		Aug 31	1215		4090	8.88	
	Aug	13	0430	5450	9.85		Sep 10	0045		4490	9.17	
	Aug	23	1015	*9150	*12.28		Sep 16	2045		5900	10.16	
	Aug	25	2045	5870	10.14		Sep 21	2130		8030	11.57	
		DISC	HARGE, C	UBIC FEET	PER SECOND), WATER		BER 2001 TO) SEPTEI	MBER 2002		
DAY	OCT	NOV	DEC	C JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	e2700	e700	e105			e78	80 73	976 774	1620	1850	802 887	2380 1720
3	e2000 e1200	e800 e1000	e100 e95			e78 e95	73 69	774 556	1400 1530	2030 1400	753	995
4	e750	e780	e88	351	e130	e140	66	409	2450	1280	696	716
5	e500	e570	e120	263	e120	e120	63	337	2390	1820	675	549
6 7	e320 e440	e460 e540	e119 e179			e110 e100	60 59	286 268	1580 1200	1590 1190	669 802	449 445
8	e550	e560	e210	818	e100	e90	58	266	1100	1300	2450	1310
9	e510	e550	e170			e85	57	265 364	1700 2090	1560 1470	4400 1880	1760 3380
10	e660	e390	e150			e80	66					
11 12	e560 e800	e420 e380	e140 e140			e75 e73	76 81	582 1040	1510 1340	1550 1160	1050 1190	1560 858
13	e680	e340	e130			e69	114	1200	1520	1300	4180	591
14	e550	e800	e130			e65	189	1300	2260	2160	1870	464
15	e700	e540	e120	210	164	e64	268	807	2440	1260	1060	1770
16	e800	e800	e120			e60	205	765	2070	1280	772	3510
17 18	e650 e720	e520 e360	e110 e105			e60 e60	177 174	1110 936	1570 1650	1900 1550	649 604	4660 4000
19	e650	e300	e105			e59	212	960	1390	1280	545	2420
20	e550	e440	e100	172	103	e59	290	1590	1250	1120	489	1630
21	e500	e370	e98			e59	371	1920	1100	1100	690	3670
22 23	e460 e420	e600 e460	e110 e270			e58 e58	381 271	1620 1500	1190 1620	1400 1420	2070 6190	4060 1920
24	e410	e350	e550			e57	232	1210	1790	1610	2000	1050
25	e400	e280	e660			e86	211	1290	2220	1770	3460	718
26	e520	e210	e580			e120	208	1600	2310	1190	4250	586
27 28	e460 e800	e170 e140	e540 e520			e140	210 273	1770 2440	1690 1220	1050 1710	3940 3080	940 1050
26 29	e1100	e140				128 106	445	2930	1500	1300	1670	734
30	e800	e115	379			95	675	2500	1530	957	1030	507
31	e600		29"	7 e84		87		1690		824	3200	
TOTAL	22760	14070	7045	8554	3335	2614.0	5714	35261	50230	44381	58003	50402
MEAN	734.2	469.0	227.3			84.32	190.5	1137	1674	1432	1871	1680
MAX	2700	1000				140	675	2930	2450	2160	6190	4660
MIN MED	320 600	115 450				57 78	57 183	265 1040	1100 1580	824 1400	489 1060	445 1180
AC-FT	45140	27910	13970			5180	11330	69940	99630	88030	115000	99970
CFSM	10.9	6.96	3.3			1.25	2.83	16.9	24.8	21.2	27.8	24.9
IN.	12.56	7.77	3.89	9 4.72	1.84	1.44	3.15	19.46	27.72	24.50	32.01	27.82
STATIST	CS OF MO	ONTHLY M	EAN DATA	FOR WATER	YEARS 1951	- 2002,	BY WATER	YEAR (WY)	#			
MEAN	1079	496.3	337.9	9 252.5	236.3	201.6	359.2	918.3	1389	1344	1145	1146
MAX	2152	1252				510	733	1357	1896	1878	1871	2039
(WY)	1962	1970	1990	1981	1954	1986	1994	1956	1996	1972	2002	2001
MIN	610	118	102			54.8	90.0	624	960	861	601	507
(WY)	1970	1986	1984	1 1969	1969	1969	1954	1977	1981	1995	1993	1965

e Estimated

15022000 HARDING RIVER NEAR WRANGELL—Continued

SUMMARY STATISTICS	FOR 2001 CALEND	AR YEAR	FOR 2002 WAS	TER YEAR	WATER YEARS	1951	- 2002#
ANNUAL TOTAL	295251		302369.0				
ANNUAL MEAN	808.9		828.4		746.2		
HIGHEST ANNUAL MEAN					921		1992
LOWEST ANNUAL MEAN					558		1995
HIGHEST DAILY MEAN	3900	Sep 23	6190	Aug 23	11400	Oct 1	4 1961
LOWEST DAILY MEAN	80	Feb 23	a57	Mar 24	b35	Jan 2	3 1969
ANNUAL SEVEN-DAY MINIMUM	89	Feb 20	59	Mar 18	35	Jan 2	3 1969
MAXIMUM PEAK FLOW			9150	Aug 23	c15300	Oct 2	6 1993
MAXIMUM PEAK STAGE			12.28	Aug 23	d16.22	Oct 1	4 1961
INSTANTANEOUS LOW FLOW			£		35	Jan 2	3 1969
ANNUAL RUNOFF (AC-FT)	585600		599700		540600		
ANNUAL RUNOFF (CFSM)	12.0		12.3		11.1		
ANNUAL RUNOFF (INCHES)	162.96		166.89		150.43		
10 PERCENT EXCEEDS	1770		1910		1610		
50 PERCENT EXCEEDS	550		533		543		
90 PERCENT EXCEEDS	120		84		110		

[#] See Period of Record; partial years used in monthly statistics
a Mar. 24 & Apr. 9
b From Jan. 23 to Feb. 11, 1969
c From rating curve extended above 5,000 ft³/s on basis of slope-area measurement at gage height,13.90 ft
d At site then in use
f Not determined,see lowest daily mean

15024800 STIKINE RIVER NEAR WRANGELL (International gaging station)

 $\texttt{LOCATION.--Lat 56°42'29'', long 132°07'49'', in SE$^{1}_{4}$ SE$^{1}_{4}$ sec. 35, T. 59 S., R. 84 E. (Petersburg C-1 quad), Hydrological Section (Pe$ Unit 19010201, on right bank about 10 mi upstream from mouth near Point Rothsay, 11 mi west of Alaska-British Columbia boundary, and 18 mi northeast of Wrangell.

DRAINAGE AREA. -- 19,920 mi², approximately.

PERIOD OF RECORD. -- July 1976 to current year.

REVISED RECORDS .-- WDR AK-78-1: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 25 ft above sea level, from topographic map.

REMARKS.--Records good, except for estimated daily discharges that are tidally affected, Oct.15 to 19, Oct. 30 to Nov.5, Nov. 11 to 19, and Apr. 23 to 30 which are fair, and estimated daily discharges during periods of ice effect, Nov. 26 to Apr. 18 which are poor. GOES satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DATLY MEAN VALUES DAY OCT MOM DEC JAN FER MΔR APR MAY JUN .TTTT. AUG SEP e8400 e6400 e7000 e5900 103000 80000 e20400 e9100 21300 115000 87800 145000 2 62200 e21800 e8800 e8300 e6400 e7500 e5700 27700 97500 114000 87700 128000 e19700 e8500 e5600 27700 95600 118000 3 54400 e8500 e8100 e6400 83300 114000 4 47900 e22700 e9300 e8000 e6400 e8400 e5500 23000 105000 113000 77000 103000 5 42900 e20100 e9800 e8000 e6300 e8100 e5400 19800 120000 109000 75800 87400 e10700 e7500 17700 111000 77500 77900 18200 e8000 e6200 e5300 122000 6 40900 16400 e11400 e8000 e6900 e5300 16400 108000 82100 71900 40100 e6100 113000 40800 15500 e13200 e8100 e6000 e6500 e5300 15800 109000 71600 e5900 9 39700 15300 e14300 e8200 66000 e5300 15800 106000 123000 132000 75500 10 39700 15500 e14200 e8500 e5900 e5800 e5300 16600 126000 133000 127000 94200 36600 e15900 e13700 e8400 e6000 e5700 e5300 18800 140000 141000 108000 86800 11 12 43300 e15500 e12900 e8200 e8200 e5700 e5600 24100 144000 134000 99500 70200 e15100 e7900 e9400 e11800 e5900 142000 138000 13 41700 e5700 29000 120000 61500 14 34000 e16600 e10700 e7900 e9800 e5700 e6500 33600 146000 116000 154000 54700 15 e30700 e17000 e9700 e8000 e9900 e5600 e6700 35000 164000 109000 130000 57300 e9900 16 e34400 e17300 e9000 e7700 e5500 e6800 36800 183000 113000 103000 70500 e7400 122000 17 e32800 e16100 e8500 e9800 e5500 e6900 42400 187000 85300 90600 18 e39400 e14300 e8200 e7600 e9700 e5400 e7200 45400 187000 132000 79200 94500 e43700 e13200 e7200 e9000 e5400 7780 46800 175000 134000 74200 93800 19 e8100 20 38500 13000 e8100 e7100 e8600 e5400 8240 55100 155000 131000 68000 77100 21 32800 13000 e8200 e7000 e8200 e5500 9220 70300 140000 121000 67500 74900 e7700 e8300 e5500 22 29700 13900 e7000 9940 81300 130000 127000 82500 95600 23 26700 14000 e8500 e6900 e7400 e5300 e9630 85900 128000 138000 144000 78600 e5300 82700 24800 13500 e6900 e7000 e8940 132000 151000 180000 e8600 73300 25 23500 12000 e8800 e6800 e7200 e5500 e8580 82200 136000 159000 161000 69700 e6700 e7500 26 22000 e11000 e8800 e5700 e8550 89800 143000 152000 189000 68400 2.7 21500 e10100 e8600 e6600 e7600 e5800 e8580 101000 139000 131000 209000 71100 28 20700 e9800 e8600 e6500 e7000 e5900 e8910 111000 128000 119000 226000 77300 29 22400 e9700 e8600 e6500 ___ e6100 e10500 120000 122000 105000 203000 74100 ---30 e22100 e9500 e8500 e6500 e6000 e14400 119000 124000 92700 148000 64600 e20800 e8500 e6500 e6000 110000 89000 135000 31 TOTAL 1130700 456100 304000 232900 211900 190400 218770 1622000 4034100 3789700 3713800 2473100 MEAN 36470 15200 9806 7513 7568 6142 7292 52320 134500 122200 119800 MAX 80000 22700 14300 8500 9900 8500 14400 120000 187000 159000 226000 145000 20700 9500 6500 5900 89000 MIN 8100 5300 5300 15800 95600 67500 54700 36600 7700 7300 5700 131000 120000 103000 AC-FT 2243000 904700 603000 462000 420300 377700 433900 3217000 8002000 7517000 7366000 4905000 CFSM 0.76 1.83 0.49 0.38 0.38 0.31 0.37 2.63 6.75 6.14 6.01 4.14 2.11 7.08 0.85 0.57 0.40 0.36 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1976 - 2002, BY WATER YEAR (WY) # MEAN 57390 24700 13910 11490 9303 10140 16490 66470 135100 134300 108000 80310 MAX 113300 58280 25780 39450 19080 42340 31960 119100 199900 163800 134200 128600 1979 1977 1992 7292 1993 (WY) 1987 1990 1981 1977 1992 1992 1985 1981 103400 76770 10010 109100 MIN 30590 5593 5958 5111 4719 32260 50760 (WY) 1986 1997 1978 1978 2002 1995 1986 1999 1982 1978 1983 1986 SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1976 - 2002 ANNIIAI, TOTAI, 18705440 18377470 ANNUAL MEAN 55810 51250 50350 HIGHEST ANNUAL MEAN 72870 1981 LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 42100 1978 201000 Jul 22 226000 Aug 28 324000 Sep 23 1994 b5300 Feb 12 1988 LOWEST DAILY MEAN a7500 Feb 23 Mar 23 4000 ANNUAL SEVEN-DAY MINIMUM Apr 7670 Feb 19 5310 5 4090 Mar 8 1999 Aug 28 Sep 23 1994 MAXIMUM PEAK FLOW 229000 351000 Sep 23 1994 MAXIMUM PEAK STAGE 25.70 Aug 28 30.60 ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) 36450000 40430000 37100000 2.57 2.53 2.80 ANNUAL RUNOFF (INCHES) 34.32 38.07 34.93 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 137000 132000 136000 21900 19700 31400

6000

7200

8500

90 PERCENT EXCEEDS

See Period of Record; partial years used in monthly statistics Feb. 23 to 24 and Mar. 24 to 25 Mar. 23 to 24 and Apr. 6 to 11 $\,$

15039900 DOROTHY LAKE OUTLET NEAR JUNEAU

 $\texttt{LOCATION.--Lat } \ 58^{\circ}14'56'', \ \texttt{long } \ 133^{\circ}58'54'', \ \texttt{in } \ \texttt{NE}^{1}/_{4} \ \texttt{NW}^{1}/_{4} \ \texttt{sec. 9, T. 42 S., R. 70 E.} (\texttt{Taku River A-6 quad}), \ \texttt{Hydrologic } \ \texttt{NE}^{1}/_{4} \ \texttt{NE}$ unit 19010301, City and Borough of Juneau, in Tongass National Forest, on right bank 3 mi upstream from mouth at Taku Inlet, and 16.4 mi east of Juneau.

DRAINAGE AREA.--11.0 mi².

PERIOD OF RECORD. -- October 1986 to current year.

GAGE.--Water-stage recorder. Datum of gage is 2,410.78 ft above sea level.

REMARKS.--Records fair, except for discharges under 50 ft³/s and estimated discharges, which are poor.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 450 $\mathrm{ft^3/s}$ and maximum (*).

	Date	Time		charge Ga t ³ /s)	age height (ft)		Date	Time		charge t³/s)	Gage height (ft)	
	Aug 09	1400	6	559	11.93		Aug 23	0915		615	11.80	
	Aug 13	0045	7	716	12.09		Aug 28	1500	*	818	*12.36	
		DISCHAF	RGE, CUB	IC FEET P	ER SECOND,	WATER Y	EAR OCTOB	ER 2001 TC	SEPTEME	BER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	230	33	e15	e23	e15	e16	e5.5	e8.4	222	268	219	500
2	212 174	33 37	e15 e15	e23 e20	e16	e18 e20	e5.4 e5.2	e10	213 224	343 339	201 181	405 317
4	144	38	e15 e15	e20 e19	e16 e16	e20 e18	e5.2 e5.0	e11 e11	249	312	165	250
5	125	34	e15	e20	e16	e16	e4.8	e10	279	295	154	201
6	131	30	e15	e22	e14	e14	e4.7	e9.8	268	262	149	167
7	123	26	e16	e23	e13	e13	e4.6	e9.4	238	235	214	173
8	122	26	e18	e24	e12	e12	e4.4	e9.2	223	222	457	181
9 10	118 118	28 27	17 18	e25 e26	e13 e19	e11 e10	e4.5 e4.5	e9.3 e12	244 318	228 229	646 567	189 187
11	108	26	17	e24	e20	e10	e4.4	e13	320	238	444	182
12 13	112 106	23 20	18 18	e23 e23	e28 e28	e10 e10	e4.4 e4.4	e15 e18	278 248	237 226	550 675	170 148
14	91	20	17	e21	e29	e10	e4.3	e22	248	252	560	127
15	78	21	17	e20	e34	e9.6	e4.5	e24	280	259	424	146
16	79	21	e16	e20	e42	e8.8	e4.3	e25	303	242	319	158
17	71	21	e15	e18	e36	e8.1	e4.3	29	312	237	246	164
18	76	20	e15	e19	e33	e7.5	e4.4	33	312	241	210	220
19 20	86 80	18 18	e14 e14	e19 e18	e30 e29	e7.3 e7.0	e4.3 e4.8	41 53	297 289	228 216	190 179	256 247
21 22	76 68	18 19	15 15	e16 e15	e28 e25	e6.5 e5.8	e5.4 e5.0	76 91	262 236	222 268	292 392	253 224
23	61	19	e16	e15	e22	e5.6	e5.0	104	232	296	582	197
24	54	17	e17	e17	e19	e5.4	e5.4	110	245	372	512	197
25	50	e17	e18	e16	e18	e5.3	e5.3	119	314	429	496	183
26	44	e16	e19	e15	e18	e6.3	e5.2	128	372	410	529	171
27	44	e16	e21	e14	e18	e7.3	e5.1	139	361	372	660	177
28 29	40	e16	e22	e15	e17	e8.0 e7.7	e5.2	177	317 285	368 339	782	174
30	43 40	e16 e16	e24 e24	e15 e15		e7.7 e7.0	e5.4 e6.2	239 278	265	285	745 629	156 132
31	36		e24	e16		e6.0		250		246	568	
TOTAL	2940	690	535	600	624	307.1	146.5	2084.1	8254	8716	12937	6252
MEAN	94.84	23.00	17.26	19.35	22.29	9.906	4.883	67.23	275.1	281.2	417.3	208.4
MAX	230	38	24	26	42	20	6.2	278	372	429	782	500
MIN	36	16	14	14	12	5.3	4.3	8.4	213	216	149	127
AC-FT CFSM	5830	1370	1060	1190	1240	609	291	4130	16370	17290	25660	12400 18.9
IN.	8.62 9.94	2.09	1.57 1.81	1.76 2.03	2.03	0.90 1.04	0.44	6.11 7.05	25.0 27.91	25.6 29.48	37.9 43.75	21.14
IN.	J.J4	2.33	1.01	2.03	2.11	1.01	0.50	7.05	27.71	23.40	43.75	21.14
STATIST	TICS OF N	MONTHLY MEA	N DATA F	OR WATER	YEARS 1987	- 2002,	BY WATER	YEAR (WY)	#			
MEAN	158.9	48.02	35.00	21.51	20.67	17.30	18.82	86.17	217.5	271.1	263.7	260.7
MAX	243	88.7	80.8	38.1	40.8	59.2	36.9	140	275	364	417	387
(WY)	1988	1994	2000	2000	1993	1992	1994	1993	2002	2000	2002	1991
MIN	90.9	21.2	16.9	9.25	11.3	4.65	4.88	35.5	181	210	194	177
(WY)	1993	1996	1995	1997	1998	1989	2002	2001	1996	1993	1995	1992

e Estimated

15039900 DOROTHY LAKE OUTLET NEAR JUNEAU—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1987 - 2002
ANNUAL TOTAL	36567.8	44085.7	
ANNUAL MEAN	100.2	120.8	118.8
HIGHEST ANNUAL MEAN			141 1990
LOWEST ANNUAL MEAN			97.6 1996
HIGHEST DAILY MEAN	438 Jul 8	782 Aug 28	915 Sep 11 1995
LOWEST DAILY MEAN	9.8 Apr 17	a4.3 Apr 14	4.2 Mar 13 1989
ANNUAL SEVEN-DAY MINIMUM	10 Apr 15	4.4 Apr 13	4.2 Mar 10 1989
MAXIMUM PEAK FLOW	_	818 Aug 28	b990 Sep 10 1995
MAXIMUM PEAK STAGE		12.36 Aug 28	13.05 Sep 10 1995
INSTANTANEOUS LOW FLOW			4.2 Mar 10 1989
ANNUAL RUNOFF (AC-FT)	72530	87440	86080
ANNUAL RUNOFF (CFSM)	9.11	11.0	10.8
ANNUAL RUNOFF (INCHES)	123.67	149.09	146.77
10 PERCENT EXCEEDS	268	313	286
50 PERCENT EXCEEDS	29	28	54
90 PERCENT EXCEEDS	12	6.4	12

a Apr. 14,16,17, and 19 b From rating curve extended above 350 ft³/s

15040000 DOROTHY CREEK NEAR JUNEAU

LOCATION.--Lat $58^{\circ}13'40''$, long $134^{\circ}02'25''$, in $NN^{1}/_{4}$ SW $^{1}/_{4}$ sec.18, T. 42 S., R. 70 E.(Juneau A-1 quad), Hydrologic Unit 19010301, City and Borough of Juneau, in Tongass National Forest, on right bank 0.7 mi downstream from Bart lake, 0.8 mi upstream from the mouth at Taku Inlet, and 14.4 mi east of Juneau.

PERIOD OF RECORD.--October 1929 to October 1941, September 1942 to December 1943, June 1944 to September 1945, October 1945 to September 1967, October 2001 to current year. Prior to October 1945 monthly discharge only.

GAGE.--Water-stage recorder. Elevation of gage is 350 ft above sea level (from topographic map). Prior to September 1937 at site 100 ft upstream from mouth at different datum and published as Dorothy Creek at Taku Inlet.

REMARKS.--Records fair except estimated daily discharges, which are poor. Dorothy Lake (area 952 acres) lies at an elevation of 2,423 ft, less than 4 mi upstream from mouth; Lieuy Lake (area 80 acres) lies at an elevation of 1,711 ft; and Bart Lake (area 150 acres) lies at an elevation of 986 ft.

COOPERATION.--Records prior to October 1945 provided by U.S. Forest Service.

		DISCHA	RGE,	CUBIC :	FEET	PER		WATER Y MEAN			2001	TO	SEPTEMBE	R 2002		
DAY	OCT	NOV	DE	C	JAN		FEB	MAR		APR	MAY		JUN	JUL	AUG	SEP
1 2 3 4 5	e300 e290 e260 e220 e190	e52 e55 e57 e58 e55	e2 e2 e1 e1	0 9 7	34 34 31 30 33		24 24 23 24 23	e25 e27 e29 e25 e24		13 13 13 13	19 18 18 18		265 268 271 282 302	310 354 376 371 361	291 256 229 206 195	e620 e530 e400 e315 e250
6 7 8 9 10	e175 e170 e170 e165 e160	e48 e44 e42 e42 e43	e1 e2 e2 e2	1 3 2	34 34 35 36 37		22 21 21 23 22	e24 e23 e22 e21 e20		14 13 12 13 14	18 18 19 19 23		308 304 295 292 334	338 313 290 276 267	183 184 256 466 e612	e200 e210 e220 e225 e230
11 12 13 14 15	e150 e152 e148 e130 e120	e42 e38 e33 e32 e32	e2 e2 e2 e2	2 1 0	38 35 33 33 33		22 27 26 28 31	e19 e19 e18 e18 e18		13 12 14 14 12	25 28 32 34 36		355 343 324 312 308	267 263 258 269 274	e530 e600 e700 e720 e570	e220 e200 e180 e160 e170
16 17 18 19 20	e110 e107 e105 e120 e116	e33 e32 e31 e28 e29	e2 e2 e1 e1	0 9 8	32 31 33 34 30		34 35 37 38 36	e17 e17 e17 e16 e15		12 12 12 12 12	40 46 53 68 89		317 327 336 339 338	273 269 266 262 253	e380 e340 e270 e240 e220	e185 e210 e250 e300 e290
21 22 23 24 25	e110 e100 e93 e84 e75	e29 e30 e30 e29 e28	e1 2 2 2 2	0 2 6	26 26 29 26 24		e32 e31 e29 e28 e27	e14 e13 14 13 15		14 13 13 13	108 122 135 145 155		325 305 288 279 298	250 259 270 302 350	e300 e370 e500 e650 e580	e300 e280 e240 e240 e225
26 27 28 29 30 31	e70 e66 e62 e64 e60 e57	e27 e26 e25 e24 e23	2 3 3 3 3 3	1 3 4	24 23 24 25 26 24		e27 e27 e26 	14 13 13 13 13		13 14 15 17 19	164 174 192 219 242 257		332 352 350 336 320	390 398 399 391 363 327	e630 e700 e900 e850 e780 e700	e210 e210 e208 e195 e165
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	4199 135.5 300 57 120 8330 8.91 10.28	1097 36.57 58 23 32 2180 2.41 2.68	71 22.9 3 1 2 141 1.5	4 3 4 7 7 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	947 0.55 38 23 32 1880 2.01 2.32		768 7.43 38 21 27 1520 1.80 1.88	562 18.13 29 13 17 1110 1.19 1.38	13	404 .47 19 12 13 801 .89	2552 82.32 257 18 40 5060 5.42 6.25		9405 313.5 355 265 315 18650 20.6 23.02	9609 310.0 399 250 290 19060 20.4 23.52	14408 464.8 900 183 466 28580 30.6 35.26	7638 254.6 620 160 222 15150 16.8 18.69
STATIST	TICS OF M	ONTHLY MEA	N DAT	A FOR I	WATER	R YEA	RS 1930	- 2002	2, BY	WATER Y	EAR (WY)#				
MEAN MAX (WY) MIN (WY)	225.8 455 1937 97.5 1951	107.7 355 1950 31.7 1951	49.0 11 193 14. 195	3 ! 7 : 3 :	7.41 59.3 1957 10.0		2.75 70.9 1931 10.0 1935	22.75 85.9 1947 10.2 1933	6 1 1 1	2.3 943 3.0 967	92.04 140 1946 51.8 1964		244.6 336 1944 150 1933	306.5 419 1961 241 1954	310.9 465 1961 198 1954	279.9 432 1967 142 1964
	Y STATIST	ICS						02 WATE	ER YEA	IR.			W.	ATER YEAR	S 1930 -	- 2002#
LOWEST HIGHES' LOWEST ANNUAL MAXIMUM INSTAN' ANNUAL ANNUAL ANNUAL 10 PER(50 PER(MEAN F ANNUAL ANNUAL M F DAILY M DAILY ME	EAN EAN AN Y MINIMUM OW AGE OW FLOW AC-FT) CFSM) INCHES) EDS EDS					90 a1 1 b d 10370	3.3 0 2 3 3 0 9.43 8.00 9.8	Aug 2 Apr Apr 1	8				143.3 184 108 1690 6.0 6.6 c1780 5.85 £6.0 103800 9.43 128.13 326 92 16	Mar 23	3 1933 3 1933 3 1949 3 1949

See Period of Record; partial years used in monthly statistics

See Period of Record; partial years used in moderal 8, 12, 15-19
Not determined; see highest daily mean.
From a rating curve extended above 560 ft³/s.
Not determined; see lowest daily mean.
Estimated
March 23, 25 and 28, 1933.

15041200 TAKU RIVER NEAR JUNEAU (International gaging station)

LOCATION.--Lat $58^{\circ}32'19''$, long $133^{\circ}42'00''$, in $NE^{1}/_{4}$ $NW^{1}/_{4}$ sec. 33, T. 38 S., R. 71 E. (Taku River C-6 quad), Hydrologic Unit 19010301, City and Borough of Juneau, in Tongass National Forest, on left bank, 1.5 mi upstream from Wright River, and 31 mi northeast of Juneau.

DRAINAGE AREA.--6,600 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1987 to current year.

REVISED RECORD.--WDR AK-98-1, 1987-1997; WDR AK-00-1 1989-90 (M), 1992-95 (M).

GAGE.--Water-stage recorder. Elevation of gage is 50 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 50,000 $\mathrm{ft^3/s}$ and maximum (*).

	Date	e 1		ischarge (ft³/s)	Gage height (ft)		Da	te	Time	Discharge (ft ³ /s)	Gage height (ft)	
	Jun 1	.7 (0030	51,700	39.73		Aug	j 17	1400	*a74,600	*41.99	
	Aug 1	.3 1	L700	55,500	40.19							
			DICCU	ADCE in (יביכ אוא ייבים	YEAR OCTO	משם מחח	1 TO CED	PEMBER 200	กว		
			DISCH	ARGE, III C		ILY MEAN V		1 10 SEF.	LEMBER ZU	02		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	11700	4370	e2250	e2080	e1600	e1720	e1420	6020	29200	24700	20900	31200
2	12100	4320		e2020	e1600	e1800	e1390	8340	26900	26200	20900	27200
3	11000	4480		e2000	e1590	e1890	e1360	7610	26700	26000	19600	24900
4	10200	4570		e1980	e1550	e1810	e1330	6270	28700	24600	18100	22800
5	10700	4210	e2300	e1960	e1550	e1780	e1310	5340	28900	23600	18200	19600
6	12000	3690	e2500	e1980	e1500	e1700	e1300	4680	27900	22000	19600	18100
7	14000	3440		e1990	e1490	e1610	e1300	4430	25000	21500	22400	17400
8	19100	3450	e2900	e2000	e1420	e1550	e1300	4340	24800	22800	30800	16300
9	26000	3700		e2050	e1390	e1500	e1300	4450	30200	25400	32700	15400
10	13000	3890	e3500	e2110	e1430	e1450	e1300	4680	32800	25400	30300	14500
11	9370	3710	e3400	e2080	e1480	e1420	e1300	5180	32300	23200	26500	14100
12	9160	3540		e2010	e1900	e1400	e1320	5650	29300	22100	31200	13300
13	8820	3490	e3100	e1980	e2220	e1390	e1400	6610	27800	22100	52600	12300
14	7830	3540		e1930	e2290	e1400	1580	8640	29700	24000	46800	11300
15	7210	3440	e2600	e1990	e2300	e1380	1640	10100	36700	25200	42600	11100
16	7200	3330	e2400	e1880	e2360	e1370	1680	10500	46100	24600	53500	11200
17	7230	3220		e1820	e2300	e1360	1660	11900	44200	24500	69200	11100
18	8370	3060	e2100	e1880	e2200	e1350	1700	14200	37100	27200	30700	12200
19	9660	3040	e2000	e1790	e2150	e1350	1810	17800	33600	26900	21100	13700
20	8490	3070	e2000	e1760	e2090	e1340	2130	22100	30100	26000	19500	12900
21	7550	3130	e2000	e1730	e2000	e1340	2530	26700	27200	25500	23000	12400
22	7030	3240		e1720	e1920	e1360	2590	28100	25100	26600	30900	11800
23	6510	3270		e1700	e1800	e1300	2470	27300	25100	29300	42700	11000
24	6040	3060	e2100	e1690	e1720	e1310	2340	27300	27300	33300	40500	11400
25	5540	2970	e2200	e1670	e1700	e1330	2330	29000	28000	36000	35100	12100
26	5140	e2700	e2200	e1640	e1700	e1400	2350	32400	27200	32900	34400	12900
27	5010	e2500		e1630	e1710	e1420	2340	35500	26500	29700	39000	14000
28	4730	e2400		e1620	e1720	e1450	2530	36700	24700	28000	46200	15000
29	4700	e2400		e1620		e1470	3050	39300	24000	24400	43900	13700
30	4640	e2300		e1620		e1480	4050	39200	25000	21000	36800	11800
31	4430		e2100	e1610		e1470		34100		20900	33500	
TOTAL	284460	101530	74750	57540	50680	45900	56110	524440	888100	795600	1033200	456700
MEAN	9176	3384		1856	1810	1481	1870	16920	29600	25660	33330	15220
MAX	26000	4570	3500	2110	2360	1890	4050	39300	46100	36000	69200	31200
MIN	4430	2300	2000	1610	1390	1300	1300	4340	24000	20900	18100	11000
AC-FT	564200	201400		114100	100500	91040	111300	1040000	1762000	1578000	2049000	905900
CFSM	1.39	0.51		0.28	0.27	0.22	0.28	2.56	4.49	3.89	5.05	2.31
IN.	1.60	0.57	0.42	0.32	0.29	0.26	0.32	2.96	5.01	4.48	5.82	2.57
STATIS	TICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS 19	88 - 2002,	BY WATE	R YEAR (WY) #			
MEAN	11490	4612		2191	1937	2573	4274	19940	34280	31730	26500	19290
MAX	17250	8633		4223	3682	10500	6815	33800	49280	41080	33330	26550
(WY)	1992	1994		2000	1992	1992	1992	1993	1992	1992	2002	1994
MIN	6265 1997	2488 1997		1125 1988	1041 1999	1359	1870 2002	9652 2001	23170 1995	25040 1996	18610 1995	11180 1992
(WY)	199/	1997	1997	1988	1999	1991	2002	2001	1995	1996	1995	1992

See Period of Record; partial years used in monthly statistics

Estimated

15041200 TAKU RIVER NEAR JUNEAU—Continued

SUMMARY STATISTICS	FOR 2001 CALENI	DAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1988 - 2002#
ANNUAL TOTAL	4473960		4369010			
ANNUAL MEAN	12260		11970		13580	
HIGHEST ANNUAL MEAN					16820	1992
LOWEST ANNUAL MEAN					10800	1996
HIGHEST DAILY MEAN	67600	Aug 10	69200	Aug 17	93100	Jul 26 2000
LOWEST DAILY MEAN	1450	Mar 25	a1300	Mar 23	710	Feb 12 1988
ANNUAL SEVEN-DAY MINIMUM	1510	Feb 18	1300	Apr 5	721	Feb 8 1988
MAXIMUM PEAK FLOW			b74600	Aug 17	b110000	Aug 17 1989
MAXIMUM PEAK STAGE			41.99	Aug 17	44.13	Aug 17 1989
INSTANTANEOUS LOW FLOW			С		710	Feb 12 1989
ANNUAL RUNOFF (AC-FT)	8874000		8666000		9836000	
ANNUAL RUNOFF (CFSM)	1.86		1.81		2.06	
ANNUAL RUNOFF (INCHES)	25.22		24.63		27.95	
10 PERCENT EXCEEDS	33100		30500		33300	
50 PERCENT EXCEEDS	4860		4450		7170	
90 PERCENT EXCEEDS	1800		1470		1610	

[#] See Period of Record; partial years used in monthly statistics a Mar. 23 & April 6 to 11 b Result of Tulsequah River glacier dam breakout c Not determined; see lowest daily mean

15041200 TAKU RIVER NEAR JUNEAU--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1998 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: June 1999 to current year

INSTRUMENTATION.--Electronic water-temperature recorder set for 15-minute recording interval.

REMARKS.- Records good. Records represent water temperature at the sensor within 0.5°C. Temperature cross sections were performed on March 29, and August 16-18. The outburst peak of the lake dammed by Tulsequah Glacier occurred on August 16-18. As a result, the temperature cross sections showed variations of 0.5°C during sampling on August 16, 2.0° C on August 17 and no variation on August 18. Variation of 1.5° C were found on March 29.

EXTREMES FOR PERIOD OF DAILY RECORD .--

WATER TEMPERATURE: Maximum recorded, 12.5°C, July 14, 1999 and July 20 and 21, 2001; minimum, 0.0°C, many days during most winters.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum recorded, 12.0°C, July 7 and 8, ; minimum, 0.0°C, many days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)
MAR								
29	1537	757	11.4	82	8.0	237	1.5	105
29	1539	757	11.4	81	8.0	241	1.0	150
29	1541	757	11.5	80	8.0	248	.5	185
29	1543	757	11.6	80	8.0	252	.0	205
29	1547	757	11.5	79	8.0	255	. 0	230
AUG								
18	1115	761	12.5	103	7.6	106	7.0	106
18	1120	761	12.4	103	7.7	108	7.0	249
18	1122	761	12.4	103	7.7	108	7.0	256
18	1124	761	12.3	101	7.7	108	7.0	498
18	1126	761	12.3	101	7.7	108	7.0	604

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (00004	GAGE HEIGHT (FEET)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)
NOV													
14	1240	9	9	308	29.62	3390	20	3053	210	8.1	3.0	.5	740
MAR													
29 MAY	1608	9	9	290		1480	20	8010	247	7.8	5.5	.5	757
09	1025	9	9	480	29.98	4380	10	3053	124	7.9	11.0	6.5	766
JUN													
12	1240	9	9	719	36.19	29200	20	3053	128	7.1	17.5	9.0	767
JUL													
18	1600	9	9	702	35.86	29100	20	3053	110	7.8		10.5	762
AUG													
16	1957	9	9	793	40.73	58200	20	3055	111	7.9	14.0	4.5	
17	1651	9	9	837	41.90	68900	20	3055	129	8.0		3.5	
18	1432	9	9	711	35.53	25700	20	3055	108	7.7		7.0	761
SEP													
11	1600	9	9	663	32.95	14300	20	3053	130	7.8		7.5	762

15041200 TAKU RIVER NEAR JUNEAU--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DATE	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	ALKA- LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036)	SULFATE (MG/L AS SO4) (00946)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)
NOV 14	13.4	96	113	32.3	7.78	3.5	92	1.00	122	92	92	18	.072
MAR 29	11.5	80	128	37.5	8.32	5.84	92	1.00	109	89		21	.185
MAY 09	11.9	96	110	32.1	6.88	3.45	86	1.00	103	84	86	18	.406
JUN 12	11.8	101	58	17.5	3.51	1.43	50	<.70	59	48	50	18	.020
JUL 18	11.8	106	52		3.20								.020
AUG		106		15.5		1.30		<.70					
16 17	= =		35 42	11.6 13.2	1.55	.64	28 30	1.00	34 36	28 30	28 30	8.1 10	.040
18 SEP	12.4	102	53	16.6	2.78	1.09	43	1.00	51	42	43	10	.047
11	12.5	104	66	19.6	4.21	1.56	55	< .70	65	53	55	12.2	.020
DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC TOTAL (UG/L AS AS) (01002)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR) (01034)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)
NOV	٥٤	013	144	27	6	_	4.7	2.0	. 10	. 10	-1		1 1
14 MAR 29	.05	.013	73	<20	.6 .7	.5	41 47	38 45	<.10	<.10	<1	<1	1.1
MAY 09	.040	.010	139	<20	1	.6	45	40	<.10	<.10	<1	<1	1.7
JUN					2						<1		
12 JUL 18	.06	.073	1730 2890	47 63	3	1.2	56 74	29 28	<.10	<.10	<1 5	<1 1	4.4
AUG						.5		20		<.10			7.9 48
16 17	.04	.910	18400 12800	51 43	11 9 5	. 4	370 280	26	.55	<.10 <.10	30 22	<1 <1	35
18 SEP	.04	.360	5950	45		.5	139	29	.18	<.10	12	<1	18
11	<.02	.051	1280	43	1.3	.6	51	30	.17	.12	2	<1	3.7
DATE	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)
NOV 14	<1	310	30	.20	<.10	24	20	2	1.64	<1.0	<1	<.10	<.10
MAR 29	<1.0	480	<10	.20	<.10	49	42	1	.56			<.10	<.10
MAY 09	1.3	420	70	.20	<.10	29	20	E2	E2			<.10	<.10
JUN 12	<1.0	2190	<10	1.0	<.10	63	5.5	5	.56			<.10	<.10
JUL 18	<1.0	3960	<10	2.6	<.10	122	5.4	8	.50			<.10	<.10
AUG 16	<1.0	24300		16	<.10	676	7.2	37	<.30			.20	<.10
17 18	<1.0 <1.0	18000 8880		12 6.0	<.10 <.10	495 259	9.0 7.3	28 17	.46 .42			.15 <.10	<.10 <.10
SEP 11	<1.0	1720	<10	1.5	<.10	54	8.0	4	.55			<.10	<.10

DAY

26

27 28

29 30

31

MONTH

2.5

2.0

1.5 2.0 2.0

9.0

2.0

1.5

0.5 1.5 2.0

0.5

MAX

MIN

MEAN

2.0

1.5

1.0 1.5 2.0

4.3

0.5

1.0

0.5

2.5

0.0

0.0

0.0

0.0

MAX

15041200 TAKU RIVER NEAR JUNEAU--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DATE	AS ZN)	AS ZN)		DIS- SOLVED (MG/L AS C)
NOV				
14	< 4	<4	. 9	.9
MAR				
29	<4	<4	<.7	.5
MAY				0.1
09 JUN	<4		1.9	2.1
12	9	<4	1.2	1.2
JUL	,	~=	1.2	1.2
18	17	<4	1.2	1.0
AUG				
16	122	<4	<.5	.5
17	80	<4	<.5	<.5
18	35	<4	.5	.5
SEP				
11	8	<4	1.3	1.1

	OCTOBER			NOVEMBER			DECEMBER			JANUARY		
1 2 3 4 5	9.0 9.0 8.0 7.0	7.5 7.0 6.5 6.0 5.5	8.0 8.0 7.0 6.5 6.0	2.0 2.5 2.0 2.0 2.0	1.5 1.5 1.5 1.5	2.0 2.0 2.0 1.5 2.0	0.0 0.5 0.5 0.5	0.0 0.0 0.0 0.5 0.0	0.0 0.0 0.0 0.5 0.5	0.0 0.5 0.5 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
6 7 8 9 10	6.0 6.0 4.5 3.5 6.0	5.5 4.0 3.5 2.5 3.5	6.0 5.0 4.0 3.0 5.0	1.5 1.0 1.0 1.0	1.0 1.0 0.5 0.0	1.0 1.0 1.0 0.5	0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.0	0.5 0.0 0.0 0.5	0.5 0.5 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
11 12 13 14 15	6.5 6.0 6.0 6.0 4.5	5.5 4.5 5.0 4.5 3.5	5.5 5.5 5.0 5.0 4.0	1.5 1.0 1.0 1.0	0.5 1.0 0.5 0.5	0.5 1.0 1.0 1.0	0.5 0.5 0.5 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
16 17 18 19 20	4.0 4.5 5.0 5.0 4.5	3.5 4.0 4.5 4.5	3.5 4.0 5.0 5.0 4.5	1.0 1.5 1.5 1.5	1.0 1.0 1.0 0.5	1.0 1.0 1.5 1.0	0.0 0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
21 22 23 24 25	4.5 4.5 4.5 4.0 3.5	4.0 3.5 4.0 3.5 2.5	4.0 4.0 4.0 3.5 3.0	1.5 1.5 1.5 1.5	1.0 1.0 1.5 1.0	1.5 1.5 1.5 1.0 0.5	0.5 0.5 0.5 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0

0.0

0.5

0.0

1.0

WATER TEMPERATURE, (DEGREES CELSIUS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

MEAN

MAX

MIN

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.5

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.5

0.0

0.0

0.0

0.0

0.0

MEAN

MAX

MIN

MEAN

0.0

0.0

0.0

0.0

MIN

15041200 TAKU RIVER NEAR JUNEAU--Continued

	WATE	ER TEMPER	RATURE,	(DEGREES	CELSIUS),	WATER YE	AR OCTOBE	R 2001	TO SEPTEMBER	2002		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
-		FEBRUARY	0 0	1.0	MARCH	0 5		APRIL	0.5	F 0	MAY	4 0
1 2	0.0	0.0	0.0	1.0	0.0	0.5	1.5	0.0	0.5	5.0	3.5	4.0
3 4 5	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.5 0.5 0.0	0.0 0.0 0.0	0.0 0.0 0.0	2.5 2.0 1.5	0.0 0.0 0.0	1.0 0.5 0.5	4.0 4.5 4.0	1.5 2.5 2.0	2.5 3.5 3.0
6	0.0	0.0	0.0	0.0	0.0	0.0	2.5	0.0	0.5	5.5	2.5	4.0
7 8	0.0	0.0	0.0	0.5	0.0	0.0	3.0	0.5	1.5	6.0	4.5	5.0
9 10	0.0	0.0	0.0	0.5	0.0	0.0	4.0	1.0	2.0	6.5 6.0	5.0	5.5
11	0.0	0.0	0.0	0.5	0.0	0.0	4.5	1.5	2.5	6.5	5.5	6.0
12 13	0.0	0.0	0.0	0.5	0.0	0.0	4.0	2.0	2.5	6.5	5.5	6.0
14 15	0.0	0.0	0.0	0.5	0.0	0.0	4.0	2.5	3.0	6.0	5.0	5.5
16	0.5	0.0	0.0	1.0	0.0	0.5	5.0	2.5	3.5	8.0	5.5	7.0
17 18	0.5	0.0	0.0	1.0	0.0	0.5	5.5 4.5	2.5	4.0	8.0 7.0	6.0 6.0	7.0 6.5
19 20	0.5	0.0	0.0	1.0	0.0	0.0	4.5 3.5	3.0	3.5 3.5	8.5 8.5	5.5 5.5	6.5 7.0
21	0.0	0.0	0.0	1.0	0.0	0.5	3.5	3.0	3.0	8.0	6.5	7.0
22 23	0.5	0.0	0.0	1.5 1.0	0.0	0.5 0.5	4.5 5.0	2.5	3.5 4.0	6.5 8.0	5.5 5.5	6.0 6.5
24 25	0.0	0.0	0.0	1.5 1.0	0.0	0.5 0.5	5.5 5.5	3.5 3.5	4.0 4.5	9.0 9.5	6.5 6.5	7.5 8.0
26	0.0	0.0	0.0	1.5	0.0	0.5	5.0	3.5	4.0	9.0	7.0	8.0
27 28	0.5 0.5	0.0	0.0	1.5 1.0	0.0	0.5	5.5 6.0	3.5 4.0	4.5 5.0	8.5	7.0 7.0	7.5 7.5
29 30				2.0	0.0	1.0	6.5 6.0	4.0	5.5 5.0	8.0	6.5 6.0	7.5
31				1.5	0.0	0.5				8.0	6.0	7.0
MONTH	0.5	0.0	0.0	2.0	0.0	0.3	6.5	0.0	2.9	9.5	1.5	6.0
DAY	MAX	MIN N	I MEAN	I MZ	AX MIN	MEAN	MAX	MI	n mean	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	I MEAN	1 MZ	AX MIN	MEAN		MI UGUST	N MEAN		MIN EPTEMBER	
1	9.0	JUNE 6.5	7.5	8.5	JULY	8.0	10.0	UGUST	9.0	SE 9.0	EPTEMBER 8.0	8.5
	9.0 9.0 9.5	JUNE 6.5 7.0 7.5	7.5 8.0 8.5	8.5 8.0 8.5	JULY 7.5 7.0 7.0	8.0 7.5 7.5	10.0 10.0 9.5	8.0 8.0 8.0	9.0 9.0 9.0	9.0 9.0 9.0	8.0 8.0 8.0 8.0	8.5 8.5 8.5
1 2 3	9.0 9.0	JUNE 6.5 7.0	7.5 8.0	8.5 8.0	JULY 7.5 7.0	8.0 7.5	10.0 10.0	UGUST 8.0 8.0	9.0 9.0	9.0 9.0	EPTEMBER 8.0 8.0	8.5 8.5
1 2 3 4	9.0 9.0 9.5 9.0	JUNE 6.5 7.0 7.5 7.5	7.5 8.0 8.5 8.0	8.5 8.0 8.5 9.5	JULY 7.5 7.0 7.0 7.5	8.0 7.5 7.5 8.5	10.0 10.0 9.5 10.5	8.0 8.0 8.0 8.0 7.0	9.0 9.0 9.0 8.5	9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 7.5	8.5 8.5 8.5 8.5
1 2 3 4 5	9.0 9.0 9.5 9.0 9.5	JUNE 6.5 7.0 7.5 7.5 7.0 7.5	7.5 8.0 8.5 8.0 8.0	8.5 8.0 8.5 9.5 9.5	JULY 7.5 7.0 7.5 8.0	8.0 7.5 7.5 8.5 8.5	10.0 10.0 9.5 10.5 11.0	8.0 8.0 8.0 7.0 7.5	9.0 9.0 9.0 8.5 9.0	9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 7.5 7.5	8.5 8.5 8.5 8.5 8.5
1 2 3 4 5	9.0 9.0 9.5 9.0 9.5 9.5 8.0	JUNE 6.5 7.0 7.5 7.5 7.0 7.5 6.5	7.5 8.0 8.5 8.0 8.0 7.0	8.5 8.0 8.5 9.5 9.5 11.0 12.0	JULY 7.5 7.0 7.0 7.5 8.0 8.5 8.5 9.0	8.0 7.5 7.5 8.5 8.5 8.5	10.0 10.0 9.5 10.5 11.0	8.0 8.0 8.0 7.0 7.5 8.5 9.0 8.0	9.0 9.0 9.0 8.5 9.0 9.5 9.0	9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 7.5 7.5 8.0 8.0 8.0	8.5 8.5 8.5 8.5 8.5 8.5
1 2 3 4 5 6 7 8 9	9.0 9.0 9.5 9.0 9.5 8.0 10.5 10.0	JUNE 6.5 7.0 7.5 7.0 7.5 6.5 6.5 8.0	7.5 8.0 8.5 8.0 8.0 7.0 8.5 8.5	8.5 8.0 8.5 9.5 9.5 11.0 12.0 11.5	JULY 7.5 7.0 7.0 7.5 8.0 8.5 8.5 9.0 10.0	8.0 7.5 7.5 8.5 8.5 8.5 10.0 10.5	10.0 10.0 9.5 10.5 11.0 10.5 9.5 9.0	8.0 8.0 8.0 7.0 7.5 8.5 9.0 8.0 7.5	9.0 9.0 9.0 8.5 9.0 9.5 9.0 8.0	9.0 9.0 9.0 9.0 9.0 9.0 9.0 8.5 8.5	8.0 8.0 8.0 7.5 7.5 8.0 8.0 8.0 8.0	8.5 8.5 8.5 8.5 8.5 8.5 8.5
1 2 3 4 5 6 7 8 9 10	9.0 9.0 9.5 9.0 9.5 9.5 8.0 10.5 10.0 9.0	JUNE 6.5 7.0 7.5 7.0 7.5 6.5 6.5 8.0 7.5	7.5 8.0 8.5 8.0 8.0 8.0 7.0 8.5 8.5 8.0	8.5 8.0 8.5 9.5 9.5 11.0 12.0 12.0 11.5 10.5	JULY 7.5 7.0 7.5 8.0 8.5 8.5 9.0 10.0 8.5 8.5 8.5 8.5	8.0 7.5 7.5 8.5 8.5 8.5 10.0 10.5 10.5 9.0	10.0 10.0 9.5 10.5 11.0 10.5 9.5 9.0 9.0 9.0	8.0 8.0 8.0 7.0 7.5 8.5 9.0 8.0 7.5 8.0	9.0 9.0 9.0 8.5 9.0 9.5 9.0 8.0 8.5 8.5	9.0 9.0 9.0 9.0 9.0 9.0 9.5 9.0 9.5 8.5 8.5	8.0 8.0 8.0 7.5 7.5 8.0 8.0 8.0 8.0 7.5	8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.0 8.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	9.0 9.0 9.5 9.0 9.5 9.5 10.5 10.0 9.0 11.0 11.5 11.0	JUNE 6.5 7.0 7.5 7.0 7.5 6.5 8.0 7.5 7.5 7.5 8.5 8.5 8.5	7.5 8.0 8.5 8.0 8.0 7.0 8.5 8.5 8.0 8.0 9.0	8.5 8.0 8.5 9.5 9.5 11.0 12.0 11.5 10.5	JULY 7.5 7.0 7.5 8.0 8.5 8.5 9.0 10.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	8.0 7.5 7.5 8.5 8.5 9.5 10.0 10.5 10.5 9.0 9.0 10.0 9.0 8.5 9.0	10.0 10.0 9.5 10.5 11.0 10.5 9.0 9.0 9.0 9.0 9.0 8.0 9.0 8.0	8.0 8.0 7.0 7.5 8.5 9.0 7.5 8.0 7.5 8.0 7.5 8.0	9.0 9.0 9.0 8.5 9.0 9.5 9.0 8.0 8.0 8.5 7.5	9.0 9.0 9.0 9.0 9.0 9.0 9.0 8.5 8.5 8.5 8.5 8.5 8.5	8.0 8.0 8.0 7.5 7.5 8.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5	8.5 8.5 8.5 8.5 8.5 8.5 8.0 8.0 8.0 8.0 7.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	9.0 9.0 9.5 9.5 9.5 8.0 10.5 10.0 9.0 11.0 11.0 11.0 9.5	JUNE 6.5 7.0 7.5 7.0 7.5 6.5 6.5 8.0 7.5 7.5 7.5 8.5 8.5 7.0	7.5 8.0 8.5 8.0 8.0 7.0 8.5 8.5 8.0 8.0 9.0 10.0 9.5	8.5 8.0 8.5 9.5 9.5 11.0 12.0 11.5 10.5 10.5 10.0 11.0 9.5	JULY 7.5 7.0 7.5 8.0 8.5 8.5 9.0 10.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	8.0 7.5 7.5 8.5 8.5 9.5 10.0 10.5 10.5 9.0 9.0 10.0 9.0 8.5 9.0	10.0 10.0 9.5 10.5 11.0 10.5 9.0 9.0 9.0 9.0 9.0 8.0 9.0 8.0 7.5 6.0	8.0 8.0 7.0 7.5 8.5 9.0 8.0 7.5 8.0 7.5 8.0 6.0 7.0 4.0	9.0 9.0 9.0 8.5 9.0 8.5 9.0 8.0 8.5 8.5 7.5 7.5	9.0 9.0 9.0 9.0 9.0 9.0 9.5 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5	8.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.5 8.5 8.5 8.5 8.5 8.5 8.0 8.0 8.0 7.5 8.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	9.0 9.0 9.5 9.0 9.5 9.5 8.0 9.5 10.5 10.0 9.0 11.0 11.5 11.0 9.5 10.5	JUNE 6.5 7.0 7.5 7.0 7.5 6.5 8.0 7.5 7.5 7.5 8.5 8.5 8.5 7.0 8.5 8.0	7.5 8.0 8.5 8.0 8.0 7.0 8.5 8.5 8.0 8.5 8.5 8.0 8.5 8.0	8.5 8.0 8.5 9.5 9.5 11.0 12.0 11.5 10.5 10.5 10.0 11.0 10.5 9.5 10.0	JULY 7.5 7.0 7.0 7.5 8.0 8.5 8.5 9.0 10.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	8.0 7.5 7.5 8.5 8.5 9.5 10.0 10.5 10.5 9.0 9.0 10.0 9.0 8.5 9.0	10.0 10.0 10.5 10.5 11.0 10.5 9.5 9.0 9.0 9.0 9.0 8.0 9.0 8.0 7.5 6.0 8.5 9.0	8.0 8.0 7.0 7.5 8.5 9.0 8.0 7.5 8.0 8.0 6.0 7.0 6.0	9.0 9.0 9.0 8.5 9.0 9.5 9.0 8.0 8.0 8.5 7.5 7.5 7.0	9.0 9.0 9.0 9.0 9.0 9.5 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	8.0 8.0 7.5 7.5 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.5 8.5 8.5 8.5 8.5 8.5 8.0 8.0 8.0 8.0 8.0 8.0 7.5 8.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	9.0 9.0 9.5 9.0 9.5 9.5 10.5 10.0 9.0 11.0 11.5 11.0 9.5 10.0 11.5 10.0 9.5	JUNE 6.5 7.0 7.5 7.0 7.5 6.5 6.5 8.0 7.5 7.5 7.5 8.5 8.5 8.5 8.7 7.0 8.5 8.7 7.0 8.5 8.7 7.0	7.5 8.0 8.0 8.0 8.0 7.0 8.5 8.5 8.0 8.5 9.0 10.0 9.5 8.5 8.5 8.5 9.0	8.5 8.0 8.5 9.5 9.5 11.0 12.0 11.5 10.5 10.5 9.5 10.0 10.0 9.5 10.0	JULY 7.5 7.0 7.5 8.0 8.5 8.5 9.0 10.0 8.5 8.5 8.5 8.5 8.5 8.0 8.5 8.5 8.9 9.0	8.0 7.5 7.5 8.5 8.5 9.5 10.0 10.5 10.5 9.0 9.0 10.0 9.0 8.5 9.0	10.0 10.0 9.5 10.5 11.0 10.5 9.0 9.0 9.0 9.0 8.0 9.0 8.0 9.0 8.0 9.0 8.0	8.0 8.0 7.0 7.5 8.5 9.0 7.5 8.0 7.5 8.0 6.0 7.0 6.0 6.0 8.0 8.0	9.0 9.0 9.0 8.5 9.0 9.5 9.0 8.0 8.0 8.5 7.5 7.5 7.5 7.5 7.5	9.0 9.0 9.0 9.0 9.0 9.5 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	8.0 8.0 8.0 7.5 7.5 8.0 8.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.5 8.5 8.5 8.5 8.5 8.5 8.0 8.0 8.0 7.5 8.0 8.0 7.5 8.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	9.0 9.0 9.5 9.0 9.5 9.5 8.0 10.5 10.0 9.0 11.0 11.0 11.0 8.5 10.0 8.5 10.0 8.5 10.0	JUNE 6.5 7.0 7.5 7.5 7.0 7.5 8.0 7.5 8.5 8.5 7.0 8.5 8.5 7.0 8.5 8.6 7.0 8.5 8.0 7.5	7.5 8.0 8.0 8.0 8.0 7.0 8.5 8.5 8.0 8.0 9.5 8.5 9.0 10.0 9.5 8.5 9.0 8.5	8.5 8.0 8.5 9.5 9.5 11.0 12.0 11.5 10.5 10.5 10.0 10.5 10.0 11.0 10.5	JULY 7.5 7.0 7.5 8.0 8.5 8.5 9.0 10.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 9.0 9.0	8.0 7.5 7.5 8.5 8.5 9.5 10.0 10.5 10.5 9.0 9.0 10.0 9.0 8.5 9.0 9.5 9.0 9.5 9.5	10.0 10.0 9.5 10.5 11.0 10.5 9.0 9.0 9.0 9.0 8.0 9.0 8.0 7.5 6.0 8.5 9.0	8.0 8.0 7.0 7.5 8.5 9.0 7.5 8.0 7.5 8.0 6.0 7.0 6.0 6.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	9.0 9.0 9.0 8.5 9.0 8.5 9.0 8.0 8.5 8.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	9.0 9.0 9.0 9.0 9.0 9.5 9.0 8.5 8.5 8.5 8.5 8.0 8.0 8.0 8.0 8.0	8.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.5 8.5 8.5 8.5 8.5 8.5 8.0 8.0 8.0 7.5 8.0 8.0 7.5 7.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	9.0 9.0 9.5 9.5 9.5 10.5 10.5 10.0 11.0 9.0 11.0 11.0 11.0 9.5 10.0 11.0 11.0	JUNE 6.5 7.0 7.5 7.0 7.5 6.5 6.5 8.0 7.5 7.5 7.5 8.5 7.5 7.5 8.5 7.0 8.5 8.0 7.0 8.5 8.0 8.5 8.0	7.5 8.0 8.5 8.0 8.0 7.0 8.5 8.5 8.5 9.0 10.5 8.5 9.0 8.5 9.0 9.5 8.5 9.0 8.5	8.5 8.0 8.5 9.5 9.5 11.0 12.0 11.5 10.5 10.5 10.0 10.5 11.0 10.0 10	JULY 7.5 7.0 7.5 8.0 8.5 8.5 9.0 10.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 9.0 9.0 9.0 9.0 9.5 9.5	8.0 7.5 7.5 8.5 8.5 9.5 10.0 10.5 10.5 9.0 9.0 9.0 8.5 9.0 9.0 9.5 9.5 9.5 9.5	10.0 10.0 9.5 10.5 11.0 10.5 9.0 9.0 9.0 9.0 8.0 9.0 8.0 7.5 6.0 8.5 9.0 9.0	8.0 8.0 7.0 7.5 8.5 9.0 8.0 7.5 8.0 7.5 8.0 6.0 7.0 6.0 6.0 7.0 8.0 8.0 8.0 7.0 7.0 7.0	9.0 9.0 9.0 8.5 9.0 9.5 9.0 8.0 8.5 8.5 7.5 7.5 7.0 6.0 7.5 8.5 9.0	9.0 9.0 9.0 9.0 9.0 9.5 9.0 8.5 8.5 8.5 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.5 8.5 8.5 8.5 8.5 8.5 8.0 8.0 7.5 8.0 8.0 7.5 7.5 7.0 7.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	9.0 9.0 9.5 9.0 9.5 9.5 10.5 10.0 9.0 11.0 11.5 11.0 8.5 9.5 10.0 8.5 9.5	JUNE 6.5 7.0 7.5 7.0 7.5 6.5 8.0 7.5 7.5 8.5 8.5 7.0 8.5 8.0 7.5 8.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.5	7.5 8.0 8.0 8.0 8.0 7.0 8.5 8.5 8.0 8.5 9.0 9.5 8.5 8.5 9.5 9.5 9.5 9.5 9.5	8.5 8.0 8.5 9.5 9.5 9.5 11.0 12.0 11.5 10.5 10.0 11.0 10.5 9.5 10.0 11.0 11.0 11.0 11.0	JULY 7.5 7.0 7.5 8.0 8.5 8.5 9.0 10.0 8.5 8.5 8.5 8.5 8.0 8.5 8.5 8.0 9.0 9.0 9.0 9.5 8.5	8.0 7.5 7.5 8.5 8.5 9.5 10.0 10.5 10.5 9.0 9.0 10.0 9.0 8.5 9.0 9.5 9.5 9.5 9.5 9.5 9.5	10.0 10.0 9.5 10.5 11.0 10.5 9.0 9.0 9.0 9.0 8.0 9.0 8.0 9.0 8.0 9.0 8.0 9.0 8.0 9.0 8.0 9.0 8.0	8.0 8.0 7.0 7.5 8.5 9.0 7.5 8.0 7.5 8.0 6.0 7.0 6.0 8.0 8.0 8.0 7.0 6.0 7.0 6.0 7.0	9.0 9.0 9.0 8.5 9.0 9.5 9.0 8.0 8.0 8.5 7.5 7.5 7.5 7.5 7.5 7.0 6.0 5.0 7.5 8.5 9.0	9.0 9.0 9.0 9.0 9.0 9.5 9.0 8.5 8.5 8.5 8.5 8.0 8.0 8.0 8.0 8.0 8.5 8.5 8.5	8.0 8.0 8.0 7.5 7.5 8.0 8.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0	8.5 8.5 8.5 8.5 8.5 8.5 8.0 8.0 8.0 7.5 8.0 8.0 7.5 8.0 7.5 7.0 7.5 7.0 7.5 7.0 8.0 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	9.0 9.0 9.5 9.0 9.5 9.0 9.5 10.5 10.0 9.0 11.0 11.5 11.0 8.5 10.0 8.5 10.5 11.0 10.5 11.0	JUNE 6.5 7.0 7.5 7.5 7.0 7.5 8.0 7.5 8.5 8.5 7.0 8.5 8.0 7.5 8.5 8.0 8.5 8.6 8.5 8.6 8.5 8.6 8.5 8.6 8.5 8.6	7.5 8.0 8.0 8.0 8.0 7.0 8.5 8.5 8.0 8.5 9.0 9.5 8.5 9.0 8.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	8.5 8.0 8.5 9.5 9.5 11.0 12.0 11.5 10.5 10.0 11.5 10.0 10.5 11.0 10.5 11.0 10.5 11.0 10.5 11.0 10.5	JULY 7.5 7.0 7.5 8.0 8.5 8.5 9.0 10.0 8.5 8.5 8.5 8.5 8.5 8.0 9.0 9.0 9.5 9.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8	8.0 7.5 7.5 8.5 8.5 9.5 10.0 10.5 10.5 9.0 9.0 10.0 9.0 8.5 9.0 9.5 9.5 9.5 9.5 9.5 9.5	10.0 10.0 9.5 10.5 11.0 10.5 9.0 9.0 9.0 9.0 8.0 9.0 8.0 7.5 6.0 8.5 9.0 9.0 8.5 9.0	8.0 8.0 7.0 7.5 8.5 9.0 7.5 8.0 7.5 8.0 6.0 7.0 6.0 4.0 6.0 8.5 8.5 9.0 7.5	9.0 9.0 9.0 8.5 9.0 8.5 9.0 8.0 8.5 7.5 7.5 7.0 6.0 5.0 7.5 8.5 9.0	9.0 9.0 9.0 9.0 9.0 9.0 9.5 9.0 8.5 8.5 8.5 8.5 8.0 8.0 8.0 8.0 8.0 8.5 8.5 8.5 8.5	8.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.5 8.5 8.5 8.5 8.5 8.0 8.0 8.0 8.0 7.5 8.0 8.0 7.5 8.0 7.5 7.0 7.0 8.5 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	9.0 9.0 9.5 9.5 9.5 8.0 10.5 10.0 9.0 11.0 11.0 11.0 8.5 10.0 8.5 10.0 11.0 11.0 10.5 10.0 11.0 10.5 10.0 10.0 11.0 10.	JUNE 6.5 7.0 7.5 7.0 7.5 6.5 8.0 7.5 7.5 8.5 8.7 7.5 8.5 8.7 7.5 8.5 8.6 8.5 8.6 8.5 8.6 8.5 8.5	7.5 8.0 8.0 8.0 7.5 8.5 8.0 8.5 9.0 10.5 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	8.5 8.0 8.5 9.5 9.5 11.0 12.0 11.5 10.5 10.5 10.0 11.0 10.0 9.5 10.5 11.0 11.0 10.0 11.0 10.5	JULY 7.5 7.0 7.5 8.0 8.5 8.5 9.0 10.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	8.0 7.5 7.5 8.5 8.5 9.5 10.0 10.5 10.5 9.0 9.0 10.0 9.0 8.5 9.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	10.0 10.0 9.5 10.5 11.0 10.5 9.0 9.0 9.0 9.0 8.0 9.0 8.0 9.0 8.5 9.0 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.0 9.0 8.0 9.5	8.0 8.0 7.0 7.5 8.5 9.0 8.0 7.5 8.0 6.0 7.5 8.0 6.0 7.5 8.0 6.0 7.5 8.0 6.0 7.5 6.0	9.0 9.0 9.0 8.5 9.0 8.5 9.0 8.0 8.5 7.5 7.5 7.5 7.5 7.5 9.0 8.5 9.0 7.5 8.5 9.0	9.0 9.0 9.0 9.0 9.0 9.0 9.0 8.5 8.5 8.5 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	8.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.5 8.5 8.5 8.5 8.5 8.5 8.0 8.0 7.5 8.0 8.0 7.5 7.5 7.0 7.0 8.5 8.5
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	9.0 9.0 9.5 9.0 9.5 9.0 10.5 10.0 9.0 11.0 11.5 11.0 9.5 10.0 8.5 9.5	JUNE 6.5 7.0 7.5 7.0 7.5 6.5 8.0 7.5 7.5 8.5 8.5 7.0 8.5 8.0 7.5 8.5 8.6 8.6 8.6 8.6 8.6 8.6 8.7 8.6 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	7.5 8.0 8.0 8.0 8.0 7.0 8.5 8.0 8.5 8.0 9.0 9.5 8.5 8.5 9.0 8.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9	8.5 8.0 8.5 9.5 9.5 9.5 11.0 12.0 11.5 10.5 10.5 10.0 11.0 11.0 11.0 11	JULY 7.5 7.0 7.5 8.0 8.5 8.5 9.0 10.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	8.0 7.5 7.5 8.5 8.5 9.5 10.0 10.5 10.5 9.0 9.0 8.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9	10.0 10.0 9.5 10.5 11.0 10.5 9.0 9.0 9.0 9.0 8.0 9.0 8.0 9.0 8.0 9.0 8.0 9.0 8.0 9.0 8.0 9.0 8.0 9.0 8.0 9.0 8.0 9.5	8.0 8.0 7.0 7.5 8.5 9.0 7.5 8.0 7.5 8.0 6.0 7.0 6.0 8.0 8.0 7.0 6.0 7.0 6.0 7.5 8.5	9.0 9.0 9.0 8.5 9.0 9.5 9.0 8.0 8.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 8.5 9.0	9.0 9.0 9.0 9.0 9.0 9.5 9.0 8.5 8.5 8.5 8.5 8.0 8.0 8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	8.0 8.0 8.0 7.5 7.5 8.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.5 8.0	8.5 8.5 8.5 8.5 8.5 8.5 8.0 8.0 8.0 7.5 8.0 8.0 7.5 8.0 7.5 7.0 7.5 7.0 7.5 7.0 8.0 8.0 8.0

15050000 GOLD CREEK AT JUNEAU

LOCATION.--Lat $58^{\circ}18'25''$, long $134^{\circ}24'05''$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec. 23, T. 41 S., R. 67 E. (Juneau B-2 SE quad), City and Borough of Juneau, Hydrologic Unit 19010301, on left bank, 150 ft upstream from Alaska Electric Light and Power Company dam and diversion, 0.5 mi northeast of Juneau, and 1 mi upstream from mouth at Gastineau Channel.

DRAINAGE AREA. -- 9.76 mi².

Date

PERIOD OF RECORD. -- July 1916 to December 1920 (monthly discharge only), October 1946 to September 1948, October 1949 to September 1982. Annual maximums, water years 1991, 1994, 1996. October 1997 to current year.

REVISED RECORDS.--WSP 1372: Drainage area.

Time

GAGE.--Water-stage recorder. Elevation of gage is 245 ft above sea level, from topographic map. July 20, 1916 to December 31, 1920, at site 50 ft upstream at different datum. September 11, 1946 to September 30, 1948, nonrecording gage at site 0.7 mi downstream at different datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Water may be diverted about 0.5 mi upstream and three wells, located upstream from the gage in Last Chance Basin, pump water for municipal use and may decrease flow during winter periods.

Date

Time

Gage

height

(ft)

Discharge

(ft³/s)

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 900 ft^3/s and maximum (*):

Gage

height

(ft)

Discharge

 (ft^3/s)

					. ,							
	Aug 0	7 1545	5	1270	5.07		Aug 2	23 00	015	1230	5.00	
	_			.1550	+ = = 0		3					
	Aug 12	2 1645	, ,	* 1570	*5.58							
		DISCHAR	RGE. CUE	SIC FEET E	PER SECOND	. WATER	YEAR OCTOB	ER 2001 T	O SEPTEM	BER 2002		
		21001111	102, 002	,10 1221 .		LY MEAN				DEN EUUE		
					DAI	DI PIDAN	VALOES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
DAI	OCI	NOV	DEC	UAIN	LED	MAR	APK	MAI	JUN	JUL	AUG	SEP
1	383	43	16	22	13	10	5.5	33	319	313	192	276
2	283	68	16	20	13	19	e5.0	31	325	389	187	201
3	171	71	15	19	13	20	e4.7	26	323	298	166	146
4	128	56	15	18	12	14	e4.4	23	427	316	167	106
5	102	42	15	17	12	e12	e4.1	20	522	336	160	76
5	102	42	15	1/	12	612	64.1	20	522	336	100	76
6	135	34	15	35	12	e11	e3.9	19	379	330	148	64
7	104	30	17	52	11	e10	e3.4	18	286	298	748	209
8	111	32	20	76	11	e9.2	e3.4	18	298	259	834	173
9	197	52	17	102	11		e3.3	19	366		486	144
10	281	45	16	123	15	e8.6 e8.1	e3.5	23	422	333 322	332	191
10	201	45	10	123	15	60.1	es.5	23	422	322	332	191
11	236	36	16	79	13	e7.6	e3.9	35	341	317	344	195
12	269	30	15	60	23	7.1	e4.3	50	260	280	811	132
13	176	26	15	47	17	5.9	e4.7	87	248	218	426	88
14	136	27	14	37	18	5.3	e5.0	114	330	284	266	76
15	108	26	14	37	32	6.0	e5.4	96	407	276	184	133
1.0	120	2.0	1.0	2.4	4.1	1	6 0	101	200	226	122	101
16	138	28	13	34	41	e5.4	6.0	121	388	236	133	131
17	178	28	12	30	21	e5.6	6.3	150	362	289	103	156
18	364	26	13	29	17	e5.8	6.9	145	329	258	114	384
19	336	24	12	28	15	5.6	7.5	206	252	219	124	248
20	199	24	12	24	14	5.5	11	322	240	219	176	209
0.1	1.65	0.5	1.0	0.1	1.0		1.0	200	01.5	212	0.01	200
21	165	25	12	21	13	5.5	12	398	217	313	901	308
22	138	32	12	19	12	5.7	11	309	211	342	547	167
23	107	38	19	19	11	5.1	11	286	258	344	598	124
24	89	30	110	17	13	5.5	11	246	290	585	288	122
25	73	24	92	16	10	5.8	12	247	427	395	226	132
26	г.о	21	- 7	-15	11	6.0	10	260	415	247	222	100
26 27	58 53	21	57	e15	11	6.9 6.9	12	268	415	347	322	122 171
		20	42	e14	9.6		12	281	325	382	597	
28	46	19	49	e14	9.7	6.9	14	379	277	301	551	118
29	59	18	47	14		6.5	17	458	275	269	505	74
30	44	17	31	15		6.1	23	444	266	224	382	47
31	37		25	14		5.9		317		208	365	
TOTAL	4904	992	794	1067	423.3	248.5	237.0	5189	9783	9500	11383	4723
MEAN	158.2	33.07	794 25.61	34.42	423.3 15.12	248.5 8.016	7.900	167.4	326.1	306.5	367.2	4723 157.4
MAX	383	71	110	123	41	20	23	458	522	585	901	384
MIN	37	17	12	14	9.6	5.1	3.2	18	211	208	103	47
MED	136	29	16	22	13	6.5	5.7	121	323	301	322	139
AC-FT	9730	1970	1570	2120	840	493	470	10290	19400	18840	22580	9370
STATIST	ICS OF M	MONTHLY MEA	N DATA 1	FOR WATER	YEARS 191	6 - 2002	, BY WATER	YEAR (WY) #			
MEAN	157.7	82.17	36.51	22.06	14.49	12.50	24.28	126.1	226.8	228.6	192.3	183.2
MAX	349	206	202	170	81.4	137	91.7	220	326	364	374	302
(WY)	2000	1947	2000	1981	1977	1947	1947	1948	2002	1975	1961	1999
MIN	62.6	18.1	6.22	1.71	0.48	0.055	3.78	64.5	134	130	85.4	73.7
(WY)	1952	1976	1956	1974	1972	1974	1954	1920	1981	1982	1968	1978

e Estimated

15050000 GOLD CREEK AT JUNEAU—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1916 - 2002#
ANNUAL TOTAL	37387.9	49243.8	
ANNUAL MEAN	102.4	134.9	109.4
HIGHEST ANNUAL MEAN			155 2000
LOWEST ANNUAL MEAN			77.5 1951
HIGHEST DAILY MEAN	600 Sep 13	901 Aug 21	1830 Aug 12 1961
LOWEST DAILY MEAN	4.7 Apr 2	a3.2 Apr 9	b0.00 Mar 4 1951
ANNUAL SEVEN-DAY MINIMUM	5.2 Apr 10	3.6 Apr 5	0.00 Mar 4 1951
MAXIMUM PEAK FLOW	-	1570 Aug 12	2950 Sep 25 1996
MAXIMUM PEAK STAGE		5.58 Aug 12	8.14 Sep 25 1996
INSTANTANEOUS LOW FLOW		c	0.00 Mar 4 1951
ANNUAL RUNOFF (AC-FT)	74160	97680	79260
10 PERCENT EXCEEDS	243	344	265
50 PERCENT EXCEEDS	49	49	67
90 PERCENT EXCEEDS	11	6.9	5.0

[#] See Period of Record; partial years used in monthly statistics a No flow at times during some winters b Not determined, see lowest daily discharge

15051010 SALMON CREEK NEAR JUNEAU

LOCATION.--Lat $58^{\circ}19'57''$, long $134^{\circ}27'57''$, in NE^{1}_{4} SE^{1}_{4} NW^{1}_{4} sec. 9, T. 41 S., R. 67 E. (Juneau B-2 SE quad), City and Borough of Juneau, Hydrologic Unit 19010301, in Tongass National Forest, on left bank, about 0.3 mi upstream from mouth and 2.5 mi northwest of Juneau.

DRAINAGE AREA --9 69 mi²

PERIOD OF RECORD.--October 1990 to current year. Daily discharge record previously collected 0.5 mi upstream at station number 15051008 "above canyon mouth" during water-years 1982-90. Drainage area, 9.50 mi².

REVISED RECORDS.--WDR AK 93-1: 1991 (m).

GAGE.--Water-stage recorder. Elevation of gage is 30 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges which are poor. Flow regulated by Salmon Creek Reservoir 2.5 mi upstream. Diversions upstream for off-stream hydropower plant; outflow from the plant goes into Gastineau Channel and is not included in the discharge records. Diversions upstream into Twin Lakes via a pipeline are also not included in the discharge records.

D	ISCHARGE, CUBIC FEET F	PER SECOND, WATER DAILY MEAN		R 2001 TO	SEPTEM	BER 2002		
DAY OCT	NOV DEC JAN	FEB MA	R APR	MAY	JUN	JUL	AUG	SEP
1 76 e41 2 61 e57 3 44 e50 4 36 e40 5 32 e33	e7.8 16 e7.8 15 e8.3 14	e8.4 11 e8.6 34 e8.5 25 e8.6 14 e8.6 13	8.4 8.5	22 18 13 10 9.3	60 63 63 101 114	49 67 53 49 46	29 29 26 25 24	65 55 43 38 34
6 37 e25 7 31 e22 8 34 e66 9 56 e53 10 69 e45	14 27 16 31 11 36	e8.7 e14 e8.7 e13 e9.0 e12 e9.2 e11 e10 e11	8.1 8.0 8.0	8.9 8.8 9.5 11	78 60 62 77 81	46 42 41 47 41	22 122 167 99 66	31 54 49 42 45
11 59 e36 12 77 e27 13 49 e23 14 37 e27 15 32 e33	9.9 22 9.2 19 8.5 18	12 e10 37 e9.5 16 e9.0 23 e8.8 44 e8.6	8.3 8.4	23 28 36 34 26	60 48 49 61 73	43 38 37 47 48	63 162 93 64 53	54 43 37 34 42
16 48 e32 17 62 e29 18 93 e25 19 94 e22 20 55 e18	e8.1 17 e8.0 18 e7.9 18	44 e8.4 20 e8.2 15 e8.0 13 e8.0 12 e8.5	8.5 8.6 9.2	27 36 37 53 72	70 64 56 43 43	41 43 39 32 32	42 37 37 36 38	41 41 79 67 59
21 54 e17 22 46 e25 23 e35 e29 24 e30 e21 25 e29 e17	10 e11 23 e10 60 e9.6	11 e8.2 e10 e8.2 e9.5 e8.4 e9.0 e8.7 e9.0 e9.0	10 11 10	81 64 60 49 50	39 38 46 52 74	43 48 57 98 61	176 109 127 65 57	79 55 44 38 39
26 e28 e15 27 e28 e13 28 e60 e11 29 e55 e9 30 e40 e8 31 e32	33 e8.8 30 e8.7 29 e8.5 .3 27 e8.4 .5 22 e8.2 19 e8.6	e9.0 e9.0 e9.2 11 e9.5 10 e9.8 9.7 9.0 8.7	10 10 11 13 19	56 59 86 92 79 55	71 52 43 45 44	54 54 46 39 35 32	74 136 117 105 81 79	38 46 36 31 28
TOTAL 1519 869 MEAN 49.00 28. MAX 94 MIN 28 8 AC-FT 3010 17	.8 494.7 527.9 99 15.96 17.03 66 60 39 .5 7.8 8.2 30 981 1050	401.3 345.4 14.33 11.14 44 34 8.4 8.0 796 685	285.6 9.520 19 7.7 566	1226.5 39.56 92 8.8 2430	1830 61.00 114 38 3630		2360 76.13 176 22 4680	1387 46.23 79 28 2750
MEAN 62.88 29. MAX 131 76 (WY) 1999 19 MIN 36.2 16	.9 69.5 33.5 94 2000 1992	YEARS 1991 - 200 21.77 16.81 45.0 39.0 1992 1992 9.16 9.38 1999 1997	23.76 38.6 1994 9.52	49.26 71.3 1992 29.7	56.51	69.0 1997 22.7	39.68 76.1 2002 18.2 1994	61.91 108 1991 41.0 1997
SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	FOR 2001 CALF 11866.4 32.5	1 51	12695.2 34.78			37.82 48.6		1992
HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MIN MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FI ANNUAL RUNOFF (AC-FT 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	.OW	7 Mar 24 2 Mar 20	176 7.7 8.1 330 3.03 b5.0 25180 68 29 8.5	Aug 21 Apr 15 Apr 10 Aug 12 Aug 12 Apr 15		29.7 954 5.7 6.8 1930 a4.65 27400 73 28 9.9	Oct 20 Mar 24 Mar 4 Sep 25 Sep 25	1998 2001 1998 1996 1996

See Period of Record

From flood marks Apr. 15 and 16 Estimated

15052475 JORDAN CREEK BELOW EGAN DRIVE NEAR AUKE BAY

LOCATION.--Lat $58^{\circ}21'59''$, long $134^{\circ}34'34''$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ $SE^{1}/_{4}$ sec. 30, T. 40 S., R. 66 (Juneau B-2 SW quad), Hydrologic Unit 19010301, City and Borough of Juneau on right bank at downstream side of footbridge, 50 ft downstream from Egan Drive, 0.4 mi southeast of intersection of Egan Drive and Mendenhall Loop Road and 3 mi east of Auke Bay Post Office.

DRAINAGE AREA.--2.60 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1997 to current year. Prior to October 1996, published as miscellaneous site 15052482 Jordan Creek at Trout Street Bridge near Auke Bay, at site about 500 ft downstream at different datum.

GAGE.--Water-stage recorder. Datum of gage is 19.80 ft above sea level, determined by levels survey.

REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES telemetry at station.

EXTEREMES OUTSIDE PERIOD OF DAILY RECORD.--Flood of September 25, 1996, reached a stage of 4.34 ft, site and datum then in use, from floodmarks, discharge 140 ft³/s; no flow observed March 2, 1989, March 5, 1996, and January 15, 1997.

		DISCH	ARGE, CUI	BIC FEET I	PER SECOND	, WATER :		BER 2001 7	TO SEPTEM	BER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	16 17 9.9 7.9	9.7 14 14 11 8.6	e1.8 e1.7 e1.6 e1.9 e2.1	2.4 2.2 2.0 1.9	e1.4 e1.5 e2.3 3.9 2.4	e2.9 10 11 5.4 e5.0	e1.6 e1.2 e0.93 e0.63 e0.45	3.6 2.7 1.4 1.1 0.99	5.9 5.8 5.3 13	2.0 4.3 5.6 4.1 3.6	2.4 2.0 1.8 1.5	25 27 16 13 11
6 7 8 9 10	10 7.9 9.4 13	7.5 6.8 7.0 20	e1.8 e3.3 14 11 e8.4	3.9 4.6 6.6 6.1 6.7	1.3 e1.2 e1.1 e1.0 6.2	e4.2 e3.8 e3.3 e2.9 e2.5	e0.30 e0.18 e0.00 e0.00	0.95 0.90 0.89 1.2 6.9	9.2 6.8 6.1 6.9	3.3 2.7 2.4 2.5 2.6	1.2 8.0 23 19 9.2	9.4 16 13 11
11 12 13 14 15	10 14 10 9.5 8.5	9.1 7.7 7.1 7.6 7.3	e5.8 e3.9 2.7 1.5	4.8 4.2 4.3 4.3 5.2	6.0 15 5.0 6.6 12	e2.1 e1.9 e1.7 e1.7	e0.00 e0.00 e0.00 e0.00	7.1 7.5 9.6 9.2 6.0	7.9 5.8 5.1 4.7 4.4	2.7 2.3 2.4 3.2 3.0	7.7 43 41 17 13	16 11 9.1 8.2 9.1
16 17 18 19 20	19 19 23 41 32	7.3 7.2 6.3 5.8 5.3	e1.2 e1.1 e0.98 e0.95 e0.92	6.0 4.4 5.8 6.1 5.0	19 6.9 5.2 4.5 4.1	e1.6 e1.5 e1.5 e1.4	e0.00 e0.00 e0.00 0.48 2.1	6.3 8.7 8.3 9.3	4.0 3.5 3.2 3.0 2.9	2.3 2.4 2.1 1.8 1.5	10 8.6 7.9 7.2 7.3	8.2 9.6 23 21 17
21 22 23 24 25	34 27 20 18 15	5.0 6.1 7.8 5.4 4.9	e0.91 e0.90 e4.0 15	e4.7 e3.2 e2.5 e2.1 e1.9	3.7 e3.7 e3.5 e3.2 e3.0	e1.3 e1.4 e1.5 e1.7	2.6 1.4 0.97 0.86 0.78	12 11 12 8.8 8.1	2.6 2.3 2.1 2.0 2.8	2.0 3.3 2.7 7.6 6.8	18 14 19 12 10	23 17 12 10 9.9
26 27 28 29 30 31	13 12 12 18 12 9.6	e4.2 e3.3 e2.8 e2.5 e2.1	5.4 4.0 4.4 4.2 3.3 2.7	e1.8 e1.7 e1.6 e1.5 e1.5	e2.9 e2.8 e2.8	e2.1 e2.5 e2.9 e4.0 e3.5 e2.4	0.72 0.73 0.86 1.8 3.0	8.8 7.8 8.4 8.6 7.0 5.8	3.2 2.7 2.3 1.9 2.0	4.5 4.1 3.9 3.6 3.0 2.6	14 24 36 29 27 30	9.9 12 8.8 6.7 4.6
TOTAL MEAN MAX MIN AC-FT CFSM IN.	484.7 15.64 41 7.0 961 6.01 6.93	225.4 7.513 20 2.1 447 2.89 3.22	122.96 3.966 15 0.90 244 1.53 1.76	112.2 3.619 6.7 1.4 223 1.39 1.61	132.2 4.721 19 1.0 262 1.82 1.89	92.6 2.987 11 1.3 184 1.15 1.32	21.59 0.720 3.0 0.00 43 0.28 0.31	201.93 6.514 12 0.89 401 2.51 2.89	156.4 5.213 19 1.9 310 2.01 2.24	100.9 3.255 7.6 1.5 200 1.25 1.44	465.1 15.00 43 1.2 923 5.77 6.65	397.5 13.25 27 4.6 788 5.10 5.69
STATIS'	TICS OF M	ONTHLY ME	EAN DATA	FOR WATER	YEARS 199	7 - 2002	, BY WATE	R YEAR (WY) #			
MEAN MAX (WY) MIN (WY)	16.61 22.2 1999 11.1 1998	7.999 11.2 2000 4.21 1999	10.49 20.8 2000 2.67 1999	6.134 11.3 1999 3.52 1998	2.647 5.25 2001 0.47 1999	3.052 4.74 2001 1.62 1998	4.937 12.1 1999 0.72 2002	7.790 13.7 1999 3.71 1998	5.126 10.2 1999 1.63 1998	5.404 8.49 2000 3.25 2002	7.697 15.0 2002 1.79 2001	13.54 18.7 1999 7.68 1997

[#] See Period of Record; partial year used in monthly statistics

e Estimated

15052475 JORDAN CREEK BELOW EGAN DRIVE NEAR AUKE BAY—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1997 - 2002#
ANNUAL TOTAL	2155.83	2513.48	
ANNUAL MEAN	5.906	6.886	7.757
HIGHEST ANNUAL MEAN			9.87 2000
LOWEST ANNUAL MEAN			5.95 2001
HIGHEST DAILY MEAN	41 Oct 19	43 Aug 12	129 Dec 28 1999
LOWEST DAILY MEAN	0.57 Aug 17	a0.00 Apr 8	b0.00 Mar 3 1999
ANNUAL SEVEN-DAY MINIMUM	0.78 Aug 12	0.00 Apr 8	0.00 Mar 3 1999
MAXIMUM PEAK FLOW		73 Aug 12	149 Dec 28 1999
MAXIMUM PEAK STAGE		6.09 Aug 12	7.59 Dec 28 1999
INSTANTANEOUS LOW FLOW		a	b0.00 Mar 3 1999
ANNUAL RUNOFF (AC-FT)	4280	4990	5620
ANNUAL RUNOFF (CFSM)	2.27	2.65	2.98
ANNUAL RUNOFF (INCHES)	30.84	35.96	40.54
10 PERCENT EXCEEDS	11	16	17
50 PERCENT EXCEEDS	4.7	4.5	5.2
90 PERCENT EXCEEDS	1.5	1.2	1.2

[#] See Period of Record; partial year used in monthly statistics a Not determined, see lowest daily mean b Mar. 3 to Mar. 9, 1999 and Apr. 8 to Apr. 18, 2002

15052475 JORDAN CREEK BELOW EGAN DRIVE NEAR AUKE BAY—Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1997 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: July 1999 to current year.

INSTRUMENTATION. -- Electronic water-temperature recorder with 15-minute recording interval started on July 15, 1999.

REMARKS.-- No record October 1 to January 4, April 6 to 19, and May 18 to June 30 due to recorder malfunction, faulty probe, or water level below probe. Partial record on May 17 and July 1. Records represent water temperature at the sensor within 0.5°C.

EXTREMES FOR PERIOD OF RECORD.-- WATER TEMPERATURE: Maximum recorded, 13.0° C, July 1, 2001, but may have been higher during period of missing record; minimum, 0°C, many days during winters.

EXTREMES FOR CURRENT PERIOD. --

WATER TEMPERATURE: Maximum recorded, 12.0°C, July 19-20; minimum, 0°C, many days during winter.

WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	OVEMBER		DE	CEMBER			JANUARY	
1												
2												
3												
4												
5										2.0	1.0	1.5
,										2.0	1.0	1.5
6										2.5	1.5	2.0
7										2.0	1.5	2.0
8										2.0	1.0	1.5
9										2.0	2.0	2.0
10										2.5	1.5	2.0
11										2.5	2.0	2.5
12										2.0	2.0	2.0
13										2.0	2.0	2.0
14										2.5	2.0	2.0
15										2.5	2.0	2.5
16										2.0	2.0	2.0
17										2.0	1.5	2.0
18										2.0	1.5	2.0
19										2.5	2.0	2.0
20										2.0	1.5	2.0
21										1.5	0.0	0.0
22										0.0	0.0	0.0
23										0.0	0.0	0.0
24										0.0	0.0	0.0
25										0.0	0.0	0.0
26										0.0	0.0	0.0
27										0.0	0.0	0.0
28										0.0	0.0	0.0
29										0.0	0.0	0.0
30										0.0	0.0	0.0
31										0.0	0.0	0.0
											0.0	0.0
MONTH												

SOUTHEAST ALASKA

15052475 JORDAN CREEK BELOW EGAN DRIVE NEAR AUKE BAY—Continued

WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

		WAIER	TEMPERATURE,	111 (1	JEGKEES C), WAIER	YEAR OCTO	BER ZUUI	TO SEPT.	EMBER 2002		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
	0 0	0 0	0.0	1 5	1.0	1 5	0 0	0 0	0 0	4 5	0 5	2 5
1 2	0.0	0.0	0.0	1.5	1.0	1.5	0.0	0.0	0.0	4.5 4.5	2.5	3.5 3.0
3	0.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	4.0	1.0	2.5
4 5	0.0	0.0	0.0	0.5	0.0	0.5	0.0	0.0	0.0	4.5	1.5 1.0	2.5 2.5
6 7	1.0	0.0	0.5 0.0	0.0	0.0	0.0				5.0 4.5	1.0	3.0 3.5
8	0.0	0.0	0.0	0.0	0.0	0.0				6.5	2.0	4.0
9 10	0.0	0.0	0.0	0.0	0.0	0.0				5.5 4.0	4.0	4.5 3.0
10	0.0	0.0	0.0	0.0	0.0	0.0				4.0	2.5	
11	0.0	0.0	0.0	0.0	0.0	0.0				4.0	2.0	3.0
12 13	0.0	0.0	0.0 0.5	0.0	0.0	0.0				4.5 4.5	2.5	3.5 4.0
14	1.0	0.5	0.5	0.0	0.0	0.0				5.0	3.0	4.0
15	1.0	0.5	0.5	0.0	0.0	0.0				6.5	3.5	5.0
16	1.0	0.0	0.5	0.0	0.0	0.0				8.5	4.0	6.0
17 18	1.5 2.0	1.0 1.0	1.0 1.5	0.0	0.0	0.0					4.0	
19	2.0	1.5		0.0	0.0	0.0						
20	1.5	1.0	1.5	0.0	0.0	0.0	3.0	1.0	2.0			
21	1.5	0.5	1.0	0.0	0.0	0.0	2.0	0.5	1.0			
22	0.5	0.0	0.0	0.0	0.0	0.0	4.0	0.5	2.0			
23 24	0.0	0.0	0.0	0.0	0.0	0.0	5.0 4.5	1.5 2.0	3.0			
25	0.0	0.0	0.0	0.0	0.0	0.0	5.0	1.0	2.5			
26	0.0	0.0	0.0	0.0	0.0	0.0	4.5	0.5	2.5			
27	0.0	0.0	0.0	0.0	0.0	0.0	6.0	1.0	3.0			
28 29	1.0	0.0	0.5	0.0	0.0	0.0	6.0 5.5	2.0	3.5 3.5			
30				0.0	0.0	0.0	5.5	1.5	3.5			
31				0.5	0.0	0.0						
MONTH	2.0	0.0	0.3	1.5	0.0	0.1						
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX		MEAN	MAX		MEAN			MEAN			
		JUNE			JULY			AUGUST		S	EPTEMBE	IR.
DAY 1 2	MAX 		MEAN	MAX 9.0 9.0	JULY		11.0		MEAN 10.0 10.5			R 8.5
1 2 3		JUNE 		9.0 9.0 8.5	JULY 8.0 7.5	 8.5 8.0	11.0 11.5 11.5	AUGUST 8.5 9.5 9.0	10.0 10.5 10.0	9.5 9.0 9.0	8.5 8.0 8.0	8.5 8.5 8.5
1 2 3 4		JUNE 		9.0 9.0 8.5 8.5	JULY 8.0 7.5 7.5	 8.5 8.0 8.0	11.0 11.5 11.5 11.5	8.5 9.5 9.0 8.5	10.0 10.5 10.0 10.0	9.5 9.0 9.0 8.5	8.5 8.0 8.0 7.0	8.5 8.5 8.5 8.0
1 2 3 4 5		JUNE		9.0 9.0 8.5 8.5	JULY 8.0 7.5 7.5 7.5	8.5 8.0 8.0 8.0	11.0 11.5 11.5 11.5	8.5 9.5 9.0 8.5 9.0	10.0 10.5 10.0 10.0	9.5 9.0 9.0 8.5 9.0	8.5 8.0 8.0 7.0 7.5	8.5 8.5 8.5 8.0 8.0
1 2 3 4 5	 	JUNE 		9.0 9.0 8.5 8.5 8.5	JULY 8.0 7.5 7.5 7.5 8.0	8.5 8.0 8.0 8.0	11.0 11.5 11.5 11.5 11.5	AUGUST 8.5 9.5 9.0 8.5 9.0	10.0 10.5 10.0 10.0 10.5	9.5 9.0 9.0 8.5 9.0	8.5 8.0 8.0 7.0 7.5	8.5 8.5 8.5 8.0 8.0
1 2 3 4 5		JUNE		9.0 9.0 8.5 8.5 8.5 10.0	JULY 8.0 7.5 7.5 7.5 8.0 7.5 8.0	8.5 8.0 8.0 8.0 8.0	11.0 11.5 11.5 11.5 11.5 11.5	8.5 9.5 9.0 8.5 9.0	10.0 10.5 10.0 10.5 10.5 11.0 10.5	9.5 9.0 9.0 8.5 9.0 9.0	8.5 8.0 8.0 7.0 7.5 8.0 8.5 8.0	8.5 8.5 8.5 8.0 8.0 8.5 8.5
1 2 3 4 5 6 7 8 9		JUNE		9.0 9.0 8.5 8.5 8.5 10.0 10.5 10.5	JULY 8.0 7.5 7.5 7.5 8.0 7.5 8.0 7.5 8.5 9.5	8.5 8.0 8.0 8.0 8.5 9.0 9.5	11.0 11.5 11.5 11.5 11.5 11.5 11.5	8.5 9.5 9.0 8.5 9.0 10.5 10.0 10.0	10.0 10.5 10.0 10.0 10.5 11.0 10.5 10.0 9.5	9.5 9.0 9.0 8.5 9.0 9.0 8.5 9.0	8.5 8.0 8.0 7.0 7.5 8.0 8.5 8.0	8.5 8.5 8.5 8.0 8.0 8.5 8.5 8.5
1 2 3 4 5 6 7 8 9		JUNE		9.0 9.0 8.5 8.5 8.5 10.0 10.5 10.5 9.5	JULY 8.0 7.5 7.5 7.5 8.0 7.5 8.0 7.5 8.5 9.5	8.5 8.0 8.0 8.0 9.0 9.5 10.0	11.0 11.5 11.5 11.5 11.5 11.5 11.0 10.5 10.0 9.5	8.5 9.5 9.0 8.5 9.0 10.5 10.0 10.0 9.5 9.0	10.0 10.5 10.0 10.0 10.5 11.0 10.5 10.0 9.5 9.0	9.5 9.0 9.0 9.0 8.5 9.0 9.0 8.5 9.0 8.5	8.5 8.0 8.0 7.0 7.5 8.0 8.5 8.0 8.0	8.5 8.5 8.5 8.0 8.0 8.5 8.5 8.5 8.5
1 2 3 4 5 6 7 8 9 10		JUNE		9.0 9.0 8.5 8.5 8.5 10.0 10.5 10.5 9.5	JULY 8.0 7.5 7.5 7.5 8.0 7.5 8.0 7.5 8.0 8.5	8.5 8.0 8.0 8.0 8.5 9.0 9.5 10.0 8.5	11.0 11.5 11.5 11.5 11.5 11.5 11.0 10.5 10.0 9.5	8.5 9.5 9.0 8.5 9.0 10.5 10.0 9.5 9.0	10.0 10.5 10.0 10.0 10.5 11.0 10.5 10.0 9.5 9.0	9.5 9.0 9.0 8.5 9.0 9.0 8.5 9.0 8.5 9.0 8.5	8.5 8.0 8.0 7.0 7.5 8.0 8.5 8.0 8.0 8.0	8.5 8.5 8.0 8.0 8.5 8.5 8.5 8.5
1 2 3 4 5 6 7 8 9		JUNE		9.0 9.0 8.5 8.5 8.5 10.0 10.5 10.5 9.5	JULY 8.0 7.5 7.5 7.5 8.0 7.5 8.0 7.5 8.5 9.5	8.5 8.0 8.0 8.0 9.0 9.5 10.0 8.5	11.0 11.5 11.5 11.5 11.5 11.5 11.0 10.5 10.0 9.5	8.5 9.5 9.0 8.5 9.0 10.5 10.0 10.0 9.5 9.0	10.0 10.5 10.0 10.0 10.5 11.0 10.5 10.0 9.5 9.0	9.5 9.0 9.0 9.0 8.5 9.0 9.0 8.5 9.0 8.5	8.5 8.0 8.0 7.0 7.5 8.0 8.0 8.0 8.0 8.0	8.5 8.5 8.5 8.0 8.0 8.5 8.5 8.5 8.5 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14		JUNE		9.0 9.0 8.5 8.5 8.5 10.0 10.5 10.5 9.5 9.0	JULY 8.0 7.5 7.5 7.5 8.0 7.5 8.0 8.5 8.5 8.5 8.5	8.5 8.0 8.0 8.0 8.5 9.0 9.5 10.0 8.5 9.5 9.5	11.0 11.5 11.5 11.5 11.5 11.5 11.0 10.5 10.0 9.5 9.0 10.5 10.5 9.5	8.5 9.5 9.0 8.5 9.0 10.5 10.0 9.5 9.0 8.5 9.0	10.0 10.5 10.0 10.0 10.5 11.0 10.5 10.0 9.5 9.0	9.5 9.0 9.0 8.5 9.0 9.0 8.5 9.0 8.5 9.0 8.5	8.5 8.0 8.0 7.0 7.5 8.0 8.0 8.0 8.0 8.0	8.5 8.5 8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5
1 2 3 4 5 6 7 8 9 10		JUNE		9.0 9.0 8.5 8.5 8.5 10.0 10.5 10.5 9.5 9.0 10.5 10.5	JULY 8.0 7.5 7.5 7.5 8.0 7.5 8.5 8.5 8.5 8.5	8.5 8.0 8.0 8.0 9.5 10.0 8.5 9.5 9.5 9.5 9.5 9.5	11.0 11.5 11.5 11.5 11.5 11.5 11.0 10.5 10.0 9.5 9.0 10.5 9.5 9.5	8.5 9.5 9.0 8.5 9.0 10.5 10.0 10.0 9.5 9.0 8.5 9.0 8.5	10.0 10.5 10.0 10.5 11.0 10.5 11.0 9.5 9.0 9.0 10.0 9.0 10.0 9.0 8.5	9.5 9.0 9.0 9.0 8.5 9.0 8.5 8.5 9.0 8.5	8.5 8.0 8.0 7.0 7.5 8.0 8.5 8.0 8.0 8.0 8.0	8.5 8.5 8.5 8.0 8.0 8.5 8.5 8.5 8.5 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		JUNE		9.0 9.0 8.5 8.5 8.5 10.0 10.5 10.5 9.5 9.0 10.0 9.0 10.5	JULY 8.0 7.5 7.5 7.5 8.0 7.5 8.5 8.5 8.5 8.5 8.5 9.0	8.5 8.0 8.0 8.0 8.5 9.5 10.0 8.5 9.5 9.5 9.5 9.5 9.5	11.0 11.5 11.5 11.5 11.5 11.5 11.0 10.5 10.0 9.5 9.0 10.5 9.5 9.5 9.5	8.5 9.5 9.0 8.5 9.0 10.5 10.0 9.5 9.0 8.5 9.0 8.5 9.0	10.0 10.5 10.0 10.0 10.5 11.0 10.5 10.0 9.5 9.0 10.0 9.0 8.5	9.5 9.0 9.0 8.5 9.0 8.5 8.5 9.0 8.5 8.5 9.0 8.5 8.5	8.5 8.0 7.0 7.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.5 7.5	8.5 8.5 8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		JUNE		9.0 9.0 8.5 8.5 8.5 10.0 10.5 10.5 9.5 9.0 10.5 10.5	JULY 8.0 7.5 7.5 7.5 8.0 7.5 8.5 9.5 8.5 8.5 8.5 8.5 8.5	8.5 8.0 8.0 8.0 9.5 10.0 8.5 9.5 9.5 9.5 9.5 9.5	11.0 11.5 11.5 11.5 11.5 11.5 11.0 10.5 10.0 9.5 9.0 10.5 9.5 9.5	8.5 9.5 9.0 8.5 9.0 10.5 10.0 10.0 9.5 9.0 8.5 9.0 8.5	10.0 10.5 10.0 10.5 11.0 10.5 11.0 9.5 9.0 9.0 10.0 9.0 10.0 9.0 8.5	9.5 9.0 9.0 8.5 9.0 9.0 8.5 8.5 9.0 8.5 8.5 9.0 8.5	8.5 8.0 7.0 7.5 8.0 8.5 8.0 8.5 8.0 8.0 8.0 7.5 6.5	8.5 8.5 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19		JUNE		9.0 9.0 8.5 8.5 8.5 10.0 10.5 10.5 9.5 10.5 9.0 10.5	JULY 8.0 7.5 7.5 7.5 8.0 7.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 9.0 8.5 9.0	8.5 8.0 8.0 8.0 8.5 9.0 9.5 10.0 8.5 9.5 9.5 9.5 9.5 9.5 9.5	11.0 11.5 11.5 11.5 11.5 11.5 11.0 10.5 10.0 9.5 9.0 10.5 9.5 9.5 9.5 9.5 9.5 9.6 8.5	8.5 9.5 9.0 8.5 9.0 10.5 10.0 9.5 9.0 8.5 9.0 8.5 9.0 7.5 7.5	10.0 10.5 10.0 10.0 10.5 11.0 10.5 10.0 9.5 9.0 10.0 9.0 8.5 8.0 7.5 8.0 8.0	9.5 9.0 9.0 8.5 9.0 8.5 8.5 9.0 8.5 8.5 9.0 8.5 8.5 9.0 8.5 8.5	8.5 8.0 7.0 7.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.5 6.5 7.5 7.5	8.5 8.5 8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18		JUNE		9.0 9.0 8.5 8.5 8.5 10.0 10.5 10.5 9.5 9.0 10.5 10.0 9.0 10.5	JULY 8.0 7.5 7.5 7.5 8.0 7.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 9.0 8.5 9.0	8.5 8.0 8.0 8.0 9.5 9.0 9.5 9.5 9.0 8.5 9.5 9.5	11.0 11.5 11.5 11.5 11.5 11.5 11.0 10.5 10.0 9.5 9.0 10.5 10.5 9.5 9.5 9.5	8.5 9.5 9.0 8.5 9.0 10.5 10.0 10.0 9.5 9.0 8.5 9.0 9.0 8.5	10.0 10.5 10.0 10.0 10.5 11.0 10.5 10.0 9.5 9.0 9.0 10.0 9.0 8.5 8.0 7.5 8.0	9.5 9.0 9.0 8.5 9.0 8.5 8.5 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5	8.5 8.0 8.0 7.0 7.5 8.0 8.5 8.0 8.0 8.0 8.0 7.5 6.5 7.5	8.5 8.5 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21		JUNE		9.0 9.0 8.5 8.5 8.5 10.0 10.5 10.5 9.5 10.5 9.0 10.5 10.5 9.0 11.0	JULY 8.0 7.5 7.5 7.5 8.0 7.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 9.0 8.5 9.0 10.0	8.5 8.0 8.0 8.0 8.5 9.0 9.5 10.0 8.5 9.5 9.5 9.5 9.5 9.5 10.0	11.0 11.5 11.5 11.5 11.5 11.0 10.5 10.0 9.5 9.0 10.5 10.5 9.5 9.0 8.5 8.5 8.5	8.5 9.5 9.0 8.5 9.0 10.5 10.0 9.5 9.0 8.5 9.0 8.5 7.5 7.5 7.5 7.5 8.0	10.0 10.5 10.0 10.0 10.5 11.0 10.5 10.0 9.5 9.0 10.0 9.0 8.5 8.0 7.5 8.0 8.5	9.5 9.0 9.0 8.5 9.0 8.5 8.5 9.0 8.5 8.5 8.0 8.5 8.0 8.5 8.0 8.5	8.5 8.0 7.0 7.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.5 6.5 7.5 7.5 7.5 7.5	8.5 8.5 8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22		JUNE		9.0 9.0 8.5 8.5 8.5 10.0 10.5 10.5 9.5 10.5 9.0 10.5 10.5 10.5 9.0 10.5	JULY	8.5 8.0 8.0 8.0 8.5 9.0 9.5 10.0 8.5 9.5 9.5 9.5 9.5 10.0	11.0 11.5 11.5 11.5 11.5 11.5 11.0 10.5 10.0 9.5 9.0 10.5 10.5 9.5 9.5 9.5 9.5 9.5	8.5 9.5 9.0 8.5 9.0 10.5 10.0 9.5 9.0 8.5 9.0 9.0 8.5 7.5 7.5 7.5 8.0	10.0 10.5 10.0 10.0 10.5 11.0 10.5 11.0 9.5 9.0 9.0 10.0 9.0 8.5 8.0 7.5 8.0 8.5 9.0	9.5 9.0 9.0 8.5 9.0 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 8.0 8.0 8.0 8.0 8.0	8.5 8.0 8.0 7.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5	8.5 8.5 8.5 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24		JUNE		9.0 9.0 8.5 8.5 8.5 10.0 10.5 10.5 9.5 10.5 9.0 10.5 10.5 9.0 11.0 12.0 12.0 11.0 10.5	JULY 8.0 7.5 7.5 7.5 8.0 7.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 9.0 8.5 9.0 10.0	8.5 8.0 8.0 8.0 8.5 9.0 9.5 10.0 8.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	11.0 11.5 11.5 11.5 11.5 11.5 11.0 10.5 10.0 9.5 9.0 10.5 9.5 9.5 9.5 9.5 9.5 8.5 8.5 8.5	8.5 9.5 9.0 8.5 9.0 10.5 10.0 9.5 9.0 8.5 9.0 8.5 7.5 7.5 7.5 7.5 8.0 8.5	10.0 10.5 10.0 10.0 10.5 11.0 10.5 11.0 9.5 9.0 10.0 9.0 8.5 8.0 7.5 8.0 8.5 9.0 9.5 9.0	9.5 9.0 9.0 8.5 9.0 8.5 8.5 9.0 8.5 8.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.5	8.5 8.0 7.0 7.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.5 6.5 7.5 7.5 7.5 7.5 7.5	8.5 8.5 8.5 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23		JUNE		9.0 9.0 8.5 8.5 8.5 10.0 10.5 9.5 9.0 10.5 10.5 9.0 10.5 11.0 12.0 12.0	JULY 8.0 7.5 7.5 7.5 7.5 8.0 7.5 8.5 8.5 8.5 9.0 8.5 8.5 8.5 9.0 9.0 10.0	8.5 8.0 8.0 8.0 9.5 10.0 8.5 9.0 9.5 9.0 8.5 9.0 10.0 10.5 11.0	11.0 11.5 11.5 11.5 11.5 11.5 11.0 10.5 10.5	8.5 9.5 9.0 8.5 9.0 10.5 10.0 10.0 9.5 9.0 8.5 9.0 9.0 8.5 7.5 7.5 7.5 7.5 8.0	10.0 10.5 10.0 10.0 10.5 11.0 10.5 11.0 9.5 9.0 9.0 10.0 10.0 9.5 8.0 8.5 8.0 8.5 9.0 9.5	9.5 9.0 9.0 8.5 9.0 9.0 8.5 8.5 9.0 8.5 8.0 8.5 8.0 8.0 8.0 8.0 8.0	8.5 8.0 7.0 7.5 8.0 8.0 8.0 8.0 8.0 8.0 7.5 6.5 7.5 7.5 7.5 7.5 7.5	8.5 8.5 8.5 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.0 7.0 8.0 7.5 8.0 7.5 8.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26		JUNE		9.0 9.0 8.5 8.5 8.5 10.0 10.5 10.5 9.5 10.5 9.0 10.5 10.5 9.1 10.5 9.5 11.0 12.0 12.0 11.	JULY 8.0 7.5 7.5 7.5 8.0 7.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 9.0 8.5 9.0 10.0 10.0 9.5 9.5	8.5 8.0 8.0 8.0 8.5 9.0 9.5 10.0 8.5 9.5 9.5 9.5 9.5 9.5 10.0 10.5 11.0	11.0 11.5 11.5 11.5 11.5 11.5 11.0 10.5 10.0 9.5 9.0 10.5 9.5 9.5 9.5 9.5 8.5 8.5 8.5 8.5	8.5 9.5 9.0 8.5 9.0 10.5 10.0 9.5 9.0 8.5 9.0 8.5 7.5 7.5 7.5 7.5 8.0 8.5 9.0 8.5	10.0 10.5 10.0 10.0 10.5 11.0 10.5 11.0 9.5 9.0 10.0 9.5 8.5 8.0 7.5 8.0 8.5 9.0 9.5 8.5 8.5	9.5 9.0 8.5 9.0 8.5 8.5 9.0 8.5 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.5 8.0 7.0 7.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5	8.5 8.5 8.5 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27		JUNE		9.0 9.0 8.5 8.5 8.5 10.0 10.5 10.5 9.5 9.0 10.5 10.5 10.5 9.0 11.0 12.0 12.0 11.0 12.0 11.0 10.5 10.5	JULY	8.5 8.0 8.0 8.0 8.5 9.0 9.5 10.0 8.5 9.5 9.5 9.5 9.5 10.0 10.0 10.5 11.0	11.0 11.5 11.5 11.5 11.5 11.0 10.5 10.0 9.5 9.0 10.5 9.5 9.0 8.5 8.5 8.5 9.5 9.5 9.5 9.5	8.5 9.5 9.0 8.5 9.0 10.5 10.0 9.5 9.0 8.5 9.0 9.5 8.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	10.0 10.5 10.0 10.0 10.5 11.0 10.5 11.0 9.5 9.0 9.0 10.0 9.0 8.5 8.0 7.5 8.0 8.5 9.0 9.5 9.0 8.5	9.5 9.0 9.0 8.5 9.0 9.0 8.5 9.0 8.5 9.0 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.5 8.0 7.0 7.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.5 8.5 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 21 22 23 24 25 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27		JUNE		9.0 9.0 8.5 8.5 8.5 10.0 10.5 10.5 9.5 9.0 10.5 10.5 9.0 10.5 11.0 12.0 12.0 12.0 11.0 10.5 11.0 10.5 9.5	JULY 8.0 7.5 7.5 7.5 8.0 7.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 9.0 10.0 10.0 10.0 9.5 9.0 9.5 10.0 9.5 9.0 9.5 8.5	8.5 8.0 8.0 8.0 8.5 9.0 9.5 10.0 8.5 9.5 9.5 9.5 9.5 10.0 10.5 11.0 10.5 10.0 10.5 10.0	11.0 11.5 11.5 11.5 11.5 11.0 10.5 10.0 9.5 9.0 10.5 9.5 9.5 9.5 9.5 8.5 8.5 8.5 8.5 8.5	8.5 9.5 9.0 8.5 9.0 10.5 10.0 9.5 9.0 8.5 9.0 8.5 7.5 7.5 7.5 8.0 8.5 9.0 8.5 9.0	10.0 10.5 10.0 10.0 10.5 11.0 10.5 11.0 9.5 9.0 10.0 9.5 8.5 8.0 7.5 8.0 8.5 9.0 9.5 8.5 8.5 8.5 9.0	\$ 9.5 9.0 8.5 9.0 8.5 9.0 8.5 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.5 8.0 7.0 7.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.5 8.5 8.5 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 20 21 21 21 21 21 21 21 21 21 21 21 21 21		JUNE		9.0 9.0 9.0 8.5 8.5 8.5 10.0 10.5 10.5 9.5 10.5 9.0 10.5 10.5 9.0 10.5 11.0 12.0 11.0 12.0 11.0 10.5 10.5 9.5 10.5 10.5 9.5 10.5 10.5 9.5 10.5 10.5 9.5 10.5 10.5 9.5 10.5 9.5 10.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9	JULY	8.5 8.0 8.0 8.0 8.5 9.0 9.5 10.0 8.5 9.5 9.5 9.5 9.5 10.0 10.5 11.0 10.5 10.0 10.5 10.0 9.5	11.0 11.5 11.5 11.5 11.5 11.0 10.5 10.0 9.5 9.0 10.5 9.5 9.0 8.5 8.5 8.5 8.5 9.5 9.5 10.0 9.5	8.5 9.5 9.0 8.5 9.0 10.5 10.0 9.5 9.0 8.5 9.0 8.5 7.5 7.5 8.0 8.5 9.0 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 8.5 8.5 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	10.0 10.5 10.0 10.0 10.5 11.0 10.5 11.0 9.5 9.0 9.0 10.0 9.0 8.5 8.0 7.5 8.0 8.5 9.0 9.5 9.0 9.5 9.0 9.5 9.0 9.5 9.0 9.5 9.0 9.5 9.0 9.5 9.0 9.5 9.0 9.5 9.0 9.5 9.0 9.5 9.0 9.5 9.0 9.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	9.5 9.0 9.0 8.5 9.0 9.0 8.5 9.0 8.5 9.0 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.5 8.0 7.0 7.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.5 8.5 8.5 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 21 22 23 24 25 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27		JUNE		9.0 9.0 8.5 8.5 8.5 10.0 10.5 10.5 9.5 9.0 10.5 10.5 9.0 10.5 11.0 12.0 12.0 12.0 11.0 10.5 11.0 10.5 9.5	JULY 8.0 7.5 7.5 7.5 8.0 7.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 9.0 10.0 10.0 10.0 9.5 9.0 9.5 10.0 9.5 9.0 9.5 8.5	8.5 8.0 8.0 8.0 8.5 9.0 9.5 10.0 8.5 9.5 9.5 9.5 9.5 10.0 10.5 11.0 10.5 10.0 10.5 10.0	11.0 11.5 11.5 11.5 11.5 11.0 10.5 10.0 9.5 9.0 10.5 9.5 9.5 9.5 9.5 8.5 8.5 8.5 8.5 8.5	8.5 9.5 9.0 8.5 9.0 10.5 10.0 9.5 9.0 8.5 9.0 8.5 7.5 7.5 7.5 8.0 8.5 9.0 8.5 9.0	10.0 10.5 10.0 10.0 10.5 11.0 10.5 11.0 9.5 9.0 10.0 9.5 8.5 8.0 7.5 8.0 8.5 9.0 9.5 8.5 8.5 8.5 9.0	\$ 9.5 9.0 8.5 9.0 8.5 9.0 8.5 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.5 8.0 7.0 7.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.5 8.5 8.5 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5

15052495 NUGGET CREEK ABOVE DIVERSION NEAR AUKE BAY

LOCATION.--Lat $58^{\circ}25'25''$, long $134^{\circ}31'25''$, in $SE^{1}_{/4}$ $SE^{1}_{/4}$ $SW^{1}_{/4}$ sec. 4, T. 40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301, City and Borough of Juneau, on left bank, 1,200 ft upstream from old diversion dam, 3,000 ft upstream from mouth at Mendenhall Lake and 5.2 mi northeast of Auke Bay.

DRAINAGE AREA.-- 15.8 mi^2 .

PERIOD OF RECORD. -- March 2000 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 590 ft above sea level, from topographic map.

REMARKS.--Records fair except estimated daily discharges, which are poor.

		DISCHA	RGE, CUB	IC FEET P			YEAR OCTOBER	R 2001 I	O SEPTEM	BER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	291 307 164 152 136	49 53 52 47 42	e19 e18 e18 e17 e17	33 29 28 26 25	e9.0 e8.9 e8.8 e8.7 e8.6	13 21 22 15 15	e9.2 e8.8 e8.3 e8.0 e7.7	53 49 42 36 31	275 297 299 505 488	353 569 406 426 461	243 226 200 198 202	485 349 259 205 168
6 7 8 9 10	181 124 145 172 178	39 35 37 46 43	19 22 26 21 20	57 68 60 57 60	e8.5 e8.4 e8.2 e8.0 e8.6	15 14 e13 e12 e10	e7.2 e7.1 e7.1 e7.1 e7.4	29 28 28 31 42	354 282 318 434 605	375 315 308 314 291	190 1170 1300 939 642	156 453 283 243 286
11 12 13 14 15	164 207 137 115 93	37 34 32 33 32	20 20 20 19 19	45 38 34 31 30	e9.4 e11 e13 14 22	e9.6 e8.8 e8.4 e8.0 e7.8	e7.6 e7.7 e8.0 e8.5 e9.2	46 60 79 89 83	481 307 292 410 513	283 244 247 378 351	474 1610 1000 598 323	269 219 165 149 205
16 17 18 19 20	116 137 369 273 147	33 33 32 30 33	18 e17 e16 e15 e14	29 27 26 25 23	25 17 15 14 13	e7.5 e7.3 e7.0 e6.8 e6.6	e9.3 e9.5 e9.8 13	98 143 161 254 469	485 448 381 313 318	287 320 285 235 220	225 179 217 236 315	182 238 419 312 310
21 22 23 24 25	147 115 91 79 68	37 47 45 35 25	e13 e12 25 65 58	18 e16 e14 e13 e12	13 12 e11 e10 e9.5	e6.5 e6.4 e6.6 e6.8 e7.0	19 16 15 15	520 352 298 255 276	245 236 278 312 471	291 332 339 667 677	1060 714 863 375 277	284 179 184 182 188
26 27 28 29 30 31	59 60 56 63 52 48	e24 e23 e22 e21 e20	50 43 50 54 43 37	e11 e10 e9.8 e9.6 e9.4 e9.2	e9.5 e9.2 e10 	e8.4 e10 12 11 11 9.9	15 16 20 28 41	288 278 430 473 379 273	484 368 295 288 298	701 600 524 388 285 259	460 835 838 837 589 493	192 269 200 146 114
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	4446 143.4 369 48 137 8820 9.08 10.47	1071 35.70 53 20 35 2120 2.26 2.52	825 26.61 65 12 20 1640 1.68 1.94	883.0 28.48 68 9.2 26 1750 1.80 2.08	323.3 11.55 25 8.0 9.8 641 0.73 0.76	323.4 10.43 22 6.4 9.6 641 0.66 0.76	41 7.1 9.2 749 0.80	5673 183.0 520 28 98 11250 11.6 13.36	11080 369.3 605 236 318 21980 23.4 26.09	11731 378.4 701 220 332 23270 24.0 27.62	17828 575.1 1610 179 474 35360 36.4 41.97	7293 243.1 485 114 212 14470 15.4 17.17
STATIST MEAN MAX (WY) MIN (WY)	TICS OF M 189.5 236 2001 143 2002	69.43 103 2001 35.7 2002	43.69 60.8 2001 26.6 2002	41.71 54.9 2001 28.5 2002	YEARS 2000 24.42 37.3 2001 11.5 2002	- 2002 16.38 22.3 2001 10.4 2002	2, BY WATER Y 20.43 26.9 2000 12.6 2002	TEAR (WY 141.2 183 2002 95.2 2001	407.6 476 2000 369 2002	480.7 586 2000 378 2002	442.8 575 2002 317 2001	336.0 438 2000 243 2002
SUMMAR	Y STATIST	ICS	FOR	2001 CALE	NDAR YEAR		FOR 2002 WAT	ER YEAR		WATER YEAR	S 2000 -	- 2002#
LOWEST HIGHES' LOWEST ANNUAL MAXIMUI MAXIMUI ANNUAL ANNUAL 10 PER 50 PER	MEAN T ANNUAL ANNUAL M T DAILY ME DAILY ME SEVEN-DA M PEAK FL	EAN EAN AN Y MINIMUM OW AGE AC-FT) CFSM) INCHES) EDS EDS		59150 162.1 925 11 12 117300 10.3 139.2 417 59	Sep 13 Apr 1 Mar 28		61854.2 169.5 1610 6.4 6.7 2940 25.57 122700 10.7 145.63 456 52 8.9	Aug 12 Mar 22 Mar 18 Aug 12 Aug 12		173.9 178 169 1610 6.4 6.7 2940 25.57 126000 11.0 149.54 446 68	Aug 12 Mar 22 Mar 18 Aug 12 ' Aug 12	2001 2002 2 2002 2 2002 3 2002 2 2002 2 2002 2 2002

See Period of Record; partial years used in monthly statistics Estimated

SOUTHEAST ALASKA

15052500 MENDENHALL RIVER NEAR AUKE BAY

LOCATION.--Lat $58^{\circ}25'47''$, long $134^{\circ}34'22''$, in $NW^{1}_{/4}$ SE $^{1}_{/4}$ sec. 6, T. 40 S., R. 66 E. (Juneau B-2 NW quad.), Hydrologic Unit 19010301, at the north end of Mendenhall Lake, 1.2 mi north of Mendenhall Lake Outlet and 4.1 mi northeast of Auke Bay, and 7 mi upstream from mouth at Fritz Cove.

DRAINAGE AREA. -- 85.1 mi².

Date

PERIOD OF RECORD.--May 1965 to October 1994, annual maximum, water years 1995-96, October 1996 to current year. Prior to April 15, 1983, at site 1.3 mi southeast at east end of Mendenhall Lake, same datum.

REVISED RECORDS.--WDR AK-95-1: 1981(M)

Time

GAGE.--Water-stage recorder. Elevation of gage is 60 ft above sea level, from topographic map.

Gage

Height

(ft.)

Discharge

 (ft^3/s)

REMARKS.--Records fair except estimated daily discharges, which are poor. Streamflow is augmented and diurnal fluctuations caused by melting from Mendenhall Glacier, which covers two-thirds of the basin. GOES satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--During late summer 1961, flood flows of 27,000 ft³/s were estimated at the mouth of the Mendenhall River. For discussion of this flood, see USGS Hydrologic Atlas HA-259.

Date

Time

Gage

Height

(ft.)

Discharge

 (ft^3/s)

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 4,600 ft^3/s and maximum (*):.

					(10)						(10)	
	Jul 2	6 0200	5	310	6.79		Aug	23	1315	7760	7.96	
	Aug 1	0 0030	8	330	8.20		Aug	29	0100	7440	7.82	
	Aug 13	1515	*10	300	*8.97							
		DISCHARG	E, CUBIO	C FEET 1	PER SECOND, DAIL	WATER Y		BER 2001	TO SEPTEM	BER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MA	/ JUN	JUL	AUG	SEP
1	1730	221	97	124	63	60	38	e110	1720	2490	2800	3640
2	2230	229	89	117	64	75	e36	e100	1660	3280	2860	3210
3	1810	239	86	112	65	107	35	e92	1640	3210	2630	3010
4	1360	236	81	107	62	105	33	e90	1870	2640	2560	2680
5	1240	214	78	104	59	93	32	e90	2240	2920	2620	2110
6	1380	194	75	126	56	80	31	e97	1930	2750	2460	1940
7	1320	178	77	171	53	70	30	92	e1800	2540	3480	2450
8	1110	168	89	211	52	62	30	87	e1900	2620	6370	2610
9	1100	203	88	238	52	56	30	89	e2200	2720	8220	2400
10	1090	205	86	281	58	51	31	107	e2500	2570	7000	1940
11	1060	190	0.1	280	61	48	32	126	2220	2710	4690	2170
11	1020	169	81 82	258	61 77	46	32		2320 1960	2710 2870		2070
12	955	153	79		80			153 187		2450	6300	1590
13				223		42	33		1870		10100	
14 15	817 639	144 141	73	194 178	91	41 38	35	228 239	2070	2560	7510	1260 1460
15	639	141	67	1/0	108	30	38	239	2610	2680	4200	1460
16	575	145	60	174	140	36	37	261	2790	2550	3200	1730
17	601	151	56	154	128	34	37	333	2790	2520	2490	1800
18	955	147	54	146	114	33	38	411	2680	2700	2380	2370
19	1190	140	52	144	101	30	40	524	2280	2660	2400	2600
20	945	136	50	133	93	30	50	813	2190	2520	2630	2390
0.1	000	120	49	115	87	30	67	1000	0000	0500	4200	0000
21 22	889 829	138 153	49	115 103	8 / 77	28	76	1200 1280	2030 1900	2590 3000	4300 5710	2020 1560
23	626	182	52	99	69	28	76 74	1280	2080	3260	7400	1190
24	498	144	92	95	65	29	71			4070	4900	
25	498	e140	136	86	64	30	66	1350 1470	2110 2570	4850	3270	1240 1390
25	424	6140	130	00	04	30	66	14/0	2570	4050	3270	1390
26	379	e130	148	79	65	34	64	1430	3040	4850	3230	1560
27	357	130	148	74	64	41	62	1430	3000	4090	4980	1850
28	318	124	155	73	61	44	64	1510	2690	4300	7100	1950
29	303	115	156	72		44	73	1620	2610	3500	7120	1600
30	268	106	147	70		43	92	1620	2560	2850	5250	1120
31	238		136	66		41		1680		2810	4580	
TOTAL	28256	4965	2766	4407	2129	1529	1407	20099	67610	94130	144740	60910
MEAN	911.5		9.23	142.2	76.04	49.32	46.90	648.4	2254	3036	4669	2030
MAX	2230	239	156	281	140	107	92	1680	3040	4850	10100	3640
MIN	238	106	47	66	52	28	30	87	1640	2450	2380	1120
AC-FT	56050	9850	5490	8740	4220	3030	2790	39870	134100	186700	287100	120800
CFSM	10.7		1.05	1.67	0.89	0.58	0.55	7.62	26.5	35.7	54.9	23.9
IN.	12.35		1.21	1.93	0.93	0.67	0.62	8.79	29.55	41.15	63.27	26.63
CTATTO	TCC OF M	ONTHLY MEAN					ру мулага	יי מגיםע (TV) #			
SIAIISI	LCS OF IV.	ONITE MEAN	DAIA FU	v Matek	IDAKS 1965	- 2002	, DI WAIEK	LIBAR (V	V 1 / #			
MEAN	1338		.55.2	113.5	90.52	91.81	137.8	648.0	1881	3006	3359	2665
MAX	2649	920	526	600	254	379	313	1227	2819	3835	4701	4100
(WY)	1987		2000	1981	1977	1992	1994	1993	1969	1979	1990	1991
MIN	532		40.0	30.8	21.5	22.3	46.9	268	732	1939	2025	1380
(WY)	1969	1986	1984	1969	1969	1974	2002	1985	1985	1985	1985	1984

[#] See Period of Record; partial years used in monthly summary statistics and break in record

e Estimated

15052500 MENDENHALL RIVER NEAR AUKE BAY—Continued

SUMMARY STATISTICS	FOR 2001 CALENDA	R YEAR	FOR 2002 WAT	TER YEAR	WATER YEARS	1965	· -	2002#
ANNUAL TOTAL	394955		432948					
ANNUAL MEAN	1082		1186		1164			
HIGHEST ANNUAL MEAN					1547			1990
LOWEST ANNUAL MEAN					758			1985
HIGHEST DAILY MEAN	6030	Sep 14	10100	Aug 13	13700	Sep	8	1981
LOWEST DAILY MEAN	39	Feb 25	a28	Mar 22	19	Mar	1	1969
ANNUAL SEVEN-DAY MINIMUM	43	Apr 2	29	Mar 19	19	Mar	5	1974
MAXIMUM PEAK FLOW		_	10300	Aug 13	16000	Sep	11	1995
MAXIMUM PEAK STAGE			8.97	Aug 13	b11.18	Sep	11	1995
INSTANTANEOUS LOW FLOW			c28	Mar 22	d19	Mar	1	1969
ANNUAL RUNOFF (AC-FT)	783400		858800		843500			
ANNUAL RUNOFF (CFSM)	12.7		13.9		13.7			
ANNUAL RUNOFF (INCHES)	172.65		189.26		185.90			
10 PERCENT EXCEEDS	3180		2950		3210			
50 PERCENT EXCEEDS	236		205		385			
90 PERCENT EXCEEDS	52		44		48			

[#] See Period of Record; partial years used in monthly summary statistics and break in record
a Mar. 22 and 23
b From floodmarks
C Mar. 22-24
d Mar. 1-3, 1969, and Mar. 7-11, 1974

15052800 MONTANA CREEK NEAR AUKE BAY

LOCATION.--Lat $58^{\circ}23'53''$, long $134^{\circ}36'34''$, in $SE^{1}_{/4}$ $SW^{1}_{/4}$ sec. 13, T. 40 S., R. 65 E. (Juneau B-2 NW quad.), Hydrologic Unit 19010301,On right bank 30 ft upstream from bridge on Mendenhall Loop Road, 1.2 mi upstream from mouth at Mendenhall River, 1.5 mi northeast of Auke Lake, and 3.9 mi downstream from McGinnis Creek.

DRAINAGE AREA.--14.1 mi².

PERIOD OF RECORD. -- August 1965 to September 1975, July 1983 to September 1987, Annual Maximum 1996 to 2000, November 2000 to current year.

WATER-DISCHARGE RECORDS

REVISED RECORDS.--WDR-99-1: 1996-98 (M).

GAGE.--Water-stage recorder. Elevation of gage is 40 ft above sea level, from topographic map.

REMARKS.--Records fair, except estimated daily discharges, which are poor. GOES satellite telemetry at station.

EXTREMES FOR CURRENT YEAR.-- Peak discharges greater than base discharge of 800 ft3/s and maximum (*)

	Date	e Time	D e	ischarge (ft ³ /s)	Gage Height (ft)		Date	e	Time	Discharge (ft ³ /s)	Gage Height (ft)	
	Jun	4 214!	5	870	14.07		Aug :	12	2115	*1170	*14.77	
	Aug	7 181	5	870	14.07		Aug :	23	0400	892	14.13	
		DISCHA	ARGE, C	UBIC FEET		ND, WATER ILY MEAN		BER 2001	1 TO SEPT	EMBER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	199	51	e29	e17	e19	e14	e12	101	208	129	58	209
2	255	93	e28		e19	e14	e12	76	219	331	55	142
3	113	78	e26		e18	e16	e11	50	204	232	50	97
4	87	58	e25		e19	e19	e11	38	401	206	47	74
5	77	47	e24	22	e18	e16	e10	32	369	220	46	62
6	92	41	e23		e17	e14	e10	29	196		46	56
7	75	37	e22		e17	e13	e9.8	29	142		454	224
8	104	40	e23		e16	e13	e9.4	29	145		545	149
9	137	152	e24		e15	e13	e9.2	38	191		323	136
10	131	87	e25	78	e15	e12	e9.1	98	249	104	217	102
11	122	61	e24	51	e14	e12	e9.4	110	168	129	144	163
12	199	45	e23	40	114	e11	e9.7	142	125		619	105
13	123	39	e23	34	84	e11	e9.8	149	121		384	74
14	104	38	e22		94	e11	e10	138	152		157	62
15	87	39	e21		130	e11	e11	97	177		109	125
				= 0	4.5.5							
16	127	60	e19		157	e10	e11	102	163	84	75	105
17	250	72	e18		71	e10	e12	134	145		62	122
18	445	58	e17	44	43	e9.8	e13	132	129	81	74	349
19 20	422 163	44 40	e16 e15	59 44	25 20	e9.7 e9.5	19 62	165 205	107 103	67 74	76 90	222 217
20	103	40	613	44	20	e9.5	02	203	103	74	90	21/
21	298	41	e15	e40	18	e10	81	221	88	92	542	263
22	152	64	e14	e34	e18	e11	48	193	85	115	248	130
23	100	81	e13		e18	e12	33	191	100	95	444	90
24	83	45	e14	e29	e17	e13	29	156	105	217	158	78
25	70	39	e45	e27	e16	e20	28	155	145	174	112	79
26	62	e39	e42	e26	e16	e25	28	167	192	136	151	81
27	58	e38	e40		e15	e30	29	193	136		370	103
28	54	e37	e41		e15	e23	41	269	103		357	76
29	82	e36	e27			e19	68	237	97		360	66
30	62	e32	e21	e20		e16	95	168	99	77	255	54
31	53		e18	e19		e13		132		64	258	
TOTAL	4386	1632	737	1184	1058	441.0	750.4	3976	4864	4100	6886	3815
MEAN	141.5	54.40	23.77	38.19	37.79	14.23	25.01	128.3	162.1	132.3	222.1	127.2
MAX	445	152	45		157	30	95	269	401		619	349
MIN	53	32	13	15	14	9.5	9.1	29	85		46	54
AC-FT	8700	3240	1460		2100	875	1490	7890	9650	8130	13660	7570
CFSM	10.0	3.86	1.69	2.71	2.68	1.01	1.77	9.10	11.5	9.38	15.8	9.02
IN.	11.57	4.31	1.94		2.79	1.16	1.98	10.49	12.83	10.82	18.17	10.07
STATIST	TICS OF	MONTHLY MEA	N DATA	FOR WATER	R YEARS 19	65 - 2002	, BY WATER	YEAR (WY)#			
MEAN	157.0	73.01	44.78		38.98	47.93	52.51	131.6	164.0	147.8	163.6	164.4
MAX	285	138	112		121	195	88.5	185	207	213	246	263
(WY)	1975	1975	1986		1971	1972	1969	1972	1967	1975	1972	1987
MIN	89.7	21.4	15.9		7.52	9.64	25.0	72.6	71.1	52.5	69.2	70.9
(WY)	1969	1986	1972	1974	1972	1974	2002	1984	1971	1971	1968	1984

See Period of Record, partial years used in monthly statistics Estimated

15052800 MONTANA CREEK NEAR AUKE BAY—Continued

SUMMARY STATISTICS	FOR 2001 CALENI	DAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1965 - 2002#
ANNUAL TOTAL	33415		33829.4			
ANNUAL MEAN	91.55		92.68		103.7	
HIGHEST ANNUAL MEAN					131	1975
LOWEST ANNUAL MEAN					80.8	1971
HIGHEST DAILY MEAN	1300	Sep 13	619	Aug 12	1350	Sep 29 1970
LOWEST DAILY MEAN	12	Mar 25	9.1	Apr 10	3.4	Feb 8 1972
ANNUAL SEVEN-DAY MINIMUM	15	Dec 18	9.5	Apr 7	3.5	Jan 13 1974
MAXIMUM PEAK FLOW			1170	Aug 12	3800	Oct 20 1998
MAXIMUM PEAK STAGE			14.77	Aug 12	17.36	Oct 20 1998
INSTANTANEOUS LOW FLOW			a		3.2	Feb 8 1972
ANNUAL RUNOFF (AC-FT)	66280		67100		75150	
ANNUAL RUNOFF (CFSM)	6.49		6.57		7.36	
ANNUAL RUNOFF (INCHES)	88.16		89.25		99.96	
10 PERCENT EXCEEDS	175		208		224	
50 PERCENT EXCEEDS	63		62		77	
90 PERCENT EXCEEDS	20		13		14	

[#] See Period of Record, partial years used in monthly statistics a Not determined, see lowest daily mean

SOUTHEAST ALASKA

15052800 MONTANA CREEK NEAR AUKE BAY—Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.-- Water years 1965-68, 1970-71, 1974-75, 2002

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	STREAM WIDTH (FT) (00004)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
APR 18 MAY	1508	46.6	9.73	17	52	7.3	2.5	770		
07 JUN	1343	51.5	9.96	29	60	7.3	3.0	769	12.9	95
15	1027	55.5	11.07	158	41	7.3	6.0	755	11.9	96

15053200 DUCK CREEK BELOW NANCY STREET NEAR AUKE BAY

LOCATION.--Lat 58°22'31", long 134°34'38", in NW¹/₄ SW¹/₄ NE¹/₄ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 NW), Hydrologic Unit 19010301, City and Borough of Juneau, on right bank, 50 ft south of intersection of Nancy Street and Mendenhall Loop Road, 0.4 mi north of intersection of Egan Drive and Mendenhall Loop Road, and 1.44 mi upstream from mouth.

DRAINAGE AREA. -- 1.30 mi².

PERIOD OF RECORD. -- December 1993 to current year.

GAGE.--Water-stage recorder. Datum of gage is 21.87 ft above sea level, determined by levels survey.

REMARKS.--No estimated daily discharges. Records fair.

		DISCHA	RGE, CU	BIC FEET			YEAR OCTOB	ER 2001 T	O SEPTEM	IBER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	7.7	5.7	0.84	2.5	0.73	2.4	1.5	0.76	1.4	2.1	2.8	10
2	8.3 6.2	8.7 9.4	0.75 0.79	2.4	0.93 0.76	7.9 8.5	1.5 1.5	0.71 0.45	1.5 1.6	2.8	2.6	8.8 7.6
4	5.4	7.5	1.1	2.1	0.82	4.3	1.4	0.45	3.0	3.2	2.5	6.8
5	5.2	5.4	0.86	2.1	0.80	3.5	1.4	0.35	4.4	3.0	2.6	6.0
6 7	5.8 6.3	4.3	1.0	2.9	0.82 0.78	2.7	1.6 1.3	0.28 0.25	3.2 2.8	2.8	2.6 6.7	5.6
8	6.6	3.7	6.1	3.0	0.78	2.2	1.5	0.25	2.8	2.6	12	11 8.9
9	8.2	11	3.2	3.8	0.90	1.8	1.3	0.29	2.5	2.5	10	7.5
10	7.9	7.8	2.5	4.3	2.2	1.8	1.3	0.74	3.4	2.6	7.4	7.2
11 12	7.3 9.0	5.9 4.7	2.3	3.6 3.1	3.1 14	1.8	1.1 1.2	0.75 0.96	2.9 2.8	2.6 2.4	6.8 15	8.6 7.2
13	7.4	3.8	2.7	3.0	7.0	1.8	1.1	1.3	2.6	2.4	13	6.2
14 15	6.9 6.0	3.8 4.2	2.4	2.9 3.0	9.9 13	1.5	1.0	1.3	2.4	2.9 2.8	9.6 8.2	6.1 7.5
16	11	5.2	2.0	3.5	17	1.4	1.00	1.5	2.2	2.6	6.8	7.1
17	12	5.1	2.0	3.1	8.0	1.3	0.94	1.0	2.1	2.6	5.6	9.3
18 19	14 20	4.1	1.9 1.8	3.7 4.1	5.5 4.0	1.4	0.91 0.84	0.75 0.76	2.0 1.9	2.5 2.3	5.5 4.2	14 13
20	14	3.1	1.8	3.8	3.4	1.1	1.3	0.75	2.0	2.2	4.4	12
21	14	2.8	1.8	2.9	3.2	1.1	1.6	0.74	1.9	2.9	8.4	14
22 23	11 8.2	3.3 4.5	1.9 3.6	$\frac{1.1}{1.4}$	2.5 1.9	1.1	1.5 1.5	0.81 0.97	1.9 1.9	3.5 3.3	7.9 9.5	11 8.5
24	7.3	3.1	10	1.3	1.8	1.4	1.6	1.0	1.8	4.2	7.3	7.1
25	6.2	3.0	6.9	1.0	1.8	1.5	1.3	1.0	2.6	4.0	6.8	7.6
26 27	5.6 5.4	2.3 1.5	4.4	0.89 0.86	1.8	3.3	1.0 1.1	1.00	3.0 2.9	3.9 3.9	7.8 11	6.9 7.4
28	5.3	1.3	3.4	0.77	1.9	3.1	0.88	1.2	2.5	3.9	13	5.0
29 30	9.1 7.1	1.1 0.91	3.0	0.73 0.73		2.8	0.91 0.64	1.3	2.2 2.1	3.8 3.4	12 11	4.1 3.4
31	5.4		2.6	0.78		1.6		1.3		2.9	12	
TOTAL	259.8	134.41	85.84	75.36	111.07	74.8	36.72	26.52	72.3	92.4	237.6	245.4
MEAN MAX	8.381 20	4.480 11	2.769 10	2.431 4.3	3.967 17	2.413	1.224	0.855 1.5	2.410	2.981 4.2	7.665 15	8.180 14
MIN	5.2	0.91	0.75	0.73	0.73	1.1	0.64	0.25	1.4	2.1	2.5	3.4
AC-FT CFSM	515 6.45	267 3.45	170 2.13	149 1.87	220 3.05	148 1.86	73 0.94	53 0.66	143 1.85	183 2.29	471 5.90	487 6.29
IN.	7.43	3.85	2.46	2.16	3.18	2.14	1.05	0.76	2.07	2.64	6.80	7.02
STATIST	rics of M	MONTHLY ME	AN DATA	FOR WATER	YEARS 1994	- 2002	2, BY WATER	YEAR (WY) #			
MEAN	9.344	4.859	5.203	2.636	2.374	2.419	2.885	2.796	2.260	2.858	4.161	7.979
MAX (WY)	18.1 2000	10.3 2000	12.2 2000	4.85 2000	3.97 2002	5.08 1994	6.16 1999	4.97 1999	3.47 1999	4.23 1997	7.66 2002	14.5 2000
MIN	5.29	2.36	1.95	0.85	0.79	0.94	1.22	0.86	1.20	1.75	1.31	3.81
(WY)	1998	1996	1996	1997	1999	1995	2002	2002	1998	1995	1994	1997
SUMMARY	Y STATIST	TICS	FOR	2001 CAL	ENDAR YEAR		FOR 2002 W	ATER YEAR		WATER YEA	RS 1994 -	2002#
ANNUAL ANNUAL				1349.	16 696		1452.22			4.1	53	
HIGHEST	r annual			٥.	050		3.3	, ,		6.9	0	2000
	ANNUAL N DAILY N			20	Oct 19		20	Oct 19		3.2 68		1995
LOWEST	DATIV ME	ZΔN		0	75 Dec 2		0.25	5 May 7		0.1	9 Mar 15	2000
ANNUAL	SEVEN-DA I PEAK FI	AY MINIMUM		0.	89 Nov 30		0.32	2 May 3		0.2	6 Mar 10	2000
MAXIMUN	M PEAK ST	TAGE					5.72	2 Feb 16		6.8	0 Dec 28	1999
TMCTAM	M PEAK ST	OM BLOM					5.73 h0 21	3 Oct 19		68 0.1 0.2 80 6.8 a7.5 c0.1 3010	9 Sep 25	1996
ANNUAL	RUNOFF	(AC-FT)		2680			2880	y 0		3010	- 1.01 0	
ANNUAL	RUNOFF	(AC-FT) (CFSM) (INCHES)		2. 38.			3.06 41.56			3.1 43.4		
10 PERG	CENT EXC	EEDS		6.	7		8.8			8.5		
50 PERG	CENT EXCE	EEDS		3. 1.			2.8			2.7		
	2				-		0.5	-		1.0		

See Period of Record; partial years used in monthly summary statistics Backwater caused by culvert, which was removed Apr. 1998
May 6-9, 2002
Mar. 8, 1999 and Mar. 14 and 15, 2000

15055500 ANTLER RIVER BELOW ANTLER LAKE NEAR AUKE BAY

LOCATION.--Lat $58^\circ51'07''$, long $134^\circ42'31''$, in $NE^1/_4$ $SE^1/_4$ $NE^1/_4$ sec. 10, T. 35 S., R. 64 E. (Juneau D-3 quad), Hydrologic Unit 19010301, in Tongass National Forest, 200 ft below outlet of Antler Lake, 10 mi northeast of Berners Bay, and located 32 mi northwest of Auke Bay.

DRAINAGE AREA.--26.0 mi², approximately.

PERIOD OF RECORD. -- May 1997 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 80 ft above sea level, from topographic map.

REMARKS.--No estimated daily discharges. Records fair.

		DISCHAF	RGE, CUBIO	C FEET PE		WATER Y	YEAR OCTOBE	ER 2001 T	O SEPTEMI	BER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	128 162 154 136	50 56 62 64	19 18 18 17	46 42 38 35	20 19 19 19	20 21 22 21	14 14 14 14	33 40 40 39	267 256 264 275	245 268 335 327	194 189 181 177	331 296 251 215
5	127	60	17	33	18	21	13	36	285	289	175	184
6 7 8 9 10	123 115 108 111 121	54 50 48 47 46	17 19 21 20 21	43 58 63 64 79	18 17 16 16 17	20 19 18 18 17	13 13 13 13 13	34 33 33 33 37	271 239 240 279 317	255 235 242 256 244	172 210 381 392 363	164 162 158 153 143
11 12 13 14 15	121 131 132 118 104	44 41 39 37 36	20 20 20 20 19	73 66 58 52 47	18 23 25 29 34	16 16 15 15	13 13 13 13	39 42 50 69 78	300 262 251 293 391	236 220 218 236 243	302 595 869 569 383	154 155 148 133 139
16 17 18 19 20	99 99 115 142 134	36 36 35 34 33	18 18 17 17	43 39 36 34 32	46 44 40 37 34	15 14 14 14 13	13 13 13 14 14	85 104 133 168 209	447 442 403 336 282	238 232 236 230 216	281 217 179 162 155	138 129 144 170 172
21 22 23 24 25	119 107 94 83 73	33 32 32 31 29	17 17 19 53 82	30 28 27 26 25	32 29 27 25 23	13 13 13 13	15 15 16 16 16	248 258 264 256 265	247 228 238 258 313	210 221 235 265 291	223 301 406 394 297	168 155 137 127 120
26 27 28 29 30 31	65 59 55 56 54 51	26 25 24 21 20	79 71 67 63 57 51	23 22 21 21 21 21	22 21 21 	14 15 15 15 15	16 16 17 19 24	290 292 304 363 372 314	358 332 284 269 264	258 241 258 237 209 199	241 242 364 441 415 360	118 119 117 109 99
TOTAL MEAN MAX MIN AC-FT CFSM IN.	3296 106.3 162 51 6540 4.09 4.72	1181 39.37 64 20 2340 1.51 1.69	948 30.58 82 16 1880 1.18 1.36	1246 40.19 79 21 2470 1.55 1.78	709 25.32 46 16 1410 0.97 1.01	499 16.10 22 13 990 0.62 0.71	436 14.53 24 13 865 0.56 0.62	4561 147.1 372 33 9050 5.66 6.53	8891 296.4 447 228 17640 11.4 12.72	7625 246.0 335 199 15120 9.46 10.91	9830 317.1 869 155 19500 12.2 14.06	4808 160.3 331 99 9540 6.16 6.88
							, BY WATER			10.51	11.00	0.00
MEAN MAX (WY) MIN (WY)	165.1 240 1999 104 1998	60.57 80.2 2001 39.4 2002	66.98 134 2000 30.6 2002	37.82 52.1 2001 21.2 1999	24.29 35.0 2001 11.5 1999	20.51 29.1 2001 14.6 1999	37.29 55.8 1999 14.5 2002	138.2 204 1998 90.1 2001	314.1 330 1999 290 1998	275.2 327 2000 215 1998	232.6 317 2002 189 1998	224.0 271 1999 160 2002
SUMMAR	RY STATIST	rics	FOR	2001 CALE	NDAR YEAR		FOR 2002 W	ATER YEAR	2	WATER YEA	ARS 1997	- 2002
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM INSTANT ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC	MEAN ANNUAL MANNUAL MANNUAL MAILY MEA	EAN EAN AN Y MINIMUM DW AGE DW FLOW AC-FT) CFSM) INCHES) EDS EDS		46329 126.9 704 16 16 91890 4.88 66.29 322 65 18			a13 13 983 33.45			b1300 34.0	7 Oct 20 Mar 9	1999 1999 1998 1998

See Period of Record; partial years used in monthly summary statistics Mar. 20-24 and Apr. 5-18 From rating curve extended above 600 cfs on basis of slope-area measurement at gage height 34.07 ft Apr. 4 and 5

15056030 KAKUHAN CREEK NEAR HAINES

LOCATION.--Lat $59^{\circ}00'19''$, long $135^{\circ}11'02''$, in $SW^{1}/_{4}$ $NE^{1}/_{4}$ $SE^{1}/_{4}$ sec. 14, T. 33 S., R. 61 E. (Skagway A-1 quad), Hydrologic Unit 19010301, in Tongass National Forest, about 200 ft upstream from mouth on east side of Lynn Canal, 19 mi southeast of Haines, and 60 mi northwest of Juneau.

DRAINAGE AREA.--1.53 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1997 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 25 ft above sea level, from topographic map.

REMARKS. -- Records poor.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 50 $\mathrm{ft^3/s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jun 16	unk	unk	unk	*Aug 23	unk	unk	unk
Aug 13	unk	unk	unk	Aug 28	unk	unk	unk

EXTREMES FOR WATER YEARS 1998-2001.-- Peak discharges above base of 50 $\mathrm{ft^3/s}$ and Maximum (*):

	Date		Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jul	22,	1998	0130	56	8.19				
Aug	08,	1998	0730	100	8.40	Dec 27, 1999	0045	*73	*8.28
Aug	31,	1998	1430	*242	*8.77	Sep 17, 2000	0345	65	8.24
Oct	20,	1998	0730	*202	*8.69	Oct 06, 2000	0400	55	8.18
Oct	24,	1998	1130	77	8.30	Oct 12, 2000	1600	*185	*8.65
Aug	17,	1999	1745	50	8.15	Jul 22, 2001	0600	75	8.29
Aug	28,	1999	1515	73	8.28	Aug 27, 2001	0515	71	8.27
Sep	18,	1999	2145	153	8.57	Sep 13, 2001	0600	123	8.48
Sep	22,	1999	1030	193	8.67				

REVISIONS.-- The maximum discharge for the water years 1998-2001 have been revised as shown in the following table. They supersede figures published in the reports for 1998-2001.

Water year	Date	Discharge (ft³/s)	Gage height (ft)
#1997	Sep 23, 1997	222	8.73
1998	Aug 31, 1998	242	8.77
1999	Oct 20, 1998	202	8.69
2000	Dec 27, 1999	73	8.28
2001	Oct 12, 2000	185	8.65

[#] See Period of Record; 1997 is a partial year.

SOUTHEAST ALASKA

15056030 KAKUHAN CREEK NR HAINES—Coutinued

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP						DAI	LY MEAN V	/ALUES					
2 e11 2.7 e0.70 0.90 0.61 0.62 0.47 3.1 e19 e35 e17 20 3 e10 2.9 e0.70 0.89 0.59 0.61 0.46 1.7 e20 e26 e16 18 4 e9.0 2.4 e0.70 0.88 0.61 e0.60 0.50 1.4 e21 e27 e16 15 5 8.8 2.1 e0.65 0.87 0.60 e0.58 0.52 1.2 e19 e28 e17 14 6 7 6.5 2.0 e0.65 0.87 0.60 e0.58 0.52 1.2 e19 e28 e17 14 6 7 6.5 2.0 e0.65 2.0 0.57 e0.54 0.52 1.2 e19 e28 e17 14 6 7 6.5 2.0 e0.65 2.0 0.57 e0.54 0.52 1.2 e19 e28 e17 14 11 10 6 6.5 2.0 e0.66 1.4 e0.49 e0.52 0.47 1.6 e19 e20 e55 14 6 9 6.5 2.0 e0.66 1.4 e0.49 e0.52 0.47 1.6 e19 e20 e55 14 10 6 6 6 1.2 e0.60 1.4 e0.59 e0.51 0.47 1.6 e22 e20 e36 11 10 6 6.0 2.3 e0.60 1.3 e0.59 e0.54 e0.51 0.47 1.6 e22 e20 e36 11 11 6 .8 2.2 e0.60 1.3 e0.59 e0.54 e0.50 0.88 1.6 e25 e19 e28 11 11 6 .8 2.2 e0.60 1.3 e0.59 e0.50 e0.51 0.47 1.6 e25 e19 e28 11 11 6 .8 2.2 e0.60 1.3 e0.59 e0.50 e0.51 0.47 1.6 e25 e19 e28 11 11 6 .8 2.2 e0.60 0.97 0.68 e0.49 0.47 2.3 e19 e15 e94 9.4 13 7.4 e1.6 e0.60 0.97 0.68 e0.49 0.47 2.3 e19 e15 e94 9.4 13 7.4 e1.6 e0.60 0.88 0.62 e0.48 0.48 2.7 e21 e17 e155 8.5 14 6.7 e1.6 e0.60 0.85 0.65 e0.47 0.50 3.4 e25 e24 e60 8.8 15 6.6 e1.7 e0.57 0.86 0.68 e0.46 0.51 2.6 e33 e21 e47 12 12 16 6.6 e1.8 e0.57 0.86 0.68 e0.46 0.51 2.6 e33 e21 e47 12 12 16 6.9 e1.7 e0.57 0.86 0.62 e0.45 0.52 e6.3 35 e20 e16 9.0 11 12 e0.55 0.71 0.59 e0.42 0.52 e6.3 35 e20 e16 9.0 11 12 e0.55 0.71 0.59 e0.42 0.58 e20 1.4 e17 e15 1.0 12 e0.59 e0.42 e0.45 0.52 e6.3 35 e20 e16 9.0 11 12 e0.55 0.71 0.59 e0.42 0.58 e20 1.4 e17 e17 e15 9.0 11 12 e0.55 0.71 0.59 e0.42 0.58 e20 1.4 e17	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
2 e11 2.7 e0.70 0.90 0.61 0.62 0.47 3.1 e19 e35 e17 20 3 e10 2.9 e0.70 0.89 0.59 0.61 0.46 1.7 e20 e26 e16 18 4 e9.0 2.4 e0.70 0.88 0.61 e0.60 0.50 1.4 e21 e27 e16 15 5 8.8 2.1 e0.65 0.87 0.60 e0.58 0.52 1.2 e19 e28 e17 14 6 7 6.5 2.0 e0.65 0.87 0.60 e0.58 0.52 1.2 e19 e28 e17 14 6 7 6.5 2.0 e0.65 2.0 0.57 e0.54 0.52 1.2 e19 e28 e17 14 6 7 6.5 2.0 e0.65 2.0 0.57 e0.54 0.52 1.2 e19 e28 e17 14 11 11 11 11 11 11 11 11 11 11 11 11	1	69 0	2 5	en 8n	0.98	0 62	0.58	0.51	4 5	e20	e22	e18	25
3													
4 e9.0 2.4 e0.70 0.88 0.61 e0.60 0.50 1.4 e21 e27 e16 15 5 8.8 2.1 e0.65 0.87 0.60 e0.58 0.52 1.2 e19 e28 e17 14 6 7 6.5 2.0 e0.65 1.6 0.87 0.60 e0.58 0.52 1.2 e19 e28 e17 14 6 7 6.5 2.0 e0.65 2.0 0.57 e0.54 0.52 1.4 e19 e20 e25 13 7 6.5 2.0 e0.65 2.0 0.57 e0.54 0.52 1.4 e19 e20 e25 14 8 6.5 2.0 e0.60 1.4 e0.49 e0.52 0.47 1.6 e19 e19 e24 14 9 6.6 1 2.0 e0.60 1.4 e0.59 e0.51 0.47 1.8 e22 e20 e36 13 10 6.6 0.2 3 e0.60 1.3 e0.50 1.3 e0.50 e0.51 0.47 1.8 e22 e20 e36 13 10 6.6 0.2 3 e0.60 1.3 e0.54 e0.59 0.88 1.6 e25 e19 e28 11 11 6.8 2.2 e0.60 1.3 e0.54 e0.59 0.88 1.6 e25 e19 e28 11 12 8.6 2.0 e0.60 0.89 0.54 e0.50 0.48 1.6 e25 e19 e28 11 12 8.6 2.0 e0.60 0.89 0.62 e0.49 0.47 2.3 e19 e15 e94 9.4 13 7.4 e1.6 e0.60 0.88 0.62 e0.48 0.49 0.47 2.3 e19 e15 e94 9.4 13 17.4 e1.6 e0.60 0.88 0.62 e0.48 0.48 2.7 e21 e17 e155 8.5 14 14 6.7 e1.6 e0.60 0.85 0.65 e0.47 0.50 3.4 e25 e24 e60 8.8 15 6.6 e1.7 e0.57 0.86 0.68 e0.46 0.55 2.6 e33 e21 e47 12 e15 e15 e0.59 e0.59 e0.59 e0.47 0.50 3.4 e25 e24 e60 8.8 15 6.6 e1.7 e0.57 0.80 0.62 e0.48 0.46 0.55 2.6 e33 e21 e47 12 e15 e0.59 e0.59 e0.42 e0.45 0.52 e6.3 35 e20 e16 9.0 e16 9.0 e18 e0.49 e0													
S													
6 7.5 2.0 e0.65 1.6 0.59 e0.54 0.54 1.3 e17 e23 e26 e25 13 7 6.5 2.0 e0.65 2.0 0.57 e0.54 0.52 1.4 e19 e20 e55 14 8 6.5 2.0 e0.60 1.4 e0.49 e0.52 0.47 1.6 e19 e20 e55 14 9 6.1 2.0 e0.60 1.2 e0.50 e0.51 0.47 1.8 e22 e20 e36 13 10 6.0 2.3 e0.60 1.3 e0.50 e0.51 0.47 1.8 e22 e20 e36 13 11 6.8 2.2 e0.60 1.3 e0.50 e0.51 0.47 1.8 e22 e20 e36 13 12 e0.50 e0.51 0.47 1.8 e25 e19 e28 11 11 6.8 2.2 e0.60 1.3 e0.50 e0.51 0.47 1.8 e22 e20 e36 13 14 e0.50 e0.51 0.47 1.8 e25 e19 e28 11 11 6.8 e19 e0.60 e0.60 0.97 0.68 e0.49 0.47 2.3 e19 e15 e94 9.4 e13 7.4 e1.6 e0.60 0.88 0.62 e0.49 0.47 2.3 e19 e15 e94 9.4 e13 7.4 e1.6 e0.60 0.88 0.62 e0.48 0.48 2.7 e21 e17 e155 8.5 14 6.7 e1.6 e0.60 0.85 0.65 e0.47 0.50 3.4 e25 e24 e60 8.8 15 6.6 e1.7 e0.57 0.86 0.68 e0.49 0.47 2.5 e33 e21 e47 12 e17 e155 8.5 14 6.7 e1.6 e0.60 0.88 0.62 e0.46 0.46 0.51 2.6 e33 e21 e47 12 e17 e17 e17 e18													
The content of the	5	8.8	2.1	e0.65	0.87	0.60	e0.58	0.52	1.2	619	e28	eı/	14
B													
9 6.1 2.0 e0.60 1.2 e0.50 e0.51 0.47 1.8 e22 e20 e36 13						0.57							
10	8	6.5	2.0	e0.60	1.4	e0.49	e0.52	0.47	1.6	e19		e54	14
11 6.8 2.2 e0.60 1.1 0.59 e0.50 0.49 1.7 e23 e17 e25 10 12 8.6 2.0 e0.60 0.97 0.68 e0.49 0.47 2.3 e19 e15 e94 9.4 13 7.4 e1.6 e0.60 0.88 0.62 e0.48 0.48 2.7 e21 e17 e155 8.5 14 6.7 e1.6 e0.60 0.85 0.65 e0.47 0.50 3.4 e25 e24 e60 8.8 15 6.6 e1.7 e0.57 0.86 0.68 e0.46 0.51 2.6 e33 e21 e47 12 16 6.6 e1.8 e0.57 0.86 0.68 e0.46 0.51 2.6 e33 e21 e47 12 17 6.9 e1.7 e0.57 0.80 0.62 e0.45 0.52 e6.3 35 e20 e16 9.0 18 7.4 e1.6 e0.65 0.83 0.62 e0.45 0.52 e6.3 35 e20 e16 9.0 19 e9.8 e1.5 e0.55 0.83 0.61 e0.44 0.53 e12 20 e15 e11 10 20 e8.4 e1.4 e0.55 0.71 0.59 e0.42 0.56 e15 17 e14 e20 11 21 e7.5 e1.4 e0.55 0.71 0.59 e0.42 0.56 e15 17 e14 e20 11 22 e6.2 e1.4 e0.65 e0.67 e0.56 e0.40 0.58 e20 14 e17 e23 e78 8.5 24 5.0 e1.3 3.1 e0.60 e0.51 e0.43 0.61 e19 17 e23 e78 8.5 24 5.0 e1.3 3.1 e0.60 e0.51 e0.43 0.61 e19 17 e23 e78 8.5 24 5.0 e1.3 3.1 e0.60 e0.51 e0.43 0.61 e19 17 e23 e78 8.5 24 5.0 e1.3 3.1 e0.60 e0.51 e0.43 0.61 e19 17 e23 e78 8.5 24 5.0 e1.3 3.1 e0.60 e0.51 e0.43 0.61 e19 17 e23 e78 8.5 25 3.7 e1.2 1.8 e0.56 e0.50 0.50 0.63 e21 22 26 e35 e39 e37 8.8 26 3.2 e1.2 1.5 e0.54 e0.49 0.52 0.66 e22 26 e35 e39 e37 8.8 26 3.2 e1.2 1.6 e0.52 e0.44 0.50 1.0 e26 18 e28 e110 8.5 29 2.9 e0.90 1.4 e0.52 0.51 1.9 e31 17 e24 e46 7.2 30 2.6 e0.80 1.2 e0.54 0.55 1.9 e3.4 0.50 1.0 e26 18 e28 e110 8.5 29 2.9 e0.90 1.4 e0.52 0.55 1.9 e31 17 e24 e46 7.2 30 2.6 e0.80 1.2 e0.54 0.55 1.9 e33 e32 1.9 e30 e82 13 28 2.6 e1.0 1.6 e0.52 e0.44 0.50 1.0 e26 18 e28 e110 8.5 30 2.6 e0.80 1.2 e0.54 0.55 1.9 e31 17 e24 e46 7.2 30 2.6 e0.80 1.2 e0.54 0.55 0.60 1.0 e26 18 e29 e39 e37 8.8 INIM 2.4 0.80 0.55 0.52 0.44 0.60 2.3 6 31 6 22 14 14 11 11 6.5 INIM 2.4 0.80 0.55 0.55 0.52 0.44 0.40 0.46 1.2 14 14 11 1 6.5 INIM 2.4 0.80 0.55 0.55 0.52 0.44 0.40 0.46 1.2 14 14 11 1 6.5 INIM 2.4 0.80 0.55 0.55 0.52 0.44 0.40 0.46 1.2 14 14 11 1 6.5 INIM 2.4 0.80 0.55 0.55 0.52 0.44 0.40 0.46 1.2 14 14 11 1 6.5 INIM 2.4 0.80 0.55 0.55 0.52 0.44 0.40 0.46 1.2 14 14 11 1 6.5 INIM 2.4 0.80 0.55 0.55 0.52 0.44 0.40 0.46 1.2 14 14 11 1 6	9	6.1	2.0	e0.60	1.2	e0.50	e0.51	0.47	1.8	e22	e20	e36	13
12	10	6.0	2.3	e0.60	1.3	e0.54	e0.50	0.48	1.6	e25	e19	e28	11
13	11	6.8	2.2	e0.60	1.1	0.59	e0.50	0.49	1.7	e23	e17	e25	10
13	12	8.6	2.0	e0.60	0.97	0.68	e0.49	0.47	2.3	e19	e15	e94	9.4
14 6.7 e1.6 e0.60 0.85 0.68 e0.47 0.50 3.4 e25 e24 e60 8.8 15 6.6 e1.7 e0.57 0.86 0.68 e0.46 0.51 2.6 e33 e21 e47 12 16 6.6 e1.8 e0.57 0.86 0.74 e0.46 0.50 e4.6 e62 e18 e27 10 17 6.9 e1.7 e0.57 0.80 0.62 e0.45 0.52 e6.3 35 e20 e16 9.0 18 7.4 e1.6 e0.55 0.83 0.61 e0.44 0.53 e9.0 26 e17 e13 16 19 e9.8 e1.5 e0.55 0.81 0.59 e0.42 0.56 e15 17 e14 e20 11 21 e7.5 e1.4 e0.55 e0.70 0.57 e0.41 0.58 e20 15 e16 e46 12 22 e6.2 e1.4 e0.55 e0.67 e0.56<	1.3	7.4	e1.6	e0.60	0.88	0.62		0.48	2.7			e155	
15 6.6 e1.7 e0.57 0.86 0.68 e0.46 0.51 2.6 e33 e21 e47 12 16 6.6 e1.8 e0.57 0.86 0.74 e0.46 0.50 e4.6 e62 e18 e27 10 17 6.9 e1.7 e0.57 0.80 0.62 e0.45 0.52 e6.3 35 e20 e16 9.0 18 7.4 e1.6 e0.55 0.83 0.61 e0.44 0.53 e9.0 26 e17 e13 16 19 e9.8 e1.5 e0.55 0.81 0.59 e0.43 0.53 e12 20 e15 e11 10 20 e8.4 e1.4 e0.55 0.71 0.59 e0.43 0.53 e12 20 e15 e11 10 21 e7.5 e1.4 e0.65 e0.67 e0.57 e0.41 0.58 e20 15 e16 e46 12 22 6.2 e1.4 e0.65 e0.67 e0.56 e0.40 0.58 e20 14 e17 e55 9.0 23 5.4 e1.4 0.96 e0.64 e0.53 e0.42 0.60 e19 17 e23 e78 8.5 24 5.0 e1.3 3.1 e0.60 e0.51 e0.43 0.61 e19 20 e42 e50 8.1 25 3.7 e1.2 1.8 e0.56 e0.50 0.50 0.63 e21 28 e39 e37 8.8 26 3.2 e1.2 1.5 e0.54 e0.49 0.52 0.66 e22 26 e35 e39 e37 8.8 28 2.6 e1.0 1.6 e0.52 e0.44 0.50 1.0 e33 e23 19 e30 e82 13 28 2.6 e1.0 1.6 e0.52 e0.44 0.50 1.0 e26 18 e28 e110 8.5 29 2.9 e0.90 1.4 e0.52 e0.44 0.50 1.0 e26 18 e28 e110 8.5 29 2.9 e0.90 1.4 e0.52 e0.44 0.50 1.0 e26 18 e28 e110 8.5 20 2.6 e0.80 1.2 e0.54 0.50 3.6 e29 17 e24 e46 7.2 30 2.6 e0.80 1.2 e0.54 0.50 3.6 e29 17 e24 e46 7.2 31 2.4 1.1 0.62 0.45 e25 e19 e31 e10													
17													
17	16	6 6	01 0	00 57	0 06	0.74	00 16	0 50	01 6	062	010	027	1.0
18													
19													
20 e8.4 e1.4 e0.55 0.71 0.59 e0.42 0.56 e15 17 e14 e20 11 21 e7.5 e1.4 e0.55 e0.70 0.57 e0.41 0.58 e20 15 e16 e46 12 22 6.2 e1.4 e0.65 e0.67 e0.56 e0.40 0.58 e20 14 e17 e55 9.0 23 5.4 e1.4 0.96 e0.64 e0.53 e0.42 0.60 e19 17 e23 e78 8.5 24 5.0 e1.3 3.1 e0.60 e0.51 e0.43 0.61 e19 20 e42 e50 8.1 25 3.7 e1.2 1.8 e0.56 e0.50 0.50 0.63 e21 28 e39 e37 8.8 26 3.2 e1.2 1.5 e0.54 e0.49 0.52 0.66 e22 26 e35 e39 9.1 27 2.7 e1.1 1.4 e0.53 e0.50 0.51 0.73 e23 19 e30 e82 13 28 2.6 e1.0 1.6 e0.52 e0.44 0.50 1.0 e26 18 e28 e110 8.5 29 2.9 e0.90 1.4 e0.52 e0.44 0.50 1.0 e26 18 e28 e110 8.5 30 2.6 e0.80 1.2 e0.54 0.51 1.9 e31 17 e20 e36 6.5 31 2.4 1.1 0.62 0.55 3.6 e29 17 e20 e36 6.5 31 2.4 1.1 0.62 0.55 3.6 e29 17 e20 e36 6.5 TOTAL 199.8 51.70 27.67 27.13 16.19 15.35 20.92 334.2 673 710 1360 352.4 MEAN 6.445 1.723 0.893 0.875 0.578 0.495 0.697 10.78 22.43 22.90 43.87 11.75 MAX 11 2.9 3.1 2.0 0.74 0.62 3.6 31 62 42 155 25 MIN 2.4 0.80 0.55 0.52 0.44 0.40 0.46 1.2 14 14 11 6.5 AC-FT 396 103 55 54 32 30 41 663 1330 1410 2700 699 CFSM 4.21 1.13 0.58 0.57 0.38 0.32 0.46 7.05 14.7 15.0 28.7 7.68 IN. 4.86 1.26 0.67 0.66 0.39 0.37 0.51 8.13 16.36 17.26 33.07 8.57 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997 - 2002, BY WATER YEAR (WY)#													
21 e7.5 e1.4 e0.55 e0.70 0.57 e0.41 0.58 e20 15 e16 e46 12 22 6.2 e1.4 e0.65 e0.67 e0.56 e0.40 0.58 e20 14 e17 e55 9.0 23 5.4 e1.4 0.96 e0.64 e0.53 e0.42 0.60 e19 17 e23 e78 8.5 24 5.0 e1.3 3.1 e0.60 e0.51 e0.43 0.61 e19 20 e42 e50 8.1 25 3.7 e1.2 1.8 e0.56 e0.50 0.50 0.63 e21 28 e39 e37 8.8 26 3.2 e1.2 1.5 e0.54 e0.49 0.52 0.66 e22 26 e35 e39 9.1 27 2.7 e1.1 1.4 e0.53 e0.50 0.51 0.73 e23 19 e30 e82 13 28 2.6 e1.0 1.6 e0.52 e0.44 0.50 1.0 e26 18 e0.82 e10 8.5 29 2.9 e0.90 1.4 e0.52 e0.44 0.50 1.0 e26 18 e0.82 e110 8.5 29 2.9 e0.90 1.4 e0.52 e0.44 0.50 1.0 e26 18 e0.82 e110 8.5 29 2.9 e0.80 1.2 e0.54 e0.49 0.52 e0.49 e10													
22 6.2 e1.4 e0.65 e0.67 e0.56 e0.40 0.58 e20 14 e17 e55 9.0 23 5.4 e1.4 0.96 e0.64 e0.53 e0.42 0.60 e19 17 e23 e78 8.5 24 5.0 e1.3 3.1 e0.60 e0.51 e0.43 0.61 e19 20 e42 e50 8.1 25 3.7 e1.2 1.8 e0.56 e0.50 0.50 0.63 e21 28 e39 e37 8.8 26 3.2 e1.2 1.5 e0.54 e0.49 0.52 0.66 e22 26 e35 e39 9.1 27 2.7 e1.1 1.4 e0.53 e0.50 0.51 0.73 e23 19 e30 e82 13 28 2.6 e1.0 1.6 e0.52 e0.44 0.50 1.0 e26 18 e28 e110 8.5 29 2.9 e0.90 1.4 e0.52 e0.44 0.50 1.0 e26 18 e28 e110 8.5 29 2.9 e0.90 1.4 e0.52 e0.44 0.50 1.0 e26 18 e28 e110 8.5 31 2.4 e 1.1 0.62 e 0.55 3.6 e29 17 e20 e36 6.5 31 2.4 e 1.1 0.62 e 0.45 e e25 e e19 e31 ETOTAL 199.8 51.70 27.67 27.13 16.19 15.35 20.92 334.2 673 710 1360 352.4 MEAN 6.445 1.723 0.893 0.875 0.578 0.495 0.697 10.78 22.43 22.90 43.87 11.75 MMAX 11 2.9 3.1 2.0 0.74 0.62 3.6 31 62 42 155 25 MIN 2.4 0.80 0.55 0.52 0.44 0.40 0.46 1.2 14 14 11 6.5 AC-FT 396 103 55 54 32 30 41 663 1330 1410 2700 699 MEAN 9.393 3.004 2.835 1.262 0.965 1.068 2.021 7.498 22.27 30.47 29.40 17.46 MAX 14.9 4.16 5.70 1.63 1.28 1.76 3.85 10.8 25.2 37.5 43.9 23.8 (WY) 1999 1999 2000 2001 1998 1999 9002 21 1999 1999 2002 1999 1999 2002 1999 MIN 4.70 1.72 0.89 0.88 0.58 0.50 0.70 4.87 20.9 22.9 22.9 22.2 11.7	20	e8.4	e1.4	e0.55	0.71	0.59	e0.42	0.56	e15	1/	e14	e20	11
23 5.4 e1.4 0.96 e0.64 e0.53 e0.42 0.60 e19 17 e23 e78 8.5 24 5.0 e1.3 3.1 e0.60 e0.51 e0.43 0.61 e19 20 e42 e50 8.1 25 3.7 e1.2 1.8 e0.56 e0.50 0.50 0.63 e21 28 e39 e37 8.8 26 3.2 e1.2 1.5 e0.54 e0.49 0.52 0.66 e22 26 e35 e39 9.1 27 2.7 e1.1 1.4 e0.53 e0.50 0.51 0.73 e23 19 e30 e82 13 28 2.6 e1.0 1.6 e0.52 e0.44 0.50 1.0 e26 18 e28 e110 8.5 29 2.9 e0.90 1.4 e0.52 0.51 1.9 e31 17 e24 e46 7.2 30 2.6 e0.80 1.2 e0.54 0.50 3.6 e29 17 e20 e36 6.5 31 2.4 1.1 0.62 0.45 e25 e19 e31 TOTAL 199.8 51.70 27.67 27.13 16.19 15.35 20.92 334.2 673 710 1360 352.4 MEAN 6.445 1.723 0.893 0.875 0.578 0.495 0.697 10.78 22.43 22.90 43.87 11.75 MAX 11 2.9 3.1 2.0 0.74 0.62 3.6 31 62 42 155 25 MIN 2.4 0.80 0.55 0.52 0.44 0.40 0.46 1.2 14 14 11 6.5 AC-FT 396 103 55 54 32 30 41 663 1330 1410 2700 699 CFSM 4.21 1.13 0.58 0.57 0.38 0.32 0.46 7.05 14.7 15.0 28.7 7.68 IN. 4.86 1.26 0.67 0.66 0.39 0.37 0.51 8.13 16.38 22.2 37.5 43.9 23.8 (WY) 1999 1999 2000 2001 1998 1999 1999 2002 1999 1999 2002 1999 MIN 4.70 1.72 0.89 0.88 0.58 0.58 0.50 0.70 4.87 20.9 22.9 22.2 11.7													
24 5.0 e1.3 3.1 e0.60 e0.51 e0.43 0.61 e19 20 e42 e50 8.1 25 3.7 e1.2 1.8 e0.56 e0.50 0.50 0.63 e21 28 e39 e37 8.8 e38 e26 3.7 e1.2 1.8 e0.56 e0.50 0.50 0.63 e21 28 e39 e37 8.8 e38 e26 3.2 e1.2 1.5 e0.54 e0.49 0.52 0.66 e22 26 e35 e39 9.1 e27 2.7 e1.1 1.4 e0.53 e0.50 0.51 0.73 e23 19 e30 e82 13 28 2.6 e1.0 1.6 e0.52 e0.44 0.50 1.0 e26 18 e28 e110 8.5 e29 2.9 e0.90 1.4 e0.52 0.51 1.9 e31 17 e24 e46 7.2 e0.54 e0.80 1.2 e0.54 e0.50 2.50 3.6 e29 17 e20 e36 6.5 e1.0 1.6 e0.52 e0.44 0.50 1.0 e26 e1.8 e28 e110 8.5 e1.0 e1.0 e1.0 e1.0 e1.0 e1.0 e1.0 e1.0													
25 3.7 e1.2 1.8 e0.56 e0.50 0.50 0.63 e21 28 e39 e37 8.8 26 3.2 e1.2 1.5 e0.54 e0.49 0.52 0.66 e22 26 e35 e39 9.1 27 2.7 e1.1 1.4 e0.53 e0.50 0.51 0.73 e23 19 e30 e82 13 28 2.6 e1.0 1.6 e0.52 e0.44 0.50 1.0 e26 18 e28 e110 8.5 29 2.9 e0.90 1.4 e0.52 0.51 1.9 e31 17 e24 e46 7.2 30 2.6 e0.80 1.2 e0.54 0.50 3.6 e29 17 e20 e36 6.5 31 2.4 1.1 0.62 0.45 e25 e19 e31 TOTAL 199.8 51.70 27.67 27.13 16.19 15.35 20.92 334.2 673 710 1360 352.4 MEAN 6.445 1.723 0.893 0.875 0.578 0.495 0.697 10.78 22.43 22.90 43.87 11.75 MAX 11 2.9 3.1 2.0 0.74 0.62 3.6 31 62 42 155 25 MIN 2.4 0.80 0.55 0.52 0.44 0.40 0.46 1.2 14 14 11 6.5 AC-FT 396 103 555 54 32 30 41 663 1330 1410 2700 699 CFSM 4.21 1.13 0.58 0.57 0.38 0.32 0.46 7.05 14.7 15.0 28.7 7.68 IN. 4.86 1.26 0.67 0.66 0.39 0.37 0.51 8.13 16.36 17.26 33.07 8.57 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997 - 2002, BY WATER YEAR (WY)# MEAN 9.393 3.004 2.835 1.262 0.965 1.068 2.021 7.498 22.27 30.47 29.40 17.46 MAX 14.9 4.16 5.70 1.63 1.28 1.76 3.85 10.8 25.2 37.5 43.9 23.8 (WY) 1999 1999 2000 2001 1998 1999 1999 2002 1999 1999 2002 1999 1919 2022 1999 MIN 4.70 1.72 0.89 0.88 0.58 0.50 0.70 4.87 20.9 22.9 22.2 11.7													
26		5.0	e1.3	3.1	e0.60	e0.51	e0.43	0.61	e19	20	e42	e50	8.1
27 2.7 e1.1 1.4 e0.53 e0.50 0.51 0.73 e23 19 e30 e82 13 28 2.6 e1.0 1.6 e0.52 e0.44 0.50 1.0 e26 18 e28 e110 8.5 29 2.9 e0.90 1.4 e0.52 0.51 1.9 e31 17 e24 e46 7.2 30 2.6 e0.80 1.2 e0.54 0.50 3.6 e29 17 e20 e36 6.5 31 2.4 1.1 0.62 0.45 e25 e19 e31 TOTAL 199.8 51.70 27.67 27.13 16.19 15.35 20.92 334.2 673 710 1360 352.4 MEAN 6.445 1.723 0.893 0.875 0.578 0.495 0.697 10.78 22.43 22.90 43.87 11.75 MAX 11 2.9 3.1 2.0 0.74 0.62 3.6 31 62 42 155 25 MIN 2.4 0.80 0.55 0.52 0.44 0.40 0.46 1.2 14 14 11 6.5 AC-FT 396 103 55 54 32 30 41 663 1330 1410 2700 699 CFSM 4.21 1.13 0.58 0.57 0.38 0.32 0.46 7.05 14.7 15.0 28.7 7.68 IN. 4.86 1.26 0.67 0.66 0.39 0.37 0.51 8.13 16.36 17.26 33.07 8.57 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997 - 2002, BY WATER YEAR (WY)# MEAN 9.393 3.004 2.835 1.262 0.965 1.068 2.021 7.498 22.27 30.47 29.40 17.46 MAX 14.9 4.16 5.70 1.63 1.28 1.76 3.85 10.8 25.2 37.5 43.9 23.8 (WY) 1999 1999 2000 2001 1998 1999 1999 2002 1999 1999 2002 1999 MIN 4.70 1.72 0.89 0.88 0.58 0.50 0.70 4.87 20.9 22.9 22.2 11.7	25	3.7	e1.2	1.8	e0.56	e0.50	0.50	0.63	e21	28	e39	e37	8.8
28	26	3.2	e1.2	1.5	e0.54	e0.49	0.52	0.66	e22	26	e35	e39	9.1
28	27	2.7	e1.1	1.4	e0.53	e0.50	0.51	0.73	e23	19	e30	e82	13
30	28	2.6	e1.0	1.6	e0.52	e0.44	0.50	1.0	e26	18	e28	e110	8.5
30	29	2.9	e0.90	1.4	e0.52		0.51	1.9	e31	17	e24	e46	7.2
31 2.4 1.1 0.62 0.45 e25 e19 e31 TOTAL 199.8 51.70 27.67 27.13 16.19 15.35 20.92 334.2 673 710 1360 352.4 MEAN 6.445 1.723 0.893 0.875 0.578 0.495 0.697 10.78 22.43 22.90 43.87 11.75 MAX 11 2.9 3.1 2.0 0.74 0.62 3.6 31 62 42 155 25 MIN 2.4 0.80 0.55 0.52 0.44 0.40 0.46 1.2 14 14 11 6.5 AC-FT 396 103 55 54 32 30 41 663 1330 1410 2700 699 CFSM 4.21 1.13 0.58 0.57 0.38 0.32 0.46 7.05 14.7 15.0 28.7 7.68 IN. 4.86 1.26 0.67 0.66 0.39 0.37 0.51 8.13 16.36 17.26 33.07 8.57 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997 - 2002, BY WATER YEAR (WY)# MEAN 9.393 3.004 2.835 1.262 0.965 1.068 2.021 7.498 22.27 30.47 29.40 17.46 MAX 14.9 4.16 5.70 1.63 1.28 1.76 3.85 10.8 25.2 37.5 43.9 23.8 (WY) 1999 1999 2000 2001 1998 1999 1999 2002 1999 1999 2002 1999 MIN 4.70 1.72 0.89 0.88 0.58 0.50 0.70 4.87 20.9 22.9 22.2 11.7			e0.80		e0.54		0.50		e29	17	e20	e36	
MEAN 6.445 1.723 0.893 0.875 0.578 0.495 0.697 10.78 22.43 22.90 43.87 11.75 MAX 11 2.9 3.1 2.0 0.74 0.62 3.6 31 62 42 155 25 MAX 11 2.9 0.80 0.55 0.52 0.44 0.40 0.46 1.2 14 14 11 6.5 AC-FT 396 103 55 54 32 30 41 663 1330 1410 2700 699 CFSM 4.21 1.13 0.58 0.57 0.38 0.32 0.46 7.05 14.7 15.0 28.7 7.68 IN. 4.86 1.26 0.67 0.66 0.39 0.37 0.51 8.13 16.36 17.26 33.07 8.57 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997 - 2002, BY WATER YEAR (WY)# MEAN 9.393 3.004 2.835 1.262 0.965 1.068 2.021 7.498 22.27 30.47 29.40 17.46 MAX 14.9 4.16 5.70 1.63 1.28 1.76 3.85 10.8 25.2 37.5 43.9 23.8 (WY) 1999 1999 2000 2001 1998 1999 1999 2002 1999 1999 2002 1999 MIN 4.70 1.72 0.89 0.88 0.58 0.50 0.70 4.87 20.9 22.9 22.9 11.7													
MEAN 6.445 1.723 0.893 0.875 0.578 0.495 0.697 10.78 22.43 22.90 43.87 11.75 MAX 11 2.9 3.1 2.0 0.74 0.62 3.6 31 62 42 155 25 MAX 11 2.9 0.80 0.55 0.52 0.44 0.40 0.46 1.2 14 14 11 6.5 AC-FT 396 103 55 54 32 30 41 663 1330 1410 2700 699 CFSM 4.21 1.13 0.58 0.57 0.38 0.32 0.46 7.05 14.7 15.0 28.7 7.68 IN. 4.86 1.26 0.67 0.66 0.39 0.37 0.51 8.13 16.36 17.26 33.07 8.57 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997 - 2002, BY WATER YEAR (WY)# MEAN 9.393 3.004 2.835 1.262 0.965 1.068 2.021 7.498 22.27 30.47 29.40 17.46 MAX 14.9 4.16 5.70 1.63 1.28 1.76 3.85 10.8 25.2 37.5 43.9 23.8 (WY) 1999 1999 2000 2001 1998 1999 1999 2002 1999 1999 2002 1999 MIN 4.70 1.72 0.89 0.88 0.58 0.50 0.70 4.87 20.9 22.9 22.9 11.7	ΤΟΤΔΙ.	199 8	51 70	27 67	27 13	16 19	15 35	20 92	334 2	673	710	1360	352 4
MAX 11 2.9 3.1 2.0 0.74 0.62 3.6 31 62 42 155 25 MIN 2.4 0.80 0.55 0.52 0.44 0.40 0.46 1.2 14 14 11 6.5 AC-FT 396 103 55 54 32 30 41 663 1330 1410 2700 699 CFSM 4.21 1.13 0.58 0.57 0.38 0.32 0.46 7.05 14.7 15.0 28.7 7.68 IN. 4.86 1.26 0.67 0.66 0.39 0.37 0.51 8.13 16.36 17.26 33.07 8.57 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997 - 2002, BY WATER YEAR (WY)# MEAN 9.393 3.004 2.835 1.262 0.965 1.068 2.021 7.498 22.27 30.47 29.40 17.46 MAX 14.9 4.16 5.70 1.63 1.28 1.76 3.85 10.8 25.2 37.5 43.9 23.8 (WY) 1999 1999 2000 2001 1998 1999 1999 2002 1999 MIN 4.70 1.72 0.89 0.88 0.58 0.50 0.70 4.87 20.9 22.9 22.2 11.7													
MIN 2.4 0.80 0.55 0.52 0.44 0.40 0.46 1.2 14 14 11 6.5 AC-FT 396 103 55 54 32 30 41 663 1330 1410 2700 699 CFSM 4.21 1.13 0.58 0.57 0.38 0.32 0.46 7.05 14.7 15.0 28.7 7.68 IN. 4.86 1.26 0.67 0.66 0.39 0.37 0.51 8.13 16.36 17.26 33.07 8.57 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997 - 2002, BY WATER YEAR (WY)# MEAN 9.393 3.004 2.835 1.262 0.965 1.068 2.021 7.498 22.27 30.47 29.40 17.46 MAX 14.9 4.16 5.70 1.63 1.28 1.76 3.85 10.8 25.2 37.5 43.9 23.8 (WY) 1999 1999 2000 2001 1998 1999 1999 2002 1999 1999 2002 1999 MIN 4.70 1.72 0.89 0.88 0.58 0.50 0.70 4.87 20.9 22.9 22.2 11.7													
AC-FT 396 103 55 54 32 30 41 663 1330 1410 2700 699 CFSM 4.21 1.13 0.58 0.57 0.38 0.32 0.46 7.05 14.7 15.0 28.7 7.68 IN. 4.86 1.26 0.67 0.66 0.39 0.37 0.51 8.13 16.36 17.26 33.07 8.57 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997 - 2002, BY WATER YEAR (WY)# MEAN 9.393 3.004 2.835 1.262 0.965 1.068 2.021 7.498 22.27 30.47 29.40 17.46 MAX 14.9 4.16 5.70 1.63 1.28 1.76 3.85 10.8 25.2 37.5 43.9 23.8 (WY) 1999 1999 2000 2001 1998 1999 1999 2002 1999 1999 2002 1999 MIN 4.70 1.72 0.89 0.88 0.58 0.50 0.70 4.87 20.9 22.9 22.2 11.7													
CFSM 4.21 1.13 0.58 0.57 0.38 0.32 0.46 7.05 14.7 15.0 28.7 7.68 IN. 4.86 1.26 0.67 0.66 0.39 0.37 0.51 8.13 16.36 17.26 33.07 8.57 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997 - 2002, BY WATER YEAR (WY)# MEAN 9.393 3.004 2.835 1.262 0.965 1.068 2.021 7.498 22.27 30.47 29.40 17.46 MAX 14.9 4.16 5.70 1.63 1.28 1.76 3.85 10.8 25.2 37.5 43.9 23.8 (WY) 1999 1999 2000 2001 1998 1999 1999 2002 1999 1999 2002 1999 MIN 4.70 1.72 0.89 0.88 0.58 0.50 0.70 4.87 20.9 22.9 22.2 11.7													
IN. 4.86 1.26 0.67 0.66 0.39 0.37 0.51 8.13 16.36 17.26 33.07 8.57 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997 - 2002, BY WATER YEAR (WY)# MEAN 9.393 3.004 2.835 1.262 0.965 1.068 2.021 7.498 22.27 30.47 29.40 17.46 MAX 14.9 4.16 5.70 1.63 1.28 1.76 3.85 10.8 25.2 37.5 43.9 23.8 (WY) 1999 1999 2000 2001 1998 1999 1999 2002 1999 1999 2002 1999 MIN 4.70 1.72 0.89 0.88 0.58 0.50 0.70 4.87 20.9 22.9 22.2 11.7													
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997 - 2002, BY WATER YEAR (WY)# MEAN 9.393 3.004 2.835 1.262 0.965 1.068 2.021 7.498 22.27 30.47 29.40 17.46 MAX 14.9 4.16 5.70 1.63 1.28 1.76 3.85 10.8 25.2 37.5 43.9 23.8 (WY) 1999 1999 2000 2001 1998 1999 1999 2002 1999 MIN 4.70 1.72 0.89 0.88 0.58 0.50 0.70 4.87 20.9 22.9 22.2 11.7													
MEAN 9.393 3.004 2.835 1.262 0.965 1.068 2.021 7.498 22.27 30.47 29.40 17.46 MAX 14.9 4.16 5.70 1.63 1.28 1.76 3.85 10.8 25.2 37.5 43.9 23.8 (WY) 1999 1999 2000 2001 1998 1999 1999 2002 1999 1999 2002 1999 MIN 4.70 1.72 0.89 0.88 0.58 0.50 0.70 4.87 20.9 22.9 22.2 11.7	IN.	4.86	1.26	0.67	0.66	0.39	0.37	0.51	8.13	16.36	17.26	33.07	8.57
MAX 14.9 4.16 5.70 1.63 1.28 1.76 3.85 10.8 25.2 37.5 43.9 23.8 (WY) 1999 1999 2000 2001 1998 1999 1999 2002 1999 1999 2002 1999 MIN 4.70 1.72 0.89 0.88 0.58 0.50 0.70 4.87 20.9 22.9 22.2 11.7	STATIS'	TICS OF N	MONTHLY ME	AN DATA	FOR WATER	YEARS 199	7 - 2002,	BY WATER	YEAR (WY	7)#			
(WY) 1999 1999 2000 2001 1998 1999 2002 1999 1999 2002 1999 MIN 4.70 1.72 0.89 0.88 0.58 0.50 0.70 4.87 20.9 22.9 22.2 11.7	MEAN				1.262				7.498				
MIN 4.70 1.72 0.89 0.88 0.58 0.50 0.70 4.87 20.9 22.9 22.2 11.7	MAX	14.9	4.16	5.70	1.63	1.28	1.76	3.85	10.8	25.2	37.5	43.9	23.8
MIN 4.70 1.72 0.89 0.88 0.58 0.50 0.70 4.87 20.9 22.9 22.2 11.7	(WY)	1999	1999	2000	2001	1998	1999	1999	2002	1999	1999	2002	1999
	(WY)	1998	2002	2002	2002	2002		2002		2000		2000	2002

15056030 KAKUHAN CREEK NEAR HAINES—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1997 - 2002#
ANNUAL TOTAL	3639.03	3788.36	
ANNUAL MEAN	9.970	10.38	10.76
HIGHEST ANNUAL MEAN			13.3 1999
LOWEST ANNUAL MEAN			9.66 1998
HIGHEST DAILY MEAN	67 Sep 13	155 Aug 13	155 Aug 13 2002
LOWEST DAILY MEAN	0.36 Feb 24	0.40 Mar 22	0.36 Feb 24 2001
ANNUAL SEVEN-DAY MINIMUM	0.41 Feb 19	0.42 Mar 18	0.41 Feb 19 2001
MAXIMUM PEAK FLOW			a415 Aug 31 1998
MAXIMUM PEAK STAGE		b	8.77 Aug 31 1998
ANNUAL RUNOFF (AC-FT)	7220	7510	7790
ANNUAL RUNOFF (CFSM)	6.52	6.78	7.03
ANNUAL RUNOFF (INCHES)	88.48	92.11	95.54
10 PERCENT EXCEEDS	30	26	30
50 PERCENT EXCEEDS	2.8	2.2	3.8
90 PERCENT EXCEEDS	0.60	0.51	0.71

[#] See Period of Record; partial years used in monthly statistics a From a rating curve extended above 77 ${\rm ft}^3/{\rm s}$ See highest daily mean

15056030 KAKUHAN CREEK NEAR HAINES—Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD. -- March 1998 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: August 1998 to current year.

INSTRUMENTATION.-- Electronic water-temperature recorder set for 15-minute recording interval.

REMARKS.-- Records represent water temperature at the sensor within 0.5°C. Temperature at the sensor was compared with the stream average by cross section on July 12. Temperature cross section found no variation. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF RECORD.--WATER TEMPERATURE: Maximum, 15.0°C, August 1-2, 1999; minimum, 0.0°C, on many days during winter periods.

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURE: Maximum, 13.5°C, July 8 and August 5; minimum, 0.0°C, on many days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	STREAM WIDTH (FT) (00004)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BK) (72103)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)
JULY							
12	1028	15.6	1.0	7.74	15	8.0	12.5
12	1029	15.6	5.0	7.74	15	8.0	12.5
12	1030	15.6	10.0	7.74	15	8.0	12.5
12	1031	15.6	15.0	7.74	15	8.0	12.5

		TEMPERA'	TURE, WATE	R (DEGRI	EES CELS	IUS), WATE	ER YEAR C	CTOBER	2001 TO SEP	TEMBER	2002		
DAY	MAX	MIN	MEAN	MAX	K MI	N MEAN	MZ	AX M	IN MEAN	M	IAX	MIN	MEAN
	(OCTOBER		NO	VEMBER		DE	CEMBER			JANUAR	ĽΥ	
1 2 3 4 5	7.0 7.0 7.5 9.0 8.5	6.0 5.5 5.0 6.5 7.0	6.5 6.5 6.0 7.5	2.5 2.5 2.5 2.0 1.5	1.0 2.5 2.0 1.5	2.0 2.5 2.5 2.0 1.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.5 1.5 2.0 1.5 1.5	1.5 1.0 1.5 1.0	1.5 1.0 1.5 1.5	
6 7 8 9 10	7.5 6.0 6.5 6.5	5.5 5.0 5.0 5.0	6.5 5.5 5.5 5.6	0.5 0.0 1.0 1.5 2.0	0.0 0.0 0.0 0.5 1.5	0.5 0.0 0.0 1.0 2.0	0.0 0.0 0.5 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.5	2.5 2.5 2.5 2.5 2.5	1.5 2.0 2.0 2.0 2.0	2.0 2.5 2.0 2.5 2.5	
11 12 13 14 15	5.5 5.0 5.5 5.0 3.5	3.0 3.0 4.0 3.5 2.5	4.5 4.0 4.5 4.0 3.0	2.5 1.0 1.0 1.5 2.5	1.0 0.5 0.5 0.5	2.0 0.5 0.5 1.0 2.0	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.0	0.5 0.5 0.5 0.5	2.5 2.0 2.0 2.0 2.0	2.0 1.5 1.5 1.5 2.0	2.0 2.0 1.5 2.0 2.0	
16 17 18 19 20	3.0 5.0 6.0 5.0 4.0	2.0 2.5 5.0 3.5 3.5	2.5 4.0 5.5 4.5 3.5	2.5 2.5 3.0 3.0	2.0 2.0 2.5 2.5 2.5	2.5 2.0 3.0 2.5 3.0	0.0 0.0 0.5 0.5	0.0 0.0 0.0 0.5	0.0 0.0 0.5 0.5	2.0 1.0 1.5 2.0 1.5	1.0 0.5 0.5 1.5	2.0 1.0 1.0 1.5 0.5	
21 22 23 24 25	3.5 4.5 3.5 2.5 2.5	3.0 3.0 2.5 2.0 1.0	3.5 4.0 3.0 2.5 1.5	3.5 3.5 3.5 2.5 1.5	3.0 3.0 2.5 1.5	3.5 3.0 3.0 2.0 0.5	1.0 1.0 1.0 0.5	0.5 0.5 0.0 0.0	1.0 1.0 0.5 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	
26 27 28 29 30 31	1.0 0.5 0.5 2.0 1.5	0.5 0.5 0.0 0.5 1.0	1.0 0.5 0.5 1.5 1.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	1.5 1.5 1.5 1.5 1.5	1.0 1.5 1.5 1.5 1.5	1.0 1.5 1.5 1.5 1.5	0.0 0.0 0.0 0.5 0.5	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.5	
MONTH	9.0	0.0	4.0	3.5	0.0	1.5	1.5	0.0	0.5	2.5	0.0	1.1	

15056030 KAKUHAN CREEK NEAR HAINES—Continued

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4	0.5 0.5 0.5	0.5 0.5	0.5 0.5 0.5 0.5	1.0 1.0 1.0 0.5	0.5 1.0 0.5 0.0	1.0 1.0 1.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0	5.5 3.0 1.5 1.5	3.0 1.0 0.5 0.5	3.5 2.0 1.0 1.0
5												0.5
6 7 8 9 10	0.5 0.5 0.0 0.5 0.5	0.0 0.0 0.0 0.0	0.5 0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.5 4.0 4.5 3.5 4.0	0.5 1.5 2.0 3.0 3.0	1.0 2.5 3.0 3.5 3.5
11 12 13 14 15	0.5 1.0 1.0 1.0	0.5 0.5 0.5 1.0	0.5 0.5 0.5 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.5 0.5 0.5 1.0	0.0 0.0 0.0 0.5	0.5 0.5 0.5 0.5	4.0 4.5 5.0 4.5 5.0	3.0 3.0 3.5 3.5 3.5	3.5 3.5 4.5 4.0 4.0
		0.5 0.5 0.5 0.0		0.0 0.0 0.0 0.0			1.0 1.0 1.5 1.5					
		0.0 0.0 0.0 0.0	0.5 0.0 0.0 0.0	0.0 0.5 0.5 0.5			2.0 2.0 2.0 2.5 2.5					
		0.0 0.0 0.5 	0.0 0.5 0.5 	0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5	2.0 2.5 3.5 4.5 4.5	0.5 1.0 1.5 2.0 2.0	1.0 1.5 2.0 2.5 3.0	7.5 7.0 6.0 6.5 6.5 7.0	5.0 5.0 5.0 5.0 4.5 4.0	6.0 6.0 5.5 5.5 5.5
MONTH	1.0	0.0		1.0			4.5			8.5		4.2
	MAY	MIN	MEAN	MAY	MTN	MEAN	млу	MTN	MEAN	MAY	MIN	MEAN
	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN	MAX		MEAN	MAX		MEAN ER
DAY	6.0 6.5	JUNE			JULY			AUGUST			SEPTEMBE	ΞR
DAY 1 2 3 4 5	6.0 6.5 8.5 7.0 8.5	JUNE 5.0 5.0 5.5 5.0 5.0 5.0 6.0	5.5 6.0 6.5 6.0	9.0 8.0 8.5 9.0 8.5 10.5 13.0 13.5	JULY 7.5 6.5 6.0 7.0 7.0	8.0 7.5 7.0 8.0 7.5		7.5 7.5 8.0 8.0 8.5	9.5 9.0 10.0 10.0		7.0 6.5 7.5 6.5 7.5	8.0 8.5 8.5 8.0 8.5
DAY 1 2 3 4 5 5 6 7 8 9 10 11 12	6.0 6.5 8.5 7.0 8.5 7.0 9.0 10.0 7.0	JUNE 5.0 5.0 5.5 5.0 5.0 5.0 6.0 6.0 6.0 5.5	5.5 6.0 6.5 6.0 6.0 6.5 7.5 7.0	9.0 8.0 8.5 9.0 8.5	JULY 7.5 6.5 6.0 7.0 7.5 6.5 8.0 7.5 6.5	8.0 7.5 7.0 8.0 7.5 9.0 9.5 10.5 9.0 8.0	12.0 11.5 12.5 13.0 13.5	7.5 7.5 8.0 8.0 8.5 9.5 8.5 8.5	9.5 9.0 10.0 10.5 10.0 9.0 9.0 8.5 8.5	9.0 10.5 10.0 10.5 10.0 8.5 8.5 8.0 9.5	7.0 6.5 7.5 6.5 7.5 7.5 7.0 7.0 6.5 7.0	8.0 8.5 8.5 8.0 8.5 8.0 7.5 7.5 8.0 7.5
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14	6.0 6.5 8.5 7.0 8.5 7.0 9.0 10.0 7.0 7.0 9.0 11.0	JUNE 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0 5.5 5.0 5.0 7.0	5.5 6.0 6.0 6.0 6.5 7.5 7.0 6.0	9.0 8.0 8.5 9.0 8.5 10.5 13.5 10.5 9.5	JULY 7.5 6.5 6.0 7.0 7.5 6.5 8.0 7.5 6.5 8.0 7.5 8.0 8.0	8.0 7.5 7.0 8.0 7.5 9.0 9.5 9.0 8.0 8.5 9.0	12.0 11.5 12.5 13.0 13.5 11.0 9.5 10.0 9.5 9.5 9.5	7.5 7.5 8.0 8.0 8.5 9.5 8.5 8.5 8.0 7.5	9.5 9.0 10.0 10.0 10.5 10.0 9.0 8.5 8.5 10.0 9.0 9.0	9.0 10.5 10.0 10.5 10.0 8.5 8.5 8.0 9.5 8.0 9.5 8.5	7.0 6.5 7.5 6.5 7.5 7.5 7.0 7.0 6.5 7.0	8.0 8.5 8.5 8.0 8.5 8.0 7.5 7.5 7.5 7.5 7.5 7.5
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	6.0 6.5 8.5 7.0 8.5 7.0 9.0 10.0 7.0 7.0 9.0 11.0 12.0 12.0 11.0 8.0	JUNE 5.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 5.5 7.0 7.5 7.0 6.5 6.5	5.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 9.0 9.0 9.0 9.0 7.0	9.0 8.0 8.5 9.0 8.5 10.5 13.0 10.5 9.5 9.0 12.0 9.5 10.0 10.5	JULY 7.5 6.5 6.0 7.0 7.5 6.5 8.0 7.5 6.5 7.5 8.0 8.0 7.5 8.0 8.0 8.0	8.0 7.5 7.0 8.0 7.5 9.0 9.5 9.0 8.0 8.5 9.0 9.0 9.5 9.0 9.5	12.0 11.5 12.5 13.0 13.5 11.0 9.5 10.0 9.5 9.5 9.5 11.0 11.0 11.5 10.5	7.5 7.5 8.0 8.0 8.5 9.5 8.5 8.5 8.0 7.5 8.0 9.0 8.5 8.0 9.0 8.5	9.5 9.0 10.0 10.5 10.0 9.0 9.0 8.5 8.5 10.0 9.0 9.0 8.5	9.0 10.5 10.0 10.5 10.0 8.5 8.5 8.0 9.5 8.0 8.5 7.5 8.0	7.0 6.5 7.5 6.5 7.5 7.5 7.0 7.0 6.5 7.0 7.0 6.5 7.0	8.0 8.5 8.5 8.0 8.5 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 6.5
DAY 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	6.0 6.5 8.5 7.0 8.5 7.0 9.0 10.0 7.0 7.0 11.0 12.0 12.0 11.0 8.0 8.0 8.0 11.0 9.5 9.0 11.0 8.0 8.0 8.0	JUNE 5.0 5.0 5.0 5.0 5.0 6.0 6.0 5.5 7.0 7.5 7.0 6.5 6.0 6.5 6.5 6.5 6.5 7.5	5.5 6.0 6.5 6.0 6.0 6.5 7.5 7.0 6.0 9.0 9.0 9.0 9.0 8.5 7.0 7.0 7.0 8.5 9.5 7.5 7.5 9.0 8.5 7.5 7.0 9.0 8.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	9.0 8.0 8.5 9.0 8.5 10.5 13.0 9.5 10.5 9.5 10.0 10.5 11.0 10.5 11.5 11.5 11.5 11	JULY 7.5 6.5 6.0 7.0 7.5 6.5 8.0 7.5 6.5 7.5 8.0 8.0 9.0 9.0 9.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.0 7.5 7.0 8.0 7.5 9.0 9.5 9.0 8.5 9.0 9.0 9.5 9.5 9.0 10.0 10.5 10.5 9.0 8.5 9.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	12.0 11.5 12.5 13.0 13.5 11.0 9.5 9.5 9.5 9.0 11.0 11.5 10.5 8.5 9.0 10.0 9.5 10.0 9.5	AUGUST 7.5 7.5 8.0 8.0 8.5 9.5 8.5 8.5 8.0 7.5 8.0 8.5 8.0 7.5 8.0 8.5 8.0 7.5 8.0 8.0 8.5 7.0 8.0 8.7 8.0 8.0 8.5 7.0 8.0 8.7 8.0 8.7 8.0 8.7 8.0 8.7 8.0 8.0 8.7 8.0 8.0 8.7 8.0 8.0 8.7 8.0 8.0 8.7 8.0 8.0 8.7 8.0 8.0 8.7 8.0 8.0 8.7 8.0 8.0 8.7 8.0 8.0 8.7 8.0 8.0 8.7 8.0 8.0 8.5	9.5 9.0 10.0 10.5 10.0 9.0 8.5 8.5 10.0 9.0 8.5 8.5 8.5 9.0 8.5 9.0 8.5 8.5 9.0 8.5 8.5 9.0 8.5 8.5	9.0 10.5 10.0 10.5 10.0 8.5 8.5 8.0 9.5 8.0 8.5 7.5 8.0 8.0 7.0 7.5 7.5 8.5 8.0 8.5 8.0 7.0 8.5 8.0 8.0 7.0 8.5 8.0 8.0 7.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	7.0 6.5 7.5 6.5 7.5 7.0 7.0 6.5 7.0 7.0 6.5 6.0 6.5 7.0 6.5 6.5 7.0 7.0 6.5 6.5 7.0 7.0 6.5 6.5 7.0	8.0 8.5 8.5 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
DAY 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	6.0 6.5 8.5 7.0 8.5 7.0 9.0 10.0 7.0 7.0 11.0 12.0 12.0 11.0 8.0 8.0 8.0 11.0 9.5 9.0 8.5	JUNE 5.0 5.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0 5.5 7.0 7.5 7.0 6.5 6.0 6.0 6.5 6.5 6.5 8.0	5.5 6.0 6.0 6.0 6.0 6.0 7.5 7.0 6.0 9.0 9.0 9.0 7.0 7.0 8.5 7.0 9.0 7.0 8.5 7.5 9.0 7.5 9.0 7.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	9.0 8.0 8.5 9.0 8.5 10.5 13.0 10.5 9.5 10.0 12.0 10.5 11.0 10.5 11.5 11.5 11.5 11.5 11	JULY 7.5 6.5 6.0 7.0 7.5 6.5 8.0 7.5 6.5 7.5 8.0 8.0 7.5 8.0 8.0 9.0 9.5 8.0 8.0 9.0 9.5 8.7 8.0 8.0 9.0 9.0 9.5 8.7	8.0 7.5 7.0 8.0 7.5 9.0 9.5 9.0 8.5 9.0 9.0 9.5 9.0 10.0 10.0 10.5 9.0 8.5 9.5	12.0 11.5 12.5 13.0 13.5 11.0 9.5 9.5 9.0 11.0 11.5 10.5 8.5 9.0 10.0 9.5 9.0 10.0 9.5 9.0	AUGUST 7.5 7.5 8.0 8.0 8.5 9.5 8.5 8.0 7.5 8.0 9.0 8.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 8.0 8.5 7.0 8.0 8.0 8.5 8.0 8.0 8.0 8.0	9.5 9.0 10.0 10.5 10.0 9.0 8.5 8.5 10.0 9.0 8.5 8.5 9.0 8.5 9.0 8.5 8.5 9.0 8.5 8.5	9.0 10.5 10.0 10.5 10.0 8.5 8.5 8.0 8.5 9.5 8.0 8.5 7.5 8.0 8.5 7.5 8.0 8.5 7.5 8.5 7.5 8.5 7.5 8.5	7.0 6.5 7.5 6.5 7.5 7.0 6.5 7.0 7.0 6.5 7.0 6.5 6.0 6.5 7.0 6.5 7.0 7.0 6.5 7.0 7.0 6.5 7.0 7.0 6.5 7.0 7.0 6.5 7.0 7.0 6.5 7.5	8.0 8.5 8.5 8.0 8.5 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5

15057580 KAHTAHEENA RIVER ABOVE UPPER FALLS NEAR GUSTAVUS

LOCATION.--Lat $58^{\circ}26'37''$, long $135^{\circ}36'01''$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ sec. 36, T. 39 S., R. 59 E. (Juneau B-5 quad), Hydrologic Unit 19010302, in Glacier Bay National Park and Preserve, 1.7 miles above the mouth at Icy Passage, 4.5 mi east of Gustavis, and 44 mi west of Juneau.

DRAINAGE AREA.--10.1 mi²

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1999 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 560 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges and those above 180 $\mathrm{ft^3/s}$, which are poor. GOES satellite telemetry at station.

		DISC	HARGE, CUI	BIC FEET E	PER SECOND,	WATER	YEAR OCTOBE	R 2001	TO SEPTEMBER	2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	58	25	e12	20	e7.8	e8.5	e8.5	87	109	36	31	158
2	92	69	e11	19	e7.7	e24	e8.4	49	122	90	26	113
3	55	46	e10	21	e7.5	e17	e8.3	33	128	170	22	74
4	44	29	e11	25	e7.4	e14	e7.8	25	190	175	20	55
5	36	22	e12	26	e7.3	e11	e7.5	22	209	118	18	44
6	46	19	e13	68	e7.2	e10	e7.4	22	168	73	17	39
7 8	35 47	17 18	e20 e36	57 57	e7.1 e9.0	e9.5 e9.0	e7.3 e7.3	23 25	123 99	53 42	263 206	86 61
9	39	23	e36 e25	47	e13	e8.5	e7.3 e7.3	31	113	37	206 171	50
10	38	33	e14	49	e16	e8.0	e7.3	56	147	36	110	44
11	59	24	e15	33	e14	e7.6	e7.8	73	107	33	76	52
12 13	144 84	18 16	e13 e11	26	e70 e33	e7.4 e7.2	e8.6 e9.5	88 136	78 71	29 28	718 342	41 35
14	61	16	e11 e8.5	22 20	e56	e7.2 e6.9	e9.5 e10	112	71	28 53	241	33
15	49	19	e7.5	32	e58	e6.7	e11	88	7 6 8 5	40	116	49
16	73	22	e6.4	39	e86	e6.5	e11	110	76	34	73	83
17	126	22	e6.0	22	25	e6.3	e12	142	64	34	54	53
18	272	17	e5.6	23	16	e6.0	e13	145	62	34	51	257
19	213	16	e5.3	25	13	e6.0	e18	188	62	30	43	143
20	114	18	e5.6	19	e11	e5.8	e25	238	68	24	50	116
21	78	18	e6.0	e16	e10	e5.8	e26	232	56	30	206	247
22	60	25	e7.4	e15	e9.0	e5.7	e22	174	46	33	157	114
23	46	38	e9.0	e12	e8.3	e5.6	e20	155	43	35	260	76
24	41	24	e100	e12	e7.6	e5.5	e20	127	50	174	134	58
25	34	e19	e60	e11	e7.0	e6.3	e19	127	73	250	86	50
26	29	e16	e50	e10	e8.6	e7.8	e20	128	75	333	65	46
27	25	e15	e42	e10	e8.2	e10	23	112	68	166	82	43
28	24	e14	e36	e9.5	e7.8	e9.6	29	167	55	97	108	38
29	33	e13	31	e8.8		e9.0	34	182	44	67	103	36
30	24	e12	26	e8.4		e9.0	39	136	42	49	104	32
31	20		23	e8.0		e8.7		93		38	122	
TOTAL	2099	683	638.3	770.7	538.5	268.9	455.1	3326	2711	2441	4075	2326
MEAN	67.71	22.77	20.59	24.86	19.23	8.674	15.17	107.3		78.74	131.5	77.53
MAX	272	69 12	100	68	86 7.0	24 5.5	39 7.3	238 22	209 42	333 24	718 17	257 32
MIN MED	20 47	12	5.3 12	8.0 21	9.0	7.8	11	112	42 75	40	103	52 52
MED AC-FT	4160	1350	1270	1530	1070	533	903	6600	5380	4840	8080	4610
CFSM	6.70	2.25	2.04	2.46	1.90	0.86	1.50	10.6	8.95	7.80	13.0	7.68
IN.	7.73	2.52	2.35	2.84	1.98	0.99	1.68	12.25	9.99	8.99	15.01	8.57
MEAN	98.9	52.3	82.2	29.5	17.1	21.4	31.0	74.2	108	70.3	44.1	105
MAX	121	54.9	128	40.4	23.4	22.7	37.8	90.6	114	79.1	61.6	128
(WY)	2000	2000	2000	2001	2001	2000	2000	2000	2000	2000	2000	1999
MIN	77.1	49.7	36.7	18.7	11.0	20.0	24.2	57.9	103	61.5	26.7	84.5
(WY)	2001	2001	2001	2000	2000	2001	2001	2001	2001	2001	2001	2001
STATI	STICS OF	MONTHLY	MEAN DATA	FOR WATER	R YEARS 199	9 - 200	2, BY WATER	YEAR (WY)#			
MEAN	88.51	42.47	61.68	27.96	17.81	17.13	25.72	85.26	102.4	73.10	73.25	97.85
MAX	121	54.9	128	40.4	23.4	22.7	37.8	107	114	79.1	131	128
(WY)	2000	2000	2000	2001	2001	2000	2000	2002	2000	2000	2002	1999
MIN	67.7	22.8	20.6	18.7	11.0	8.67	15.2	57.9	90.4	61.5	26.7	77.5
(WY)	2002	2002	2002	2000	2000	2002	2002	2001	2002	2001	2001	2002

 $[\]mbox{\#}$ See Period of Record, partial years used in monthly statistics e $\mbox{Estimated}$

15057580 KAHTAHEENA RIVER ABOVE UPPER FALLS NEAR GUSTAVUS—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1999 - 2002#
ANNUAL TOTAL	16820.1	20332.5	
ANNUAL MEAN	46.08	55.71	58.83
HIGHEST ANNUAL MEAN			70.3 2000
LOWEST ANNUAL MEAN			50.5 2001
HIGHEST DAILY MEAN	283 Sep 13	718 Aug 12	1110 Dec 27 1999
LOWEST DAILY MEAN	5.3 Dec 19	5.3 Dec 19	5.0 Mar 10 2000
ANNUAL SEVEN-DAY MINIMUM	6.0 Dec 16	5.8 Mar 18	5.8 Mar 18 2002
MAXIMUM PEAK FLOW		1610 Aug 12	a1650 Dec 27 1999
MAXIMUM PEAK STAGE		30.49 Aug 12	30.52 Dec 27 1999
INSTANTANEOUS LOW FLOW		b	5.0 Mar 10 2000
ANNUAL RUNOFF (AC-FT)	33360	40330	42620
ANNUAL RUNOFF (CFSM)	4.56	5.52	5.82
ANNUAL RUNOFF (INCHES)	61.95	74.89	79.14
10 PERCENT EXCEEDS	95	136	127
50 PERCENT EXCEEDS	33	33	37
90 PERCENT EXCEEDS	11	7.7	10

[#] See Period of Record, partial years used in monthly statistics a From rating curve extended above 130 ${\rm ft}^3/{\rm s}$ b Undetermined, see lowest daily value

15057580 KAHTAHEENA RIVER ABOVE UPPER FALLS NEAR GUSTAVUS—Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1999 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: October 1999 to current year.

INSTRUMENTATION.-- Electronic water-temperature recorder set for 1-hour recording interval.

REMARKS.--Records represent water temperature at the sensor within $0.5^{\circ}C$.

EXTREMES FOR PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: Maximum, 13.5°C, August 13-15, 2001; minimum, 0.0°C, on many days during winter periods.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum, 12.0°C, August 5; minimum, 0.0°C, on many days during the winter.

WATER TEMPERATURE, WATER (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NC	VEMBER		DE	ECEMBER			JANUARY	
1 2 3 4 5	7.5 7.5 7.0 7.5	7.0 6.5 6.5 7.0 6.0	7.0 7.0 7.0 7.0 6.5	3.5 3.0 3.5 2.5 3.0	2.5 2.5 2.5 2.0 1.5	3.0 3.0 3.0 2.5 2.5	0.5 0.5 0.5 0.5	0.5 0.0 0.0 0.0	0.5 0.5 0.0 0.0	1.5 1.5 1.5 1.0	1.0 1.5 1.0 0.5	1.0 1.5 1.5 1.0
6 7 8 9 10	7.5 6.5 7.0 6.5 6.5	6.5 6.0 6.5 6.0	7.0 6.5 6.5 6.5	2.0 2.0 2.5 2.5 3.0	1.0 1.0 1.5 2.0 2.5	1.5 1.5 2.0 2.5 3.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.0 1.5 1.5 2.0 2.0	0.5 1.0 1.0 1.5	0.5 1.5 1.5 2.0 1.5
11 12 13 14 15	6.5 6.0 5.5 5.5	5.5 5.0 5.0 4.5 4.0	6.0 5.5 5.5 5.0 4.5	3.0 2.5 2.0 3.0 3.0	2.5 1.0 1.0 2.0 2.5	2.5 2.0 1.5 2.5 2.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.0 1.5 1.5 2.0 1.5	1.5 1.0 1.0 1.5	2.0 1.5 1.5 1.5
16 17 18 19 20	5.0 5.5 5.5 5.0 4.5	4.5 5.0 5.0 4.5 4.5	5.0 5.5 5.0 4.5	3.0 2.5 3.0 3.5 3.5	2.5 2.5 2.5 2.5 3.0	2.5 2.5 3.0 3.0 3.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.5 1.5 1.5 1.0	1.0 0.5 0.0 1.0	1.0 1.0 1.0 1.0
21 22 23 24 25	5.0 5.0 4.5 4.0 3.5	4.5 4.0 4.0 3.5 2.5	4.5 4.5 4.0 4.0 3.0	4.0 4.0 3.5 2.5 1.0	3.0 3.5 2.5 1.0 0.0	3.5 3.5 3.0 1.5 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
26 27 28 29 30 31	3.0 3.0 3.0 3.0 2.5	2.5 2.0 1.5 2.5 2.5	2.5 2.5 2.5 3.0 2.5 2.0	0.5 0.5 0.5 0.5	0.0 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.0 0.0 0.5 1.0 1.5	0.0 0.0 0.0 0.5 1.0	0.0 0.0 0.0 1.0 1.0	0.0 0.5 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
MONTH	7.5	1.5	5.0	4.0	0.0	2.1	1.5	0.0	0.1	2.0	0.0	0.8

15057580 KAHTAHEENA RIVER ABOVE UPPER FALLS NEAR GUSTAVUS—Continued

WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
2 3 4 5	0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.5 3.0 2.5 3.5 3.5	0.5 0.5 0.5 0.5	1.0 1.5 1.5 1.5
	0.5 0.5 0.5 0.0	0.0 0.0 0.0 0.0	0.0 0.5 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0			4.0 3.0 4.5 2.5 2.0		
11 12 13 14 15	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.5 3.0 2.5 3.0 3.5	1.5 1.5 2.0 2.0	2.0 2.0 2.0 2.5 2.5
	0.0	0.0		0.0 0.0 0.0 0.0			0.0 0.0 0.0 0.0			4.0 4.5 5.0 5.0		
21 22 23 24 25	0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.0					0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	4.0 4.0 4.0 5.5 6.5	2.5 3.0 3.0 3.0 2.5	3.5 3.5 3.5 4.0 4.5
							0.5 1.0 1.5 2.0 3.0					
MONTH	0.5	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.1	6.5	0.0	2.9
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	JUNE			JULY			AUGUST			SEPTEMBE	ER.
1 2 3 4	5.0 5.5 6.5	JUNE			JULY			AUGUST			SEPTEMBE	ER.
1 2 3 4 5	5.0 5.5 6.5 6.0	JUNE	4.5 4.5 5.0 5.0		JULY 7.0 6.5 7.0 6.5 6.0	7.5 7.5 7.5 7.0 6.5		7.0 8.0 8.0 7.5 7.5	9.0 9.0 9.5 9.5		8.0 7.0 7.5 6.5 7.0	8.5 8.0 8.5 7.5 8.0
1 2 3 4 5 6 7 8 9	5.5.5 6.0 5.5.5 6.0 5.5.5 5.5.5	JUNE 4.0 4.0 4.0 4.5 4.0	4.5 4.5 5.0 5.0 5.0 4.5 5.5 5.5 5.5	8.0 8.0 7.0 7.5 7.5 9.5 9.0 9.0	JULY 7.0 6.5 7.0 6.5 6.0 6.5 6.0 7.0	7.5 7.5 7.5 7.0 6.5 7.0 7.5 8.5 8.5 7.5	10.5 11.0 10.5 11.5 12.0	7.0 8.0 8.0 7.5 7.5 9.0 9.0 9.0 8.0 7.5	9.0 9.0 9.0 9.5 9.5 10.0 10.0 9.0 8.5 8.0	9.0 9.0 9.0 8.5 9.0 8.5 9.0 9.0 8.5	8.0 7.0 7.5 6.5 7.0 7.5 8.0 8.0 8.0 7.5	8.5 8.0 8.5 7.5 8.0 8.0 9.0 9.0 8.5 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	5.0 5.5 6.5 6.0 5.5 5.5 5.5 5.5 5.5 8.5	JUNE 4.0 4.0 4.5 4.0 4.5 4.0 4.5 5.0 5.0 4.5 4.5	4.5 4.5 5.0 5.0 5.0 5.0 5.5 5.5 5.5 5.7	8.0 8.0 7.0 7.5 7.5 9.5 9.0 8.0	JULY 7.0 6.5 7.0 6.5 6.0 6.5 6.0 7.0 7.5 8.0 7.5 8.0	7.5 7.5 7.5 7.0 6.5 7.0 7.5 8.5 8.5 7.5	10.5 11.0 10.5 11.5 12.0 11.0 10.0 9.5 9.0 8.5	7.0 8.0 8.0 7.5 7.5 9.0 9.0 9.0 8.0 7.5 7.5 8.5 7.5	9.0 9.0 9.5 9.5 9.5 10.0 10.0 8.5 8.0 8.0 8.0	9.0 9.0 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5	8.0 7.0 7.5 6.5 7.0 7.5 8.0 8.0 7.5 7.5 7.5 7.5	8.5 8.0 8.5 7.5 8.0 9.0 8.5 8.5 8.0 8.5 8.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	5.5 6.0 5.5 6.0 5.5 5.5 5.0 5.5 9.5 7.5 6.5	JUNE 4.0 4.0 4.5 4.0 4.5 4.0 4.5 5.0 5.0 6.0 6.0 6.0	4.55.00 5.00 5.05 5.05 5.00 5.55 5.50 7.55 7.55	8.0 8.0 7.0 7.5 7.5 9.5 10.0 9.0 8.0 8.5 9.5 9.5 9.5	JULY 7.0 6.5 7.0 6.5 6.0 6.0 5.5 6.0 7.0 7.5 7.0 7.5 8.0 7.5 8.0 8.0	7.5 7.5 7.5 7.0 6.5 7.0 8.5 8.5 7.5 8.0 8.0 8.0 8.0 8.5 8.0	10.5 11.0 10.5 11.5 12.0 11.0 10.0 9.5 9.0 8.5 10.0 8.5 9.0 9.0 8.5 9.0	7.0 8.0 8.0 7.5 7.5 9.0 9.0 9.0 8.0 7.5 7.5 8.5 7.5 8.5 7.5	9.0 9.0 9.5 9.5 9.5 10.0 10.0 9.0 8.5 8.0 8.0 8.0 8.0 8.0 8.0	9.0 9.0 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5	8.0 7.0 7.5 6.5 7.0 7.5 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.0 6.0 7.0	8.5 8.0 8.5 7.5 8.0 9.0 8.5 8.0 8.0 8.0 7.5 8.0 8.0 7.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	5.5 6.0 5.5 6.0 5.5 5.5 5.0 5.5 5.5 5.0 5.5 7.0 5.5 7.0 7.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	JUNE 4.0 4.0 4.5 4.0 4.5 4.0 5.0 5.0 4.5 4.5 6.0 6.0 6.0 6.0 5.5 5.5 7.0 7.0	4.55.00 5.00 5.05 5.00 5.55 5.50 7.55 7.55	8.0 8.0 7.0 7.5 9.5 9.0 8.0 8.5 9.5 8.5 9.5 9.0 9.0 9.0 11.0	JULY 7.0 6.5 7.0 6.5 6.0 6.5 8.0 7.0 7.5 7.5 8.0 7.5 8.0 7.5 9.0 9.0	7.5 7.5 7.5 7.0 6.5 7.0 8.5 8.5 7.5 8.0 8.0 8.0 8.0 8.0 8.5 9.0 9.0 9.5 9.0	10.5 11.0 10.5 11.5 12.0 11.0 10.0 9.5 9.0 8.5 10.0 8.5 9.0 9.0 8.5 8.5 8.5 8.5 9.0 9.0 9.0 8.5	7.0 8.0 8.0 7.5 7.5 9.0 9.0 9.0 8.0 7.5 7.5 8.5 7.5 8.0 7.0 7.5 7.5 8.0 7.0	9.0 9.0 9.5 9.5 9.5 10.0 10.0 9.0 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	9.0 9.0 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 7.5 8.5 8.0 7.5 8.0 7.5	8.0 7.0 7.5 6.5 7.0 7.5 8.0 8.0 7.5 7.5 7.5 7.5 7.0 6.0 7.0 6.5 7.0	8.5 8.0 8.5 7.5 8.0 8.0 9.0 8.5 8.0 8.0 7.5 8.0 8.0 7.5 8.0 7.5 7.0 7.5

15070000 SWAN LAKE NEAR KETCHIKAN

LOCATION.--Lat $55^{\circ}36'54''$, long $131^{\circ}20'14''$, in $SW^{1}_{/4}$ NE $^{1}_{/4}$ sec. 20, T. 72 S., R. 92 E. (Ketchikan C-4 quad), Hydrologic Unit 19010102, Ketchikan Gateway Borough, on Revillagigedo Island, in Tongass National Forest, 0.7 mi upstream from mouth at Carroll Inlet, and 22 mi northeast of Ketchikan.

DRAINAGE AREA. -- 36.5 mi².

PERIOD OF RECORD.--September 1916 to January 1926, September 1927 to December 1933 and October 1946 to September 1959 (discharge). Published as "Swan Lake Outlet at Carroll Inlet" prior to 1946 and as "Falls Creek near Ketchikan" October 1946 to September 1959. Monthly discharges only for some periods, published in WSP 1372. October 1984 to current year (month end reservoir contents and monthly discharges).

REVISED RECORDS.--WSP 1372: Drainage area, 1918.

GAGE.--Non-recording lake-level staff gage. Datum of lake-level staff gage is at sea level. Totalizing MWH meters on the two turbines in Swan Lake Powerhouse. September 1916 to January 1926 and September 1927 to December 1933 at site 1,500 ft downstream at different datum. October 1946 to September 1959, recording gage at site 2,500 ft downstream, elevation of gage was 130 ft above sea level, from topographic map.

REMARKS.--Reservoir is formed by a concrete arch dam located at the outlet of Swan Lake; construction began in August 1980 and was completed in March 1983. Total and usable capacities below spillway crest of 330 ft are 126,200 and 82,800 acre-ft, respectively. Reservoir is used for power. Discharge released through turbines is computed from relation between discharge, head, and power generation; release flow enters directly into Carroll Inlet and is not returned to stream. Spill is computed from a theoretical relation between discharge and stage above crest of the spillway. Turbine and spillway ratings and reservoir capacity table furnished by the City of Ketchikan in 1985.

COOPERATION. -- Reservoir elevations and release flow provided by the City of Ketchikan.

AVERAGE DISCHARGE.--46 years (water years 1917-25, 1928-33, 1947-59, 1985-2002), 444 $\mathrm{ft^3/s}$, 165.2 $\mathrm{in/yr}$, 321,700 acre-ft/yr. Mean discharge for water years 1985-2002 adjusted for change in contents of Swan Lake.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 132,200 acre-ft, November 29, 1987, elevation, 334.2 ft; minimum contents observed, 51,770 acre-ft, September 22, 1993, elevation, 278.4 ft. Maximum discharge, about 5,500 ft³/s, November 1, 1917; minimum daily discharge, 19 ft³/s, February 21 to 25, 1925. Maximum daily discharge since construction of dam, 3,680 ft³/s, November 30, 1988; no flow released several days most years.

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 130,222 acre-ft, September 23, 2002, elevation, 332.80 ft; minimum contents observed, 63,806 acre-ft, March 18-19, 2002, elevation, 286.9 ft. Maximum release from reservoir (mean daily, not adjusted for changes in storage),1,399 ft³/s, September 22, 2002; minimum release, 97.0 ft³/s.

MONTH END RESERVOIR ELEVATION, IN FEET ABOVE SEA LEVEL, AND CONTENTS, IN ACRE FEET

WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

			CHANGE IN
DATE	ELEVATION	CONTENTS	CONTENTS
Sep 30	333.9	131,880	
Oct 31	330.9	127,620	-4,260
Nov 30	327.1	121,970	-5,650
Dec 31	319.2	110,550	-11,420
Jan 31	311.4	99,260	-11,290
Feb 28	299.4	80,900	-18,360
Mar 31	288.7	66,420	-14,480
Apr 30	292.9	72,470	+6,050
May 31	312.2	100,420	+27,950
Jun 30	311.9	99,980	-440
Jul 31	326.9	121,680	+21,700
Aug 31	331.2	127,910	+6,230
Sep 30	330.2	126,460	-1,450
		CAL YR 2001	2,170
		WTR YR 2002	-5,420

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MEAN VALUES

MONTH	RELEASE	SPILL	TOTAL	ADJUSTED
OCT	386	165	551	482
NOV	407	175	582	487
DEC	512	0	512	326
JAN	467	0	467	283
FEB	476	0	476	145
MAR	300	0	300	64
APR	113	0	113	215
MAY	343	0	343	798
JUN	389	0	389	382
JUL	453	13	466	819
AUG	408	62	470	571
SEP	352	311	663	639
CAL YR 2001	441	51.6	492	495
WTR YR 2002	384	60.3	444	437

15072000 FISH CREEK NEAR KETCHIKAN

LOCATION.--Lat $55^{\circ}23'31''$, long $131^{\circ}11'38''$, in $SW^{1}/_{4}SW^{1}/_{4}$ sec. 6, T. 75 S., R. 94 E. (Ketchikan B-4 quad.), Gateway Borough, Hydrologic Unit 19010102, on Revillagigedo Island, in Tongass National Forest, on right bank 250 ft upstream from outlet of Low Lake, 750 ft upstream from mouth at Thorne Arm, and 18 mi east of Ketchikan.

DRAINAGE AREA.--32.1 $\mathrm{mi}^{\,2},$ excludes that of Granite Lake drainage basin.

PERIOD OF RECORD.--May 1915 to October 1936, October 1938 to current year. Prior to October 1945, monthly discharge only. Records of daily discharge prior to October 1945 are available in computer files of the Geological Survey. Prior to January 1921, published as "near Sea Level, Revillagigedo Island."

REVISED RECORDS. -- WSP 1372: 1918.

GAGE.--Water-stage recorder. Elevation of gage is 20 ft above sea level, by barometer. Prior to October 1935, at site 150 ft downstream at different datum. October 1935 to October 3, 1975, at prior site and present datum.

REMARKS.--No estimated daily discharges. Records fair. GOES satellite telemetry at station.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2,200 ft^3/s and/or maximum (*):

	Date	Time	<u> </u>	scharge Et ³ /s)	Gage height (ft)		Date		Time	Discharge (ft ³ /s)	Gage height (ft)	
	Aug 28	020	0 *	2450	*3.59		No oth	her pe	ak greater	than base	discharge	
		DISC	HARGE, CU	JBIC FEET			YEAR OCTOBER	2001	TO SEPTEM	BER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1270	749	163	350	128	117	114	303	1690	635	200	931
2	879	837	146		232	115	103	364	1400	786	201	980
3	651	1010	140	367	258	146	95	364	1120	714	195	811
4	500	868	138	391	271	147	88	339	1060	604	181	622
5	401	723	135	350	220	127	86	300	1020	593	167	483
6	343	607	138	513	178	112	83	262	883	542	153	386
7	378	573	299		152	102	81	232	746	465	147	330
8	543	527	463	856	137	95	79	214	631	402	215	444
9	538	511	477	760	181	90	79	202	568	355	432	665
10	667	474	455	850	223	87	96	202	552	329	478	894
11	645	564	406	767	212	91	112	254	524	322	431	901
12	830	595	453	811	294	97	140	408	484	308	367	733
13	775	612	472	595	352	91	179	539	458	331	402	569
14	615	819	414	460	378	85	220	623	455	366	388	453
15	738	847	343	373	532	77	231	587	465	334	334	651
16	797	839	292	316	474	71	217	530	449	318	287	1140
17	697	707	256	274	384	66	199	541	427	394	249	1410
18	763	558	235	252	314	62	187	516	406	392	218	1520
19	705	496	215		298	58	185	483	380	355	195	1360
20	609	553	192	245	268	54	193	508	349	320	175	969
21	578	609	177	221	226	52	208	567	322	295	164	852
22	546	680	164	194	196	49	220	623	302	276	225	1430
23	474	605	245	182	172	48	214	650	303	257	523	1620
24	478	500	666	182	153	47	203	599	378	251	647	1140
25	452	413	857	164	143	97	188	550	732	281	960	782
26	542	340	798	147	135	179	178	533	903	262	1380	597
27	534	285	703	134	132	150	171	547	796	238	1920	509
28	675	243	625		124	137	172	768	643	228	2260	546
29	761	211	551	116		127	188	1190	541	228	1540	449
30	749	186	468	116		129	225	1720	505	226	1000	368
31	654		405	134		127		1630		213	925	
TOTAL	19787	17541	11491	11636	6767	3032	4734	17148	19492	11620	16959	24545
MEAN	638.3	584.7	370.7		241.7	97.81	157.8	553.2	649.7	374.8		818.2
MAX	1270	1010	857		532	179	231	1720	1690	786	2260	1620
MIN	343	186	135		124	47	79	202	302	213	147	330
MED	645	584	343	313	221	95	178	530	532	329	334	758
AC-FT	39250	34790	22790	23080	13420	6010		34010	38660	23050		48690
CFSM	19.9	18.2	11.5	11.7	7.53	3.05	4.92	17.2	20.2	11.7	17.0	25.5
IN.	22.93	20.33	13.32	13.48	7.84	3.51		19.87	22.59	13.47		28.44
STATIST	rics of	MONTHLY I	MEAN DATA	FOR WATE	R YEARS 1915	5 - 2002	2, BY WATER Y	EAR (V	VY)#			
MEAN	698.7	567.6	420.4	350.6	317.5	261.6	352.9	504.3	472.6	335.3	334.3	445.0
MAX	1326	1767	1081		944	673	655	867	764	718	767	966
(WY)	1975	1918	1931	1926	1993	1986	1949	1999	1951	1976	1972	2001
MIN	237	89.2	83.4	37.9	37.8	71.4	130	182	142	65.3	50.7	80.0
(WY)	1926	1974	1984	1950	1969	1969	1967	1998	1998	1958	1965	1965

[#] See Period of Record

15072000 FISH CREEK NEAR KETCHIKAN—Continued

SUMMARY STATISTICS	FOR 2001 CALEND	AR YEAR	R F	OR 2002 WAT	rer y	EAR	WATER YEARS	191	5 -	2002#
ANNUAL TOTAL	178902			164752						
ANNUAL MEAN	490.1			451.4			422.7			
HIGHEST ANNUAL MEAN							556			1992
LOWEST ANNUAL MEAN							302			1978
HIGHEST DAILY MEAN	2910	Sep 23	3	2260	Aug	28	4410	Oct	15	1961
LOWEST DAILY MEAN	80	Feb 26	6	47	Mar	24	20	Sep	9	1928
ANNUAL SEVEN-DAY MINIMUM	92	Feb 20	0	53	Mar	18	23	Sep	5	1928
MAXIMUM PEAK FLOW				2450	Aug	28	a5400	Oct	15	1961
MAXIMUM PEAK STAGE				3.59	Aug	28	b5.85	Oct	15	1961
INSTANTANEOUS LOW FLOW				c46	Mar	24	20	Sep	9	1928
ANNUAL RUNOFF (AC-FT)	354900			326800			306300	_		
ANNUAL RUNOFF (CFSM)	15.3			14.1			13.2			
ANNUAL RUNOFF (INCHES)	207.33			190.93			178.93			
10 PERCENT EXCEEDS	868			851			864			
50 PERCENT EXCEEDS	427			373			320			
90 PERCENT EXCEEDS	151			123			98			

[#] See Period of Record a From rating curve extended above 3,600 ft $^3/s$ b At site then in use c Mar. 24-25

Discharge

Gage height

15081495 NORTH FORK STANEY CREEK NEAR KLAWOCK

LOCATION.--Lat $55^{\circ}43'58''$, long $132^{\circ}58'02''$, in NE^{1}_{4} NE^{1}_{4} sec. 10, T. 71 S., R. 81 E. (Craig C-4 quad), Hydrologic Unit 19010103, on Prince of Wales Island, in Tongass National Forest, on left bank, immediately upstream from bridge on Forest Road 2050, 6 mi upstream from Middle Fork Staney Creek and 12.4 mi north of Klawock.

DRAINAGE AREA. -- 3.07 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1990 to current year.

Discharge

REVISED RECORDS.--WDR AK-92-1: 1991. WDR AK-00-1: 1990(M), 1991-92(P), 1993, 1994-99(P).

GAGE.--Water-stage recorder. Elevation of gage is 600 ft above sea level, from topographic map.

Gage height

 $REMARKS.--Records good except for those above 200 ~{\rm ft}^3/{\rm s} ~{\rm which} ~{\rm are} ~{\rm fair} ~{\rm and} ~{\rm estimated} ~{\rm daily} ~{\rm discharges} ~{\rm which} ~{\rm are} ~{\rm poor}.$

EXTREMES FOR CURRENT YEAR.-- Peak discharges greater than base discharge of 350 ft3/s (revised) and maximum (*):

Da	ate	Time	Disch (ft³		Gage heigh (ft)	t	Date	Time		scharge ft ³ /s)	Gage l (f	
Oct	12	0200	36	52	4.43		Sep 16	1445		397		4.55
Feb	14	2000	*6	60	*5.32		Sep 21	1045		357		4.41
Aug	g 23	0445	36	58	4.45							
		DISCH	HARGE, CU	BIC FEET	PER SECOND,	WATER Y		BER 2001 I	O SEPTEMI	BER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	23 15 11 8.3 6.4	53 43 79 15	1.3 0.91 e1.0 e1.3 1.7	9.3 12 14 8.1 20	4.9 15 22 33 10	5.2 e4.7 e14 e6.6 e4.3	e3.8 e3.5 e3.2 e3.1 2.7	29 18 12 8.1 6.1	23 18 18 22 15	3.8 5.1 3.0 3.0 4.9	3.1 9.6 10 4.8 3.0	21 39 11 6.6 4.7
6 7 8 9 10	8.9 21 24 36 54	6.8 18 36 47 21	1.9 e47 e35 e27 48	58 42 24 13 23	4.5 3.0 4.1 23 39	e3.9 e3.6 e3.3 e3.0 e2.8	2.7 2.9 3.3 3.6 7.7	5.2 5.4 6.8 8.5 16	12 9.7 9.7 11 10	4.0 2.7 2.2 2.2 2.1	2.5 11 79 36 11	3.8 6.5 29 35 31
11 12 13 14 15	49 138 15 6.5 55	12 6.2 17 54 20	30 39 19 7.4 5.2	8.3 8.7 6.5 5.4 6.0	46 133 26 304 123	e3.2 e3.4 e3.4 e3.2 e3.0	8.0 11 37 26 15	37 77 33 20 16	7.7 7.5 8.9 9.4 7.2	2.1 1.8 1.8 1.8	7.9 8.4 48 11 5.4	19 9.1 5.7 6.9 34
16 17 18 19 20	57 91 50 51 17	27 16 12 12 26	e4.3 e3.9 e3.6 e3.4 e3.4	9.7 5.6 14 15 8.2	23 11 7.9 6.8 6.3	e2.8 e2.5 e2.3 e2.2 e2.2	10 9.9 9.9 12 18	26 26 24 23 29	5.1 4.6 4.5 3.9 3.5	6.7 17 6.8 4.7 3.4	3.9 3.7 3.0 2.6 2.4	149 61 70 30 15
21 22 23 24 25	50 15 10 24 10	22 25 8.7 4.9 3.5	5.0 8.2 e50 e130 29	4.3 e3.8 4.1 6.2 5.1	7.2 5.7 e5.5 e5.0 4.5	e2.0 e1.8 e1.9 2.0 6.7	22 15 10 8.3 7.5	28 25 16 16 21	3.3 3.4 4.0 3.6 8.2	5.9 11 5.6 12 7.9	9.3 54 107 17 63	137 57 30 12 8.1
26 27 28 29 30 31	19 16 63 68 29 15	2.3 e1.8 e1.6 e1.5	15 24 23 18 13	5.7 e3.3 e3.2 e3.2 e4.7 6.9	4.3 8.8 6.2 	25 15 7.3 4.8 4.5 4.1	9.2 11 17 27 37	20 19 24 31 29 25	5.6 4.6 3.9 3.1 2.7	4.0 3.1 3.4 3.9 3.8 3.1	69 51 32 16 12 73	7.2 16 13 7.3 5.1
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1056.1 34.1 138 6.4 2090 11.1 12.80	603.6 20.1 79 1.3 1200 6.55 7.31	609.51 19.7 130 0.91 1210 6.40 7.39	361.3 11.7 58 3.2 717 3.80 4.38	892.7 31.9 304 3.0 1770 10.4	154.7 4.99 25 1.8 307 1.63 1.87	357.3 11.9 37 2.7 709 3.88 4.33	680.1 21.9 77 5.2 1350 7.15 8.24	253.1 8.44 23 2.7 502 2.75 3.07	144.5 4.66 17 1.7 287 1.52 1.75	769.6 24.8 107 2.4 1530 8.09 9.33	880.0 29.3 149 3.8 1750 9.55 10.66
MEAN MAX (WY) MIN	34.3 61.1 2000 18.5 1993	MONTHLY M 23.8 40.2 1994 13.0 1997	27.0 49.1 1991 11.5 1997	25.4 48.9 1997 11.7 2002	21.3 51.7 1993 7.51 2000	15.8 35.1 1994 4.99 2002	17.3 29.7 1997 7.76	YEAR (WY 15.0 33.8 1999 3.87 1998	8.98 21.0 1999 1.59 1993	5.84 11.8 1997 1.46	11.0 24.8 2002 1.80	25.5 45.1 1994 10.4 1993
(WY)	1993	199/	1997	2002	∠000	2002	1998	TAAR	1993	1993	1993	1993

See Period of Record; partial years used in monthly summary statistics.

Estimated

15081495 NORTH FORK STANEY CREEK NEAR KLAWOCK—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1990 - 2002#
ANNUAL TOTAL	7115.20	6762.51	
ANNUAL MEAN	19.5	18.5	19.4
HIGHEST ANNUAL MEAN			24.7 1994
LOWEST ANNUAL MEAN			15.4 1996
HIGHEST DAILY MEAN	218 Sep 30	304 Feb 14	793 Oct 26 1993
LOWEST DAILY MEAN	0.91 Dec 2	0.91 Dec 2	0.38 Jul 21 1993
ANNUAL SEVEN-DAY MINIMUM	0.98 Aug 11	1.3 Nov 28	0.49 Jul 15 1993
MAXIMUM PEAK FLOW		660 Feb 14	a1110 Jan 29 1993
MAXIMUM PEAK STAGE		5.32 Feb 14	6.34 Jan 29 1993
INSTANTANEOUS LOW FLOW		0.71 Dec 2	b0.37 Jul 20 1993
ANNUAL RUNOFF (AC-FT)	14110	13410	14040
ANNUAL RUNOFF (CFSM)	6.35	6.03	6.31
ANNUAL RUNOFF (INCHES)	86.22	81.94	85.77
10 PERCENT EXCEEDS	48	47	44
50 PERCENT EXCEEDS	11	9.3	9.4
90 PERCENT EXCEEDS	2.1	2.9	2.2

[#] See Period of Record; partial years used in monthly summary statistics a From rating extended above 140 $\rm ft^3/s$ b Jul. 20 and 21, 1993

15081495 NORTH FORK STANEY CREEK NEAR KLAWOCK—Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Water years 1991 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: November 1990 to current year.

INSTRUMENTATION.--Electronic water temperature recorder since November 20, 1990, set for 2-hour recording interval. New water temperature recorder installed April 11, 1996 with a 15-minute recording interval.

the stream average by cross sections on October 29 and April 2. No variation was found within the cross section on October 29 and a variation of 0.5°C was found on April 2. No variation was found between mean stream temperature and sensor temperature. Variation in the cross section on April 2 was likely caused by shore ice.

EXTREMES FOR PERIOD OF DAILY RECORD .--

WATER TEMPERATURE.--Maximum recorded, 18.5°C, June 30, 1992, July 16, 1993, and July 2-4, 1998; minimum, 0.0°C, on many days during winters.

EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE.--Maximum, 15.0°C July 9; minimum, 0.0°C, on many days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DATE	TIME	STREAM WIDTH (FT) (00004)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER ATURE AIR (DEG C (00020
Oct							
29	1432	20.7	2.3	2.50	27.7	3.5	2.5
29	1433	20.7	6.3	2.50	27.7	3.5	2.5
29	1434	20.7	10.3	2.50	27.7	3.5	2.5
29	1435	20.7	14.3	2.50	27.7	3.5	2.5
29	1436	20.7	18.3	2.50	27.7	3.5	2.5
Apr							
2	1250	21.0	10.0	1.96	3.5	1.0	0.0
2	1251	21.0	15.0	1.96	3.5	1.5	0.0
2	1252	21.0	20.0	1.96	3.5	1.5	0.0
2	1253	21.0	25.0	1.96	3.5	1.5	0.0

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	VEMBER		DE	CEMBER			JANUARY	
1 2 3 4 5	8.0 8.5 9.0 8.0	7.5 7.5 7.5 6.5	7.5 8.0 8.0 7.5	4.0 3.5 3.5 3.0 2.5	3.5 3.0 2.5 2.5 2.0	3.5 3.0 3.5 2.5 2.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.0 2.0 2.0 1.5 2.5	1.5 1.5 1.5 1.0	1.5 1.5 1.5 1.0 2.0
6 7 8 9 10	8.0 7.5 7.5 7.5 7.5	7.5 7.0 7.0 7.0 6.5	7.5 7.0 7.5 7.0	2.0 2.5 3.0 3.5 4.0	2.0 1.5 2.5 2.5 3.0	2.0 2.5 3.0 3.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.0 2.0 2.0 2.5 2.5	1.5 2.0 1.5 2.0	2.0 2.0 2.0 2.5 1.5
11 12 13 14 15	7.0 7.0 6.0 6.0	6.0 6.0 5.5 5.0	6.5 6.5 6.0 5.5 6.0	3.0 3.0 4.0 3.5 3.5	2.5 2.5 3.0 3.5 3.0	3.0 3.0 3.5 3.5 3.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.0 0.5 1.0 1.0	0.0 0.0 0.5 0.5	1.0 0.0 0.5 1.0
16 17 18 19 20	6.0 6.0 6.5 6.0 5.5	5.5 5.0 6.0 5.5 5.0	6.0 5.5 6.5 6.0 5.5	3.0 3.0 3.0 4.0 4.0	2.0 2.0 2.5 3.0 4.0	2.5 2.5 3.0 3.5 4.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.0 1.5 1.5 1.0	1.0 1.0 1.0 0.5	1.0 1.0 1.5 1.0
21 22 23 24 25	5.5 5.5 5.0 4.5 4.0	5.0 5.0 4.5 4.0 3.5	5.5 5.0 5.0 4.5 3.5	4.0 4.0 3.5 3.0 2.0	4.0 3.5 2.5 2.0 0.5	4.0 4.0 3.0 2.5 1.5	0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.5 0.0 0.0 0.0
26 27 28 29 30 31	3.5 2.5 3.5 3.5 3.5 4.0	2.0 2.0 2.5 3.0 3.5	2.5 2.5 3.0 3.0 3.5	0.5 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.0 1.5 1.5 1.5 2.0	0.5 1.0 1.0 1.0 1.0	1.0 1.5 1.5 1.5	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
MONTH	9.0	2.0	5.7	4.0	0.0	2.5	2.0	0.0	0.3	2.5	0.0	0.9

15081495 NORTH FORK STANEY CREEK NEAR KLAWOCK—Continued

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

		TEMPE	RATURE,	WATER, DE	GREES CI	ELSIUS, V	VATER YEAR	OCTOBER	2001 TO	SEPTEMBER	2002	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.0 1.5 1.5 1.0	0.0 0.0 0.0 0.0	0.5 0.5 0.5 0.5	4.5 4.5 2.5 4.0 5.0	1.5 1.5 1.0 1.5	2.5 3.0 2.0 2.5 3.0
6 7 8 9 10	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.5 3.0 2.5 2.5 2.0	0.0 0.0 0.0 0.5	1.0 1.0 1.0 1.5	5.5 5.0 4.5 5.0 4.0	1.5 2.5 3.0 2.0 3.0	3.5 4.0 3.5 3.5
11 12 13 14 15	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.0 1.5 1.0 2.0 2.0	0.0 0.5 0.5 0.5	1.0 1.0 0.5 1.0	3.5 3.5 3.5 4.0 4.0	2.0 2.0 2.5 2.0 2.5	2.5 2.5 3.0 3.0
16 17 18 19 20	0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.0	0.5 0.5 0.5 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	3.0 3.5 3.5 3.5 2.5	0.5 0.0 0.5 1.5	1.5 2.0 2.0 2.5 2.0	4.5 4.5 6.0 7.0 6.0	3.0 3.0 2.5 2.0 2.5	3.5 3.5 4.0 4.5 4.0
21 22 23 24 25	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.5 4.0 3.5 3.0 4.0	1.0 0.5 1.5 1.0	2.0 2.0 2.5 2.0 3.0	4.5 4.5 5.0 8.0 7.0	3.5 3.5 3.5 3.5 4.0	4.0 4.0 4.0 5.5
26 27 28 29 30 31	0.0 0.0 0.0 	0.0 0.0 0.0 	0.0 0.0 0.0 	0.0 0.0 0.0 0.5 0.5	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	4.0 5.0 5.5 5.0	1.0 1.5 1.5 1.0	2.5 3.0 3.0 2.5 2.5	5.5 6.0 6.0 5.5 6.0	4.5 4.5 4.5 4.5 4.5	5.0 5.0 5.0 5.0 5.0
MONTH	0.5	0.0	0.0	1.0	0.0	0.0	5.5	0.0	1.6	8.0	1.0	3.8
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBI	MEAN ER
1 2 3 4 5	6.5 6.5 6.0 7.5	5.0 5.0 5.5 5.0	5.5 6.0 6.0 5.5 6.5	11.0 10.5 10.5 10.0 10.5	9.5 8.5 9.0 9.0	10.0 9.5 9.5 9.5 10.0	12.5 12.5 11.5 12.5 13.5	10.5 9.5 9.0 9.5 10.0	11.5 11.5 10.0 11.0 12.0	11.5 11.0 11.5 11.5 11.0		10.5 10.5 10.5 10.0
6 7 8 9 10	7.0 6.5 10.0 8.0 8.0	5.0 5.0 5.5 6.5	6.0 6.0 7.5 7.0	11.0 14.0 14.0 15.0 14.5	9.5 8.5 11.0 12.0 12.5	10.0 11.5 12.5 13.0 13.0	12.5 12.0 10.5 10.5	11.0 10.5 10.0 9.5 9.5	12.0 11.5 10.0 10.0	11.0 10.5 10.5 10.0	9.5 10.0 9.5 9.5	10.0 10.0 10.0 9.5 9.5
11 12 13 14 15	9.0 11.0 11.5 12.5 11.0	5.5 7.0 7.0 8.0 9.0	7.5 9.0 9.5 10.5	14.0 14.0 12.5 12.0 12.5	12.0 11.5 11.5 11.0 11.0	13.0 12.5 12.0 11.5 11.5	11.0 12.0 11.0 12.0 12.5	10.0 10.5 10.5 10.0 10.0	10.5 11.0 10.5 11.0 11.5	10.0 10.5 9.5 10.0 10.0	9.0 9.0 8.0 8.0 9.0	9.5 10.0 9.0 9.0 9.0
16 17 18 19 20	10.0 11.0 10.5 9.5 11.5	8.5 8.0 9.0 9.0 8.5	9.0 9.5 9.5 9.5 10.0	12.0 10.5 11.5 11.0 12.0	10.5 9.5 9.5 10.0 10.0	11.5 10.0 10.5 11.0	12.0 13.0 12.0 12.0	10.0 10.5 11.0 11.0	11.0 11.5 11.5 11.5	9.0 9.5 9.0 9.0	9.0 9.0 8.5 8.0	9.0 9.0 9.0 8.5 9.0
21 22 23 24 25	12.5 12.0 12.0 10.5 10.0	9.0 10.0 10.0 10.0 9.0	10.5 11.0 11.0 10.5 9.5	12.0 11.5 12.5 12.0 11.0	10.5 10.5 11.0 11.0	11.5 11.0 11.5 11.5	11.5 11.0 11.5 11.0	10.5 10.5 10.5 10.5	11.0 10.5 11.0 11.0	9.5 9.5 10.0 10.5 9.5	8.5 9.0 9.5 9.5	9.0 9.5 9.5 10.0 9.5
26 27 28 29 30 31	10.5 11.0 12.0 11.0	8.5 9.5 9.5 10.5 10.0	9.5 10.0 10.5 11.0 10.5	12.0 12.0 12.0 11.5 11.5	10.5 11.0 10.5 10.0 9.5 10.0	11.0 11.5 11.0 11.0 10.5	11.5 11.5 11.5 11.0 11.0	10.5 11.0 10.5 10.5 10.5	11.0 11.0 11.0 11.0 10.5	10.5 10.0 9.5 8.5 7.5	9.0 9.5 8.5 7.5 6.0	10.0 10.0 9.0 8.0 7.0
27 28 29	11.0 12.0 11.0	9.5 9.5 10.5	10.0 10.5 11.0	12.0 12.0 11.5	11.0 10.5 10.0	11.5 11.0 11.0	11.5 11.5 11.0	11.0 10.5 10.5	11.0 11.0 11.0	10.0 9.5 8.5	9.5 8.5 7.5	10.0 9.0 8.0

Gage

height

Discharge

15081497 STANEY CREEK NEAR KLAWOCK

 $\texttt{LOCATION.--Lat 55°48'05'', long 133°06'31'', in $SW}^{1}_{4} \ \texttt{NW}^{1}_{4} \ \texttt{sec. 14, T. 70 S., R. 80 E. (Craig D-4 quad), Hydrologic Unit Sec. 14, T. 80 E. (Craig D-4 quad), Hy$ 19010103, on Prince of Wales Island, in Tongass National Forest, on right bank, approximately 2.9 mi upstream from mouth, and 17 mi north of Klawock.

DRAINAGE AREA. -- 50.6 mi².

Date

Time

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1989 to current year. Equivalent daily discharge record collected at station No. 15081500 near Craig during water years 1964-81. Drainage area, $51.6~\text{mi}^2$.

GAGE.--Water-stage recorder. Elevation of gage is 47 ft above sea level, by barometer.

Gage

height

Discharge

REMARKS.--Records fair, except for discharges above $6,000 \, \mathrm{ft}^3/\mathrm{s}$, and estimated daily discharges, which are poor. GOES satellite telemetry at station.

Date

Time

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 7,000 $\mathrm{ft^3/s}$ and maximum (*):

	Date		l'ime	(ft^3/s)	neight (ft)		Date	e :	I'ime	(ft^3/s)	neight (ft)	
	Sep 2	21 :	1515	*7130	*13.63		No otl	her peak	greater	than base	discharge	
		DIS	CHARGE,	CUBIC FEET		ND, WATER	YEAR OCTOE VALUES	3ER 2001	TO SEPTE	EMBER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	487 238 201 141 107	621 798 1230 427 377	e5 e5 e4 e5	2 253 6 296 4 238	217 527 577 543 225	e85 e125 e360 e200 150	95 84 85 78 72	374 250 173 126 99	377 248 211 328 214	89 79 105 73 100	55 77 221 91 60	304 764 220 127 91
6 7 8 9 10	112 157 284 513 639	245 595 712 732 390	e9 e50 e38 e30	0 766 0 507 0 293	e105 e84 e80 e180 e340	e120 e100 e90 e80 e74	74 75 76 80 133	74 70 75 79 125	162 134 114 119 127	88 60 47 41 40	47 74 845 1020 219	73 77 327 422 1020
11 12 13 14 15	638 1780 359 183 770	297 178 163 790 473	33 37 33 21 e15	2 319 5 243 5 194	e300 e1350 520 e1350 e1300	e73 e76 e78 61 53	161 164 432 412 289	310 1080 481 313 236	98 84 89 95 88	39 35 32 32 30	127 110 1290 262 124	357 177 111 87 488
16 17 18 19 20	879 1170 983 937 407	757 389 264 200 299	e13 e11 e9 e8	0 186 6 395 4 700	543 274 175 165 158	e43 e38 e34 e33 e32	193 166 155 173 237	262 298 299 254 301	71 60 59 54 48	45 194 122 91 67	84 77 64 56 49	2170 1710 1520 799 379
21 22 23 24 25	652 401 250 676 372	246 540 254 150 114	e8 e9 e33 e188 70	8 120 5 181 0 402	e130 e100 e80 e67 e54	e30 e29 e28 e27 e27	347 298 189 146 120	308 301 266 172 217	45 42 46 51 140	71 171 120 176 175	58 537 2060 289 993	3010 1710 762 308 204
26 27 28 29 30 31	509 550 1080 1330 528 337	93 e84 e76 e68 e62	36 49 42 37 27 22	9 e110 2 e85 0 e92 5 e120	e49 e115 e84 	e300 e270 209 133 132 133	134 127 179 281 384	221 177 230 359 466 381	99 70 67 55 48	93 69 73 77 66 55	2420 886 731 327 196 1100	186 271 348 198 142
TOTAL MEAN MAX MIN AC-FT CFSM IN.	17670 570.0 1780 107 35050 11.3 12.99	11624.0 387.5 1230 62 23060 7.66	297. 188 4 1827 5.8	2 311.2 0 1270 6 85 0 19140 7 6.15	9692 346.1 1350 49 19220 6.84 7.13	3223 104.0 360 27 6390 2.05 2.37	5439 181.3 432 72 10790 3.58 4.00	8377 270.2 1080 70 16620 5.34 6.16	3443 114.8 377 42 6830 2.27 2.53	2555 82.42 194 30 5070 1.63 1.88	14549 469.3 2420 47 28860 9.28 10.70	18362 612.1 3010 73 36420 12.1 13.50
STATIST MEAN MAX (WY)	678.5 1123 2000	MONTHLY 566.2 996 1992	597.	2 452.3 0 782	R YEARS 19 402.1 983 1991	339.8 565 1994	308.1 559 1997	233.5 558 1999	120.7 252 1999	96.47 200 1997	205.7 469 2002	460.5 783 1994
MIN (WY)	443 1997	201 1997	. 26	7 240	152 1994	104 2002	173 1993	79.0 1998	26.5 1993	22.1 1993	26.6 1993	166 1995

See Period of Record; partial years used in monthly summary of statistics ${\tt Estimated}$

15081497 STANEY CREEK NEAR KLAWOCK—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YE	AR FOR 2002 WA	TER YEAR	WATER YEARS	1990 - 20	002#
ANNUAL TOTAL	127853.0	113794.0				
ANNUAL MEAN	350.3	311.8		371.6		
HIGHEST ANNUAL MEAN				506	19	992
LOWEST ANNUAL MEAN				283	19	995
HIGHEST DAILY MEAN	5200 Sep :	30 3010	Sep 21	14900	Oct 26 19	993
LOWEST DAILY MEAN	a12 Aug	15 b27	Mar 24	4.4	Jul 21 19	993
ANNUAL SEVEN-DAY MINIMUM	13 Aug	11 29	Mar 19	6.0	Jul 15 19	993
MAXIMUM PEAK FLOW		7130	Sep 21	c19800	Oct 26 19	993
MAXIMUM PEAK STAGE		13.63	Sep 21	17.20	Oct 26 19	993
INSTANTANEOUS LOW FLOW		d		4.0	Jul 21 19	993
ANNUAL RUNOFF (AC-FT)	253600	225700		269200		
ANNUAL RUNOFF (CFSM)	6.92	6.16		7.34		
ANNUAL RUNOFF (INCHES)	93.99	83.66		99.78		
10 PERCENT EXCEEDS	793	742		887		
50 PERCENT EXCEEDS	187	179		174		
90 PERCENT EXCEEDS	46	55		39		

[#] See Period of Record; partial years used in monthly statistics
a Aug. 15-17
b Mar. 24-25
c From rating curve extended above 3300 ft³/sec
d Not determined, see lowest daily mean

15081497 STANEY CREEK NEAR KLAWOCK—Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1990 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: January 1990 to current year.

INSTRUMENTATION.--Electronic water temperature recorder since January 11, 1990, set for 2-hour recording interval.
As of April 9, 1996, recorder set to 15-minute recording interval.

REMARKS.-- Records represent water temperature at sensor within 0.5°C.

EXTREMES FOR PERIOD OF DAILY RECORD. --

WATER TEMPERATURE.--Maximum recorded, 26.0°C, June 29, 1990, but may have been higher during period of instrument malfunction July 9 to August 23, 1990; minimum, 0.0°C on many days during winter.

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURE.--Maximum, 18.5°C, June 14 and July 10; minimum, 0.0°C on many days during the winter.

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	OVEMBER		DI	ECEMBER			JANUARY	
1 2 3 4 5	8.5 9.0 9.5 8.5 8.0	7.5 8.0 8.5 7.0 6.5	8.0 8.5 9.0 8.0 7.5	5.0 4.5 4.5 4.0 4.0	4.0 4.0 3.5 3.5 3.0	4.5 4.0 4.5 4.0 3.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.5 2.0 2.0 2.0 3.0	1.5 2.0 1.5 1.0	2.0 2.0 2.0 1.5 2.5
6 7 8 9 10	9.0 8.0 8.5 8.0	8.0 7.5 7.5 7.5 7.5	8.0 8.0 8.0 8.0	3.5 3.5 4.0 4.0 5.0	3.0 3.0 3.5 3.5 4.0	3.0 3.5 3.5 4.0 4.5	0.0 0.0 0.5 1.0 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.5 0.0	3.0 2.5 2.5 3.0 3.0	2.0 2.5 2.5 2.5 1.5	2.5 2.5 2.5 2.5 2.0
11 12 13 14 15	7.5 7.5 7.0 7.0 7.0	7.0 7.0 6.5 6.0	7.0 7.5 6.5 6.5	4.5 4.5 5.0 4.5 4.5	3.5 3.0 3.5 4.0 3.5	4.0 4.0 4.0 4.0	1.0 1.0 1.0 2.0 0.0	0.0 0.5 0.5 0.0	0.5 0.5 0.5 1.0	2.0 1.0 2.0 2.0 2.5	0.0 0.0 1.0 1.5	1.5 0.5 1.5 1.5
16 17 18 19 20	6.5 6.5 7.5 7.0 6.5	6.0 5.5 6.5 6.0	6.5 6.0 7.0 6.5 6.0	4.0 4.0 4.0 5.0	3.0 3.0 3.5 4.0 4.5	3.5 3.5 4.0 4.5 5.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.0 2.0 2.0 2.0 2.0	1.5 1.5 2.0 1.5	1.5 1.5 2.0 1.5
21 22 23 24 25	6.5 6.0 6.0 5.5 5.0	6.0 5.5 5.0 4.5 4.0	6.0 5.5 5.5 5.0 4.5	5.0 5.0 4.0 3.5 2.5	4.5 4.0 3.0 2.5 1.0	5.0 4.5 4.0 3.0 2.0	0.0 0.0 0.0 1.0	0.0 0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.5 1.0	2.0 2.0 2.0 0.0 0.0	1.0 1.5 0.0 0.0	1.5 2.0 0.0 0.0
26 27 28 29 30 31	4.5 4.0 4.0 4.0 4.5 5.0	3.5 3.0 3.5 3.5 4.0	4.0 3.5 4.0 4.0 4.0	2.5 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.0 0.0 0.0 0.0 0.0	1.5 2.0 2.0 2.0 2.0 2.0	0.5 1.5 1.5 1.5 1.0	1.0 1.5 1.5 1.5 1.5	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
MONTH	9.5	3.0	6.4	5.0	0.0	3.3	2.0	0.0	0.4	3.0	0.0	1.3

SOUTHEAST ALASKA

15081497 STANEY CREEK NEAR KLAWOCK—Continued

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.5 1.0 1.0 2.0	0.0 0.0 0.5 0.0	0.0 0.0 0.5 0.5	3.0 3.5 3.0 3.0 3.0	0.0 0.0 0.0 0.5 1.0	1.0 1.5 1.5 1.5 2.0	6.0 7.5 5.0 6.5 7.5	3.0 3.5 3.0 3.5 2.5	4.5 5.5 4.0 4.5 5.0
6 7 8 9 10	1.0 2.0 1.5 1.5	0.0 0.0 0.5 0.0	0.5 1.5 1.0 0.5	1.5 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	4.5 4.5 4.5 4.5 5.0	1.0 0.5 1.0 1.5 2.5	2.5 2.5 2.5 3.0 3.5	8.5 8.5 7.5 7.5 7.0	2.0 3.0 4.5 3.0 5.0	5.5 6.0 6.0 5.5 6.0
11 12 13 14 15	0.0 0.5 1.0 1.0	0.0 0.0 0.5 0.5	0.0 0.5 0.5 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	4.5 4.5 3.0 3.5 4.0	1.0 2.5 2.0 1.5	2.5 3.5 2.5 2.5 3.0	5.5 5.0 5.5 6.5	4.5 4.0 4.5 4.0	5.0 4.5 5.0 5.0
16 17 18 19 20	1.5 1.5 2.0 1.5	0.5 0.5 1.0 0.0	1.0 1.0 1.0 1.0	0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.0	0.0 0.5 0.5 0.5	5.5 5.5 6.0 6.0 4.5	1.5 1.5 1.5 3.0 3.5	3.0 3.5 3.5 4.5 4.0	8.0 7.0 8.5 10.5 9.5	5.5 5.5 5.0 5.0	6.5 6.0 6.5 7.5
21 22 23 24 25	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.5 0.5 1.0 1.0	0.0 0.0 0.0 0.0	0.5 0.5 0.5 0.5	4.5 5.5 4.5 5.0 7.0	3.0 2.0 3.0 2.0 3.0	3.5 3.5 3.5 3.5 5.0	7.5 7.0 7.0 12.0 11.0	6.5 6.0 6.0 6.0 7.5	7.0 6.5 6.5 8.5 9.0
26 27 28 29 30 31	0.0 0.0 0.0 	0.0 0.0 0.0 	0.0 0.0 0.0 	0.0 0.5 1.0 2.0 1.5 2.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 1.0 1.0	6.5 8.0 8.0 7.5 7.5	2.5 2.5 3.5 3.5 3.0	4.5 5.0 5.5 5.5 5.0	9.0 9.0 10.0 8.5 9.0 8.5	7.5 7.0 7.5 7.0 7.0	8.5 8.0 8.5 8.0 8.0
MONTH	2.0	0.0	0.4	2.0	0.0	0.3	8.0	0.0	3.3	12.0	2.0	6.4
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN		MIN SEPTEMBE	
DAY 1 2 3 4 5	9.0 9.5 9.5 9.0		MEAN 8.0 8.5 8.5 8.5 9.0	MAX 12.0 12.0 12.0 11.5 12.0		MEAN 11.5 11.0 11.5 11.0 11.0			MEAN 14.5 13.5 12.0 13.0 14.0			
1 2 3 4	9.0 9.5 9.5 9.0	JUNE 7.0 7.5 8.0 8.0	8.0 8.5 8.5 8.5	12.0 12.0 12.0 11.5	JULY 11.0 10.5 10.0 10.5	11.5 11.0 11.5 11.0	17.0 15.5 14.0 15.5	12.0 11.5 10.5 11.0	14.5 13.5 12.0 13.0	11.5 11.5 11.5 11.5	10.0 10.5 9.5 9.0	10.5 11.0 10.5 10.0
1 2 3 4 5 6 7 8 9	9.0 9.5 9.5 9.0 10.5 10.0 9.5 13.5 11.0	JUNE 7.0 7.5 8.0 8.0 8.0 7.5 7.5 8.0 9.0 8.5	8.0 8.5 8.5 8.5 9.0 9.0 8.5 10.5	12.0 12.0 12.0 11.5 12.0 12.5 17.0 16.5 17.5 18.5	JULY 11.0 10.5 10.0 10.5 10.5 10.5 10.5 13.0 13.5 13.5 14.0	11.5 11.0 11.5 11.0 11.0 11.5 13.5 14.5 15.5	17.0 15.5 14.0 15.5 17.0 15.0 14.0 12.5 12.0 13.5	12.0 11.5 10.5 11.0 11.5 11.0 11.5 11.5 11	14.5 13.5 12.0 13.0 14.0 13.5 13.0 12.0 11.5	11.5 11.5 11.5 11.5 11.0 12.0 11.0 11.5 10.5	10.0 10.5 9.5 9.0 9.0 9.5 10.0 10.0 9.5 10.0	10.5 11.0 10.5 10.0 10.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14	9.0 9.5 9.5 9.0 10.5 10.0 9.5 11.0 11.5 12.0 16.0 17.0 18.5	JUNE 7.0 7.5 8.0 8.0 8.0 7.5 7.5 8.0 9.0 8.5 7.5 9.0 10.5	8.0 8.5 8.5 8.5 9.0 9.0 8.5 10.0 9.5 10.0 12.0 13.0 14.5	12.0 12.0 12.0 11.5 12.0 12.5 17.0 16.5 17.5 18.5	JULY 11.0 10.5 10.5 10.5 10.5 13.5 13.5 14.0 13.5 13.5 14.0 13.5 13.0 12.5	11.5 11.0 11.5 11.0 11.5 13.5 14.5 15.5 15.5 15.5 15.0 14.0 13.0	17.0 15.5 14.0 15.5 17.0 15.0 14.0 12.5 12.0 13.5 14.0 13.5 14.0	12.0 11.5 10.5 11.0 11.5 11.5 11.5 11.5 11	14.5 13.5 12.0 13.0 14.0 13.5 13.0 12.0 11.5 12.0	11.5 11.5 11.5 11.5 11.0 12.0 11.0 11.5 10.5 11.0	10.0 10.5 9.5 9.0 9.0 9.5 10.0 9.5 10.0 9.5 10.0	10.5 11.0 10.5 10.0 10.0 10.5 10.5 10.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	9.0 9.5 9.5 9.0 10.5 10.0 9.5 13.5 11.0 11.5 12.0 16.0 17.0 18.5 15.0 13.0 17.0 14.0 12.5	JUNE 7.0 7.5 8.0 8.0 8.0 7.5 7.5 8.0 9.0 8.5 7.5 10.5 11.5 11.5 11.5	8.0 8.5 8.5 8.5 9.0 9.0 8.5 10.0 9.5 10.0 12.0 13.0 14.5 13.0	12.0 12.0 12.0 11.5 12.0 12.5 17.0 16.5 17.5 18.5 17.5 16.5 13.5 13.5 13.5	JULY 11.0 10.5 10.5 10.5 10.5 13.5 13.5 14.0 13.5 13.5 14.0 12.5 12.0 12.5 11.5 11.0	11.5 11.0 11.5 11.0 11.0 11.5 13.5 14.5 15.5 15.5 15.5 15.0 14.0 13.0 13.0 13.0 12.5 12.5	17.0 15.5 14.0 15.5 17.0 15.0 14.0 12.5 12.0 13.5 14.0 13.5 13.0 13.5 14.5 14.0	12.0 11.5 10.5 11.0 11.5 11.0 11.5 11.5 11	14.5 13.5 12.0 13.0 14.0 13.5 13.0 12.0 11.5 12.0 12.5 12.5 11.5 11.5	11.5 11.5 11.5 11.5 11.0 12.0 11.0 11.5 10.5 10.5 10.0 10.0 10.0 10	10.0 10.5 9.5 9.0 9.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5 9.5 9.5 9.5 9.5	10.5 11.0 10.5 10.0 10.0 10.5 10.5 10.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	9.0 9.5 9.5 9.0 10.5 10.0 9.5 11.0 11.5 12.0 17.0 18.5 15.0 13.0 17.0 14.0 12.5 17.5 16.0 17.5	JUNE 7.0 7.5 8.0 8.0 8.0 7.5 7.5 8.0 9.0 8.5 7.5 10.5 11.5 11.5 10.5 11.5 11.5 10.5 11.0 12.0 12.0	8.0 8.5 8.5 8.5 9.0 9.0 8.5 10.0 9.5 10.0 12.0 13.0 14.5 13.0 12.5 11.5 13.5 13.5 13.5	12.0 12.0 12.0 11.5 12.0 12.5 17.0 16.5 17.5 18.5 17.5 16.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	JULY 11.0 10.5 10.0 10.5 10.5 10.5 13.5 13.5 13.5 14.0 13.5 12.0 12.5 11.5 11.5 11.5 11.5	11.5 11.0 11.5 11.0 11.0 11.5 13.5 14.5 15.5 15.5 15.5 15.5 15.0 14.0 13.0 13.0 12.5 12.5 12.5 12.5 12.5	17.0 15.5 14.0 15.5 17.0 15.0 12.5 12.0 13.5 12.5 14.0 13.5 13.0 14.5 14.0 14.5 14.0 13.5	12.0 11.5 11.0 11.5 11.0 11.5 11.0 11.5 11.0 11.0	14.5 13.5 12.0 13.0 14.0 13.5 13.0 12.0 12.5 12.0 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	11.5 11.5 11.5 11.5 11.0 12.0 11.0 11.0 11.5 10.5 10.0 10.0 10.0 10	10.0 10.5 9.5 9.0 9.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5	10.5 11.0 10.5 10.0 10.0 10.5 10.5 10.5

15081610 THREEMILE CREEK NEAR KLAWOCK

LOCATION.--Lat 55°32′06″, long 132°57′17″, in SW^{1}_{4} SW^{1}_{4} SE^{1}_{4} sec. 16, T. 73 S., R. 82 E. (Craig C-3 quad), Hydrologic Unit 19010103, on Prince of Wales Island, approximately 2.0 mi upstream from the mouth at Klawock Lake, and 5.2 mi east of the city of Klawock.

DRAINAGE AREA.--6.63 mi²

PERIOD OF RECORD. -- March 1999 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 295 ft above sea level, from topographic map.

REMARKS.-- Records fair except for those above 250 ${\rm ft}^3/{\rm s}$ and estimated daily discharges, which are poor.

		DISCHA	RGE, CUB	IC FEET P		WATER Y MEAN	YEAR OCTOBER	2001 7	ro septei	MBER 2002		
DAY 1 2 3 4 5	OCT 71 45 48 26 19	NOV 91 90 132 65 53	DEC e15 e15 e16 e17	JAN 44 52 70 47 77	FEB 15 70 45 61 24	MAR 23 32 53 23 15	APR 11 11 11 11 10	MAY 69 51 43 33	JUN 96 93 89 103 87	JUL 51 45 44 55 72	AUG 33 67 53 36 30	SEP 155 154 95 74 60
6 7 8 9 10	31 46 58 60 66	42 71 69 67 56	19 112 71 56 81	155 125 87 80 81	18 15 14 67 44	e14 e13 e12 e11	11 11 11 11	25 27 26 25 43	70 59 54 60 65	56 44 40 38 39	26 34 114 116 66	52 56 80 108 179
11 12 13 14 15	106 166 69 36 134	46 36 55 85 59	48 62 45 30 25	62 58 43 35 49	53 91 36 113 113	10 10 10 9.9 9.4	15 22 45 41 27	68 112 106 77 64	56 51 60 71 65	42 34 45 44 36	48 70 195 78 51	114 77 62 55 77
16 17 18 19 20	118 138 129 112 77	72 53 43 50 77	21 20 e19 e18 18	50 35 64 52 39	60 36 28 23 20	e9.0 e8.7 e8.4 e8.1 e7.9	22 22 22 22 22 36	93 77 71 82 107	54 47 45 47 43	56 75 54 43 36	42 38 31 27 27	211 186 167 135 126
21 22 23 24 25	82 64 52 60 48	77 94 59 45 36	19 27 170 183 90	27 21 22 23 19	18 16 15 e14 13	8.0 8.1 8.4 8.9	64 39 29 21 19	108 98 76 68 96	40 39 50 68 86	52 64 49 52 49	43 158 217 114 165	239 256 183 113 86
26 27 28 29 30 31	76 57 126 96 72 54	28 24 22 e19 e17	62 81 77 66 58 51	16 16 15 15 17 17	15 25 19 	42 25 16 15 14	21 24 36 51 73	99 93 125 141 113 103	64 54 52 51 50	37 40 61 50 39 34	182 159 157 110 110 210	82 117 93 77 62
TOTAL MEAN MAX MIN AC-FT CFSM IN.	2342 75.55 166 19 4650 11.4 13.14	1733 57.77 132 17 3440 8.71 9.72	1610 51.94 183 15 3190 7.83 9.03	1513 48.81 155 15 3000 7.36 8.49	1081 38.61 113 13 2140 5.82 6.07	495.8 15.99 53 7.9 983 2.41 2.78	73 10 1520 3.86	2346 75.68 141 25 4650 11.4 13.16	1869 62.30 103 39 3710 9.40 10.49	1476 47.61 75 34 2930 7.18 8.28	2807 90.55 217 26 5570 13.7 15.75	3531 117.7 256 52 7000 17.8 19.81
STATIST	ICS OF M	ONTHLY ME	AN DATA F	OR WATER	YEARS 1999	- 2002	2, BY WATER Y	EAR (WY) #			
MEAN MAX (WY) MIN (WY)	82.65 113 2000 59.6 2001	61.62 68.1 2000 57.8 2002	52.44 57.3 2000 48.1 2001	51.55 69.8 2001 36.0 2000	33.35 38.6 2002 26.8 2000	28.51 42.1 2001 16.0 2002	39.00 50.1 1999 25.6 2002	73.03 88.8 1999 56.1 2000	79.83 108 1999 62.3 2002	58.64 68.3 1999 47.6 2002	60.44 90.5 2002 37.8 2001	86.69 118 2002 57.5 2000
SUMMARY	STATIST	ICS	FOR	2001 CALE	NDAR YEAR		FOR 2002 WAT	ER YEAR		WATER YEA	RS 1999 -	2002#
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM INSTANT ANNUAL ANNUAL 10 PERC 50 PERC	MEAN ANNUAL MAILY ME ANLY ME SEVEN-DA PEAK FL PEAK ST ANEOUS L RUNOFF (EAN EAN AN Y MINIMUM OW AGE OW FLOW AC-FT) CFSM) INCHES) EDS EDS		21545.8 59.0 240 a9.9 11 42740 8.9 120.8 115 51	Mar 11 Feb 24 Aug 12		21570.8 59.10 256 7.9 8.2 373 9.31 c 42790 8.91 121.03 114 51			57.4 59.1 55.8 482 7.3 8.2 b1390 11.5 6.4 41620 8.6 117.7 106 51	Oct 21 Mar 9 Mar 17 Aug 21 Mar 10	1999 2000 2002 2000 2000

Estimated See Period of Record Feb. 24 and Aug. 17 From rating curve extended above 130 ft³/s Not determined, see lowest daily mean

15081614 HALFMILE CREEK ABOVE DIVERSION NEAR KLAWOCK

LOCATION.--Lat $55^{\circ}33'26''$, long $133^{\circ}01'01''$, in $NW^{1}/_{4}$ $SW^{1}/_{4}$ $NW^{1}/_{4}$ sec. 7, T. 73 S., R. 82 E. (Craig C-3 quad), Hydrologic Unit 19010103, on Prince of Wales Island, approximately 1.1 mi upstream from the mouth at Klawock Lake, and 2.9 mi east of the city of Klawock.

DRAINAGE AREA.--4.73 mi²

PERIOD OF RECORD. -- December 2000 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 400 ft above sea level, from topographic map.

REMARKS.--Records fair, except for estimated discharges and those above 180 ${\rm ft}^3/{\rm s}$, which are poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

					DAIL	Y MEAN V	ALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	36 21 26 14 9.7	92 71 137 33 21	e4.8 e5.3 e6.0 e6.7 e7.7	21 32 69 31 49	7.2 69 46 55 18	12 25 68 21 17	6.6 6.1 6.1 5.8 5.7	51 36 23 14 11	40 27 25 47 31	8.6 8.7 12 26 44	8.5 75 37 13 8.4	73 73 21 12 8.8
6 7 8 9 10	24 27 35 71 82	14 41 65 80 43	8.8 196 84 49 85	159 116 71 59 69	e8.0 e6.8 15 58		5.6	11 13 15 15 44	20 15 13 14 17	21 11 8.1 7.3 6.9	6.7 21 150 88 24	7.3 20 61 57 103
11 12 13 14 15	88 120 39 17 103	26 13 17 72 54	35 60 36 17 15	36 33 17 14 34	75 159 39 199 146	e6.4 5.8 5.6 5.5 5.2	14 22 52 46 26	73 98 89 49 33	14 12 13 14 12	7.4 6.6 15 16 11		53 19 11 9.7 38
16 17 18 19 20	95 114 96 74 41	64 31 20 22 32	12 e11 e10 e9.9 e9.8	41 21 80 48 26	47 19 13 11	5.0 5.0 4.8 4.6 4.6	19 20 21 23 49	42 35 29 30 36	10 9.2 8.5 9.3 8.6	53	12 14 9.1 7.9 6.9	71
21 22 23 24 25	69 33 20 42 23	34 62 23 12 8.7	e9.7 11 131 281 81	13 11 12 10 7.9	8.8 7.8 e6.9 e6.7 7.9	4.5 4.5 4.7 4.9	89 38 22 14 16	35 40 25 19 23	7.8 7.3 7.6 12 47		13 143 200 33 125	203 177 77 25 15
26 27 28 29 30 31	57 35 146 111 46 32	e7.3 e6.5 e5.6	64	e7.1 e6.7 e6.5 e6.5 e7.0 e10	9.3 25 12 	50 26 15 10 9.0 7.5	24	23 20 31 69 70 48	26 17 12 9.2 8.1	14 36	167 107 89 32 35 155	17 51 31 19 12
	1746.7 56.35 146 9.7 41 3460 11.9	37.35 137	46.83	36.25		412.7 13.31 68 4.5 7.5 819 2.81 3.25	24.61	37.10	17.12 47 7.3 13 1020 3.62	587.6 18.95 53 6.6 15 1170 4.01 4.62	61.21 211 6.7 33 3760 12.9	55.26 203 7.3 39 3290
STATI	STICS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 200	1 - 2002	, BY WATER	YEAR (WY) #			
MEAN MAX (WY) MIN (WY)	56.35 56.3 2002 56.3 2002	37.35 37.3 2002 37.3 2002	46.83 46.8 2002 46.8 2002	47.82 59.4 2001 36.2 2002	33.98 40.6 2002 27.4 2001	26.53 39.7 2001 13.3 2002	30.55 36.5 2001 24.6 2002	48.52 59.9 2001 37.1 2002	43.21 69.3 2001 17.1 2002		45.75 61.2 2002 30.3 2001	58.72 62.2 2001 55.3 2002
SUMMAR	RY STATIST	CICS	FOR	2001 CALE	NDAR YEAR	F	OR 2002 WA'	TER YEAR		WATER YEA	RS 2001 -	2002#
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU INSTAN ANNUAL ANNUAL ANNUAL 10 PER 50 PER	TOTAL MEAN TANNUAL TANNUAL TANNUAL TOALLY ME SEVEN-DA M PEAK SI TTANEOUS I RUNOFF (RUNOFF (CENT EXCE CENT EXCE	HEAN HEAN HAY MINIMUM HAGE HAC-FT) HCFSM HINCHES HEEDS HEAN	ı	16999.6 46.5 288 4.8 5.4 33720 9.8 133.7 100 35 7.4	Mar 11 Dec 1 Feb 19		281 4.5 4.7 529 9.90 b4.5 26850 7.84 106.45 88 21 6.8	Dec 24 Mar 21 Mar 18 Aug 23 Aug 23 Mar 19		37.0 37.1 37.1 288 4.5 4.7 597 10.0 4.5 26870 7.8 106.5 88 21 6.8	Mar 11 Mar 21 Mar 18 Sep 29 7 Sep 29 Mar 19	2002 2002 2001 2001

See Period of Record, partial years used in monthly statistics Mar. 21-22 Mar. 19-22 $\,$

Estimated

15081995 REYNOLDS CREEK BELOW LAKE MELLEN NEAR HYDABURG

LOCATION.--Lat $55^{\circ}13'05''$, long $132^{\circ}34'50''$, in SW^{1}_{4} SE^{1}_{4} sec. 3, T. 77 S., R. 84 E.(Craig A-2 quad), Hydrologic Unit 19010103, on Prince of Wales Island, in Tongass National Forest, 0.1 mi below Lake Mellen, approximately 1 mi upstream from mouth at Copper Harbor in Hetta Inlet, and 10 mi east of Hydaburg.

DRAINAGE AREA.--5.20 mi².

PERIOD OF RECORD.--July 1982 to September 1985, October 1997 to current year

GAGE.--Water-stage recorder. Elevation of gage is 860 ft above sea level, from topographic map. Prior to January 1, 1984, at datum 2.00 ft higher.

REMARKS.--Records good, except for estimated daily discharges which are poor. GOES satellite telemetry at station. Streamflow affected by storage in lakes, which cover 30 percent of the basin.

		DISCHARGE	, CUBIC	FEET PER	,	WATER Y MEAN	YEAR OCTOBE	R 2001 T	O SEPTEM	BER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	I MEAN MAR		MAY	JUN	JUL	AUG	SEP
1	117	107	39	76	e30	e33	e19	e39	e125	88	27	145
2	99	108	36	74	e64	e32	e18	e45	e110	79	28	145
3 4	90 81	135 111	38 40	75 71	e58 e61	e38 e39	e17 e16	e49 e47	e122 e115	71 66	31 29	123 107
5	73	100	37	73	e55	e36	e18	e43	e105	65	26	98
6	73	91	36	128	e50	e35	21	e41	e96	60	24	89
7	85	93	54	148	e43	e34	20	e40	e87	55	27	87
8 9	103 95	93 94	87 68	123 112	e37 e31	e31 e29	20 20	e39 e38	e78 e71	49 46	55 88	101 109
10	97	87	65	131	e49	e27	21	e37	e67	43	66	135
11	96	84	58	112	e90	e24	22	e38	e66	39	51	116
12 13	127 101	74 83	64 69	107 94	e120	e26 e25	23 26	e58 e78	e65	37 36	46 85	101 90
14	86	102	57	84	e88 e100	e23	31	e87	e64 e63	33	72	82
15	110	92	48	78	e130	e22	31	e83	e64	32	55	96
16	117	99	42	79	e86	e21	27	e80	e63	40	46	144
17	108	84	40	71	e70	e20	e26	e75	e60	45	41	167
18 19	123 116	76 76	38 36	72 73	e58 e54	e19 e18	e25 26	e72 e70	e55 54	40 36	37 34	171 143
20	105	89	33	70	e49	e17	27	e72	51	33	32	127
21	111	94	35	e57	e43	e17	30	e77	48	32	32	160
22	106	106	34	e51	e39	e16	e28	e81	46	39	56	217
23 24	95 94	89 78	63 181	e48 e45	e35 e30	e15 e14	e26 e24	e87 e84	47 60	38 34	132 102	187 142
25	87		123	e41	e26	e19	e23	e80	87	32	115	124
26	99	63	97	e38	e30	e34	e23	e75	80	30	192	113
27	91	57	98	e36	e36	e26	e24	e87	72	29	194	107
28 29	110 127	52 47	96 92	e32 e29	e35	e22 e20	e25 e26	e110 e130	68 64	28 29	187 146	103 94
30	115	43	84	e30		e21	e33	e150	72	30	128	82
31	103		79	e31		e20		e135		28	171	
TOTAL	3140	2577 1	L967	2289	1597	773	716	2227	2225	1342	2355	3705
MEAN	101.3				57.04	24.94	23.87	71.84	74.17	43.29	75.97	123.5
MAX MIN	127 73	135 43	181 33	148 29	130 26	39 14	33 16	150 37	125 46	88 28	194 24	217 82
AC-FT	6230		3900	4540	3170	1530	1420	4420	4410	2660	4670	7350
CFSM	19.5		L2.2	14.2	11.0	4.80	4.59	13.8	14.3	8.33	14.6	23.8
IN.	22.46	18.44 14	1.07	16.38	11.42	5.53	5.12	15.93	15.92	9.60	16.85	26.50
STATIST	TICS OF MO	ONTHLY MEAN I	DATA FOR	R WATER YE	ARS 1982	- 2002	, BY WATER Y	EAR (WY)	#			
MEAN	96.47		9.58		72.12	56.97	61.06	80.12	66.87	46.14	52.26	70.77
MAX (WV)	172 2000		131 L998	129 1985	107 1984	97.9 1984	90.9 2000	128 1999	103 1999	63.5 2001	78.7 1983	124 2002
(WY) MIN	71.6		20.7	61.4	47.7	24.9	23.9	40.4	22.9	20.2	19.3	32.2
(WY)	1986		1984	1998	1999	2002	2002	1998	1998	1998	1982	1982
SUMMARY	STATIST	ICS	FOR 20	001 CALEND	AR YEAR		FOR 2002 WAT	ER YEAR		WATER YEAR	S 1982 -	2002#
ANNUAL	TOTAL			27110			24913					
ANNUAL		41173		74.27			68.25			71.12		2000
	ANNUAL M ANNUAL ME									88.9 59.5		2000 1983
	DAILY ME			199	Sep 3		217	Sep 22		610	Oct 23	
	DAILY MEA			22	Aug 18		14	Mar 24		9.0	Jul 9	1998
	SEVEN-DAY 1 PEAK FLO	MINIMUM		25	Aug 12		17 237	Mar 18		9.8	Jul 4 Oct 23	
	PEAK STA						6.77	Mar 18 Dec 24 Dec 24				
INSTANT	TANEOUS LO	OW FLOW					a				Oct 23 Jul 9	1998
	RUNOFF (A			53770 14.3			49410 13.1			51520 13.7		
	RUNOFF (193.94			178.22			185.83		
10 PERC	CENT EXCE	EDS		113			122			121		
	CENT EXCE			74			64			63		
90 PERC	CENT EXCE	פחק		32			25			30		

See Period of Record; partial years used in monthly summary statistics and break in record Not determined, see lowest daily mean $\tt Jul.~9$ and 10, 1998

Estimated

SOUTHEAST ALASKA

15085100 OLD TOM CREEK NEAR KASAAN

LOCATION.--Lat $55^{\circ}23'44''$, long $132^{\circ}24'25''$, in $NW^{1}/_{4}$ SW $^{1}/_{4}$ sec. 6, T. 75 S., R. 86 E. (Craig B-2 quad) Hydrologic Unit 19010103, on Prince of Wales Island, in Tongass National Forest, on left bank 1,000 ft upstream from mouth at Skowl Arm of Kasaan Bay, 0.4 mi downstream from unnamed tributary, and 10 mi south of Kasaan.

DRAINAGE AREA.--5.90 mi².

Date

WATER-DISCHARGE RECORDS

Date

Time

Gage

Height

(ft)

Discharge

 (ft^3/s)

PERIOD OF RECORD. -- June 1949 to current year.

REVISED RECORDS.--WDR AK-85-1: 1950-1983 (P), 1984.

Time

GAGE.--Water-stage recorder. Elevation of gage is 10 ft above sea level, from topographic map.

Gage

Height

(ft)

REMARKS.--Records fair except estimated daily discharges, which are poor.

Discharge

(ft³/s)

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 450 $\mathrm{ft^3/s}$ and maximum (*):

	Oct 19			481 731	4.24 5.01		Dec 2 Jan 6)415)015	784 557	5.16 4.49	
	Nov 3	061	5	*928	*5.54		Sep 9	9 1	1515	463	4.18	
		DISCHA	RGE, CU	BIC FEET), WATER	YEAR OCTOBI VALUES	ER 2001	TO SEPTEM	BER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	63 32 22 17 13	114 106 396 95 69	e10 e16 e28 e20 18	40 45 55 36 145	9.7 76 66 161 43	9.4 11 19 18 13	15 12 11 9.8 10	51 33 24 20 17	53 39 36 40 31	16 13 11 9.6 8.7	6.5 17 22 13 9.1	36 58 35 26 20
6 7 8 9 10	12 122 193 54 39	54 134 92 70 64	15 74 78 37 41	351 213 67 85 106	24 16 13 130 102	e11 e10 e9.0 e8.3 e8.0	14 13 12 11 14	15 14 14 16 22	28 25 21 19 18	7.6 6.7 6.0 5.5 5.3	7.0 7.2 17 29 16	17 21 29 164 78
11 12 13 14 15	51 113 39 23 163	50 37 131 157 107	33 32 53 30 21	51 54 41 32 27	59 99 58 69 108	e8.5 e9.5 e7.0 e5.5 e5.1	16 18 46 54 38	30 53 43 32 33	16 15 13 14 14	5.8 5.0 8.4 8.9	12 10 21 14 11	44 29 23 20 40
16 17 18 19 20	91 55 55 51 33	112 59 43 90 142	17 15 13 12 e10	29 24 28 32 29	56 34 25 24 21	e4.9 e4.7 e4.5 e4.3 e4.1	27 23 22 26 31	88 58 44 41 44	13 13 12 11 10	26 27 17 14 13	8.2 7.2 6.2 5.3 4.9	134 84 95 51 33
21 22 23 24 25	28 27 20 22 20	129 85 46 34 26	11 16 288 518 126	22 16 19 21 16	16 14 e12 e11 e9.5	e3.9 e3.8 4.2 4.2	35 30 22 19 17	47 49 48 37 39	9.1 8.5 10 31 42	12 17 14 17 20	4.7 22 82 39 74	87 149 104 43 28
26 27 28 29 30 31	157 73 251 159 194 90	18 14 e10 e8.0 e6.8	61 78 72 56 41 36	e15 e13 e11 e10 9.1	9.0 10 9.9 	55 35 25 20 20 18	19 21 29 41 54	41 42 130 139 97 68	29 20 18 16 16	13 9.8 8.2 8.2 8.5 7.4	116 63 53 33 29 59	22 20 20 16 13
TOTAL MEAN MAX MIN AC-FT CFSM IN.	2282 73.61 251 12 4530 12.5 14.39	2498.8 83.29 396 6.8 4960 14.1 15.76	1876 60.52 518 10 3720 10.3 11.83	1652.1 53.29 351 9.1 3280 9.03 10.42	1285.1 45.90 161 9.0 2550 7.78 8.10	405.9 13.09 55 3.8 805 2.22 2.56	709.8 23.66 54 9.8 1410 4.01 4.48	1429 46.10 139 14 2830 7.81 9.01	640.6 21.35 53 8.5 1270 3.62 4.04	361.6 11.66 27 5.0 717 1.98 2.28	818.3 26.40 116 4.7 1620 4.47 5.16	1539 51.30 164 13 3050 8.69 9.70
STATIST	TICS OF M	ONTHLY MEA	AN DATA	FOR WATER	YEARS 194	9 - 2002	, BY WATER	YEAR (W	Y)#			
MEAN MAX (WY) MIN (WY)	70.99 163 1978 28.4 1952	66.38 166 2000 17.1 1966	57.58 136 1992 8.29 1984	48.51 128 1992 3.00 1950	45.39 117 1998 5.00 1950	38.59 86.3 1984 10.1 1956	48.18 122 1980 19.1 1967	43.19 99.1 1999 15.0 1996	26.05 56.1 1950 5.45 1958	13.26 31.0 1991 2.66 1958	15.32 50.9 2001 1.81 1993	32.11 93.6 2001 2.69 1965

See Period of Record; partial years used in monthly summary statistics ${\tt Estimated}$

15085100 OLD TOM CREEK NEAR KASAAN—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1949 - 2002#
ANNUAL TOTAL	21761.7	15498.2	
ANNUAL MEAN	59.62	42.46	42.08
HIGHEST ANNUAL MEAN			63.1 2000
LOWEST ANNUAL MEAN			25.2 1951
HIGHEST DAILY MEAN	518 Dec 24	518 Dec 24	858 Oct 23 1990
LOWEST DAILY MEAN	1.2 Aug 16	3.8 Mar 22	0.28 Nov 14 1965
ANNUAL SEVEN-DAY MINIMUM	1.5 Aug 11	4.1 Mar 18	0.55 Nov 13 1965
MAXIMUM PEAK FLOW	_	928 Nov 3	a1490 Apr 16 1952
MAXIMUM PEAK STAGE		5.54 Nov 3	6.96 Apr 16 1952
INSTANTANEOUS LOW FLOW		b	0.16 Nov 15 1965
ANNUAL RUNOFF (AC-FT)	43160	30740	30480
ANNUAL RUNOFF (CFSM)	10.1	7.20	7.13
ANNUAL RUNOFF (INCHES)	137.21	97.72	96.90
10 PERCENT EXCEEDS	150	100	94
50 PERCENT EXCEEDS	32	24	24
90 PERCENT EXCEEDS	6.3	8.5	6.5

[#] See Period of Record; partial years used in monthly summary statistics a From rating curve extended above 330 ${\rm ft}^3/{\rm s}$ b Undetermined, see lowest daily mean.

15085100 OLD TOM CREEK NEAR KASAAN—Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Water years 1956, 1959, and 1965 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: October 1964, April 1965 to February 1975, June 1975 to April 1978, and November 1978 to current year.

INSTRUMENTATION.--Electronic water-temperature recorder set for 15-minute recording interval since April 11,1996.

REMARKS.--Records represent water-temperature at the sensor within 0.5°C. Temperature at the sensor was compared with the stream average by cross section on April 1. No variation was found within the cross section. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF DAILY RECORD .--

WATER TEMPERATURE: Maximum, 18.5°C, July 3, 1998; minimum, 0.0°C, on many days during most winter periods.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum, 13.5°C, July 23-24, August 21, 24; minimum, 0.0°C, on several days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

			SAMPLE		DIS-		
			LOC-		CHARGE,		
			ATION,		INST.		
			CROSS		CUBIC	TEMPER-	TEMPER-
		STREAM	SECTION	GAGE	FEET	ATURE	ATURE
Date	Time	WIDTH	(FT FM	HEIGHT	PER	WATER	AIR
		(FT)	R BK)	(FEET)	SECOND	(DEG C)	(DEG C)
		(00004)	(72103)	(00065)	(00061)	(00010)	(00020)
APR							
01	1023	28.5	3.5	1.86	14	1.0	3.0
01	1024	28.5	8.5	1.86	14	1.0	3.0
01	1025	28.5	13.5	1.86	14	1.0	3.0
01	1026	28.5	18.5	1.86	14	1.0	3.0
01	1027	28.5	23.5	1.86	14	1.0	3.0

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NC	VEMBER		DE	ECEMBER			JANUARY	
1 2 3 4 5	9.5 9.5 9.5 9.0	9.0 8.5 9.0 8.0 7.5	9.0 9.0 9.0 8.5 8.5	5.5 5.5 5.5 5.0 4.5	4.5 4.5 4.5 4.5 3.0	5.0 5.0 5.0 4.5 4.0	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	3.0 3.0 3.0 2.5 3.5	2.5 2.5 2.5 2.0 2.5	2.5 3.0 3.0 2.5 3.0
6 7 8 9 10	9.0 8.5 8.5 9.0 8.5	8.5 7.5 8.0 8.0 7.5	8.5 8.0 8.5 8.5	4.0 4.5 4.5 4.5	3.0 3.0 4.0 4.0 4.0	3.5 3.5 4.0 4.0	0.5 0.5 2.0 2.0	0.5 0.0 0.5 1.5 2.0	0.5 0.5 1.0 2.0 2.0	3.5 3.5 3.5 4.0 3.5	3.0 3.0 3.0 3.0 3.0	3.5 3.5 3.5 3.5 3.5
11 12 13 14 15	8.0 8.0 7.5 7.0 7.5	7.0 7.5 7.0 6.0 6.5	7.5 7.5 7.5 6.5 7.0	4.5 4.5 4.5 5.0 4.5	4.0 4.5 4.5 4.5	4.5 4.5 4.5 4.5 4.5	2.5 2.5 2.5 2.0 1.5	2.5 2.0 2.0 1.5 1.0	2.5 2.5 2.0 2.0 1.5	3.5 2.5 3.0 3.0	1.0 1.0 2.5 2.5 2.5	3.0 2.0 2.5 2.5 2.5
16 17 18 19 20	7.5 7.5 8.0 7.0	6.5 6.5 7.0 6.5 6.0	7.0 7.0 7.5 7.0 6.5	4.5 4.5 4.0 5.0	3.5 3.5 3.5 4.0 4.5	4.0 4.0 4.0 4.5 5.0	1.5 1.0 1.0 0.5	0.5 0.5 0.5 0.5	1.0 0.5 0.5 0.5	2.5 2.5 3.0 3.0 2.5	2.5 2.5 2.5 2.5 2.5	2.5 2.5 2.5 2.5 2.5
21 22 23 24 25	7.0 6.5 6.0 6.0 5.5	6.0 6.0 5.5 5.0 4.5	6.5 6.0 6.0 5.5 5.0	5.0 5.0 4.5 4.5 3.5	5.0 4.5 4.0 3.5 2.5	5.0 5.0 4.5 4.0 3.0	1.0 1.0 2.0 2.5 3.0	0.5 1.0 0.5 1.5 2.5	0.5 1.0 1.0 2.0 2.5	2.5 2.0 1.5 2.0 1.5	2.0 1.0 0.5 1.0 0.5	2.5 1.5 1.0 1.5
26 27 28 29 30 31	5.0 5.0 5.5 5.5 6.0	4.0 5.0 4.0 5.0 4.5 5.5	5.0 5.0 4.5 5.0 5.0	2.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	1.5 0.5 0.5 0.5	2.5 3.0 3.0 3.0 3.0	2.5 2.5 2.5 2.5 2.5 2.5	2.5 2.5 3.0 2.5 2.5 2.5	0.5 0.5 0.5 1.0	0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 1.0
MONTH	9.5	4.0	7.0	5.5	0.5	3.7	3.0	0.0	1.4	4.0	0.5	2.2

SOUTHEAST ALASKA

15085100 OLD TOM CREEK NEAR KASAAN—Continued

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	1.5 1.0 2.0 2.5 2.0	1.0 0.5 1.0 2.0	1.0 0.5 1.5 2.0	1.5 2.0 2.0 1.5	1.5 1.5 1.5 1.5	1.5 2.0 2.0 1.5 1.0	2.5 3.0 3.0 2.5 2.0	1.0 1.0 0.5 1.0	1.5 1.5 1.5 1.5	5.5 5.0 4.0 4.5 5.5	3.0 3.0 3.5 2.5	4.0 4.0 3.5 4.0 3.5
6 7 8 9 10	2.0 1.5 1.5 2.0 2.0	1.5 1.0 0.5 1.0 2.0	1.5 1.0 1.0 1.5 2.0	1.0 0.5 0.5 0.5	0.5 0.5 0.5 0.0	1.0 0.5 0.5 0.5	3.0 3.0 3.5 3.5	1.0 1.5 1.5 1.5 2.0	2.0 2.0 2.0 2.5 3.0	5.5 5.0 4.5 5.5 5.0	2.0 2.5 3.5 3.0 4.0	3.5 3.5 4.0 4.0 4.5
11 12 13 14 15				0.5 0.5 0.5 0.5			3.0 3.5 2.5 3.0 3.5			5.0 4.5 5.0 5.0		
				0.5 0.5 0.5 0.5			4.0 4.5 4.0 4.5 4.5		3.0 2.5 3.0 3.5 3.0	5.5 5.5 6.5 7.0 6.5	4.5 4.5 4.5 5.0	5.0 5.0 5.5 5.5
				0.5 0.5 1.0 1.0			4.5 4.5 5.0 4.0 6.0		3.5 3.0 3.5 3.5 4.0	5.5 5.5 5.5 7.0 7.0	5.0 5.0 5.0 5.0	5.5 5.5 5.5 6.5
26 27 28 29 30 31	1.0 1.5 			0.5 1.5 2.0 2.0 1.5			5.0 6.0 6.0 6.0	2.5 2.5 2.5 3.0 3.0	3.5 4.0 4.0 4.0	6.5 6.5 7.0 7.0 7.0		6.5 6.0 6.5 6.5
MONTH	2.5	0.5			0.0		6.0	0.5	2.8	7.0		5.0
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY	1111111		AUGUST	PHEAN		SEPTEMBI	
1 2 3 4 5	8.0 8.0 8.0 8.0	JUNE	7.0 7.5	11.0 11.0 11.0 10.5 11.0	JULY 10.5 10.5			AUGUST			12.0 11.5 11.5 11.0	
2 3 4 5	8.0 8.0 8.0 8.0	JUNE 7.0 7.0 7.5 7.5 7.5	7.0 7.5 7.5 7.5 7.5	11.0 11.0	JULY 10.5 10.5 10.0 10.0	10.5 10.5 10.5 10.5		AUGUST 12.0 12.0 11.0 11.5 11.5	12.0 12.0 11.5 12.0 12.0 12.0 12.0 12.0 12.0	13.0 12.5 12.5 12.0 12.0 11.5 11.5 11.5	12.0 11.5 11.5 11.0 10.5 11.0 10.5	12.5 12.0 12.0 11.5 11.5
2 3 4 5 6 7 8 9 10	8.0 8.0 8.0 7.5 8.5 9.0	JUNE 7.0 7.0 7.5 7.5 7.5 7.5 7.0 8.0 8.5	7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 8.5 9.0	11.0 11.0 11.0 10.5 11.0	JULY 10.5 10.5 10.0 10.0 10.5 10.5 10.5 10.	10.5 10.5 10.5 10.5 10.5 11.0 11.0 11.5 12.0 12.5	12.5 12.5 12.0 13.0 13.0	AUGUST 12.0 12.0 11.0 11.5 11.5 12.0 12.0 12.0 11.5 12.0	12.0 12.0 11.5 12.0 12.0 12.0 12.0 12.0	13.0 12.5 12.5 12.0 12.0 11.5 11.5 11.5 11.5 11.0 12.0	12.0 11.5 11.5 11.0 10.5 11.0 10.5	12.5 12.0 12.0 11.5 11.5 11.5 11.0 11.0 11.0
2 3 4 5 6 7 8 9 10 11 12 13 14	8.0 8.0 8.0 7.5 8.5 9.0 9.0 9.5 10.0 11.0	JUNE 7.0 7.0 7.5 7.5 7.5 7.5 7.0 8.0 8.5 8.0 8.5 9.5	7.0 7.5 7.5 7.5 7.5 7.5 8.5 9.0 8.5 9.5	11.0 11.0 11.0 10.5 11.0 11.5 12.0 12.5 12.5 12.5 12.5	JULY 10.5 10.5 10.0 10.0 10.5 10.5 10.0 11.5 12.0 12.0 11.5 11.5	10.5 10.5 10.5 10.5 10.5 11.0 11.0 11.5 12.0 12.5	12.5 12.5 12.0 13.0 13.0 12.5 12.5 12.0 12.0 12.5	AUGUST 12.0 12.0 11.5 11.5 12.0 12.0 12.0 12.0 12.0 12.5 12.0	12.0 12.0 11.5 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	13.0 12.5 12.5 12.0 12.0 11.5 11.5 11.5 11.5 11.0 12.0	\$EPTEMBI 12.0 11.5 11.5 11.0 10.5 10.5 11.0 11.0 1	12.5 12.0 12.0 11.5 11.5 11.5 11.0 11.0 11.0 11.5 11.5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	8.0 8.0 8.0 7.5 8.5 9.0 9.0 11.0 12.0 12.0 12.0 12.5 12.0	JUNE 7.0 7.0 7.5 7.5 7.5 7.5 7.0 8.0 8.5 8.0 8.5 11.5 11.5 11.5	7.0 7.5 7.5 7.5 7.5 7.5 7.5 8.5 9.0 8.5 9.5 10.0 11.0 12.0 11.5	11.0 11.0 11.0 10.5 11.0 11.5 12.0 12.5 12.5 12.5 12.5 11.5 11.0	JULY 10.5 10.5 10.0 10.0 10.5 10.5 10.0 11.0 11	10.5 10.5 10.5 10.5 10.5 11.0 11.0 11.5 12.0 12.0 12.0 11.0 11.0 11.0	12.5 12.5 12.0 13.0 13.0 12.5 12.5 12.0 12.0 12.5 12.5 12.5 12.5 12.5 12.5 12.5	AUGUST 12.0 11.0 11.5 11.5 12.0 12.0 12.0 12.0 12.5 12.0 12.5 12.0 12.5 12.0 11.5	12.0 12.0 11.5 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	13.0 12.5 12.5 12.0 12.0 11.5 11.5 11.5 11.5 11.0 12.0 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11	SEPTEMBI 12.0 11.5 11.5 11.0 10.5 10.5 11.0 10.0 11.0 10.5 10.5	12.5 12.0 12.0 11.5 11.5 11.5 11.0 11.0 11.0 11.0 11
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	8.0 8.0 8.0 7.5 8.5 9.0 9.0 11.0 12.0 12.0 12.0 12.5 12.0 11.5	JUNE 7.0 7.0 7.5 7.5 7.5 7.5 7.0 8.0 8.5 8.0 8.5 9.5 10.5 11.5 11.5 11.5 11.5 11.0 10.5 11.5	7.0 7.5 7.5 7.5 7.5 7.5 7.5 8.5 9.0 8.5 9.0 11.0 12.0 11.5 11.5 11.5	11.0 11.0 11.0 10.5 11.0 11.5 12.0 12.5 12.5 12.5 12.5 12.5 11.5 11.0 11.0 11.0 12.0 12.0 12.5 12.5	JULY 10.5 10.5 10.0 10.0 10.5 10.5 11.0 11.0	10.5 10.5 10.5 10.5 10.5 11.0 11.0 11.5 12.0 12.0 12.0 11.0 11.0 11.0 11.5 12.0 12.0 12.0 11.0	12.5 12.5 12.0 13.0 13.0 12.5 12.5 12.0 12.0 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	AUGUST 12.0 11.0 11.5 11.5 12.0 12.0 12.0 12.0 12.5 12.0 12.5 12.0 11.5	12.0 12.0 11.5 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.5 12.5 12.0 12.5 12.0 12.5 12.0	13.0 12.5 12.5 12.0 12.0 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11	SEPTEMBI 12.0 11.5 11.5 11.0 10.5 11.0 10.5 11.0 10.0 11.0 10.5 10.5	12.5 12.0 12.0 11.5 11.5 11.5 11.0 11.0 11.0 11.0 11

▲ 1	Discharge s	site and map number			
Map No.	Station No.	Station Name	Map No.	Station No.	Station Name
* 1	15087690	Indian River near Sitka	5	15087735	Indian River Diversion Return
2	15087695	Indian River above CBS pumphouse near Sitka			Flow from Sheldon Jackson College at Sitka
* 3	15087700	Indian River at Sitka	6	15087740	Indian River Diversion Return
4	15087730	Indian River Diversion to			Flow at Mouth at Sitka
		Sheldon Jackson College at Sawmill Cr Rd at Sitka	7	15087750	Indian River at Mouth at Sitka

Locations of gaging stations in the Sitka area.

15087690 INDIAN RIVER NEAR SITKA

LOCATION.--Lat $57^{\circ}04'01''$, long $135^{\circ}17'42''$, in $SW^{1}_{/4}$ SE $^{1}_{/4}$ sec. 30, T. 55 S., R. 64 E. (Sitka A-4 quad), Hydrologic Unit 19010203, in Tongass National Forest, on Baranof Island, on right bank 2 mi upstream from mouth, and 1 mi northeast of Sitka.

DRAINAGE AREA. -- 10.1 mi²

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--August 1980 to September 1993. October 1998 to current year.

REVISED RECORD. -- WDR-82-1: 1980-81.

GAGE.--Water-stage recorder. Elevation of gage is 125 ft above sea level, from topographic map. Prior to October 1998, at site 200 ft upstream and at different datum

REMARKS. -- No estimated daily discharges. Records fair.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of November 19, 1993, reached a stage of 14.04 ft, site and datum then in use, from recorder, discharge, 6,460 ft³/s.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1200 ft3/s and maximum(*):

	Date	Time		scharge ft³/s)	Gage height (ft)		Date		Time	Discharge (ft ³ /s)	Gage height (ft)	
	Oct 17	1630		2200	12.17		Aug 21	L	0715	1780	11.81	
	Aug 12	1800		*4840	*14.23							
		DISCHARG	E, CU	BIC FEET		WATER Y MEAN	YEAR OCTOBE VALUES	R 2001	TO SEPTI	EMBER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	120	102	39	84	36	48	16	92	124	58	83	152
2	222	128	38	80	35	196	16	77	123	55	75	131
3	154	126	38	88	33	131	16	65	116	51	67	94
4	144	90	37	75	36	68	16	57	149	57	61	75
5	121	77	37	68	33	53	16	53	144	72	56	64
6	132	67	36	125	28	47	15	51	113	57	52	56
7	134	64	59	132	25	44	15	51	122		164	80
8	89	93	58	140	24	41	15	49	111		246	62
9	116	134	56	101	28	39	16	51		49	184	57
10	230	98	63	95	65	38	16	78	160	55	228	63
11	182	79	52	78	170	36	16	99	120	55	138	91
12	350	66	72	71	241	33	17	99	101	47	978	88
13	179	60	55	67	81	31	19	117	105	51	407	60
14	134	70	47	64	264	28	20	100	123	95	159	49
15	154	81	43	89	290	26	20	87	118	60	117	47
16	168	93	40	104	163	24	20	111	98	56	97	51
17	545	81	39	73	98	24	20	118	93	62	83	75
18	624	65	37	147	81	22	22	105	91		73	105
19	406	61	35	153	72	21	26	129	82	51	65	140
20	186	72	33	92	64	20	78	172	77	46	61	117
21	159	74	31	75	59	19	67	175	72	54	559	156
22	134	139	31	65	53	19	44	151	72		196	108
23	121	94	52	61	47	19	38	139	83	60	261	93
24	133	70	193	55	44	19	33	122	83	85	111	83
25	103	60	123	49	42	19	33	136	80	101	94	78
26	86	53	115	44	43	21	35	150	68	83	89	76
27	78	48	102	40	50	22	37	136	62	141	103	161
28	99	44	98	40	42	20	42	171	64	238	185	125
29	120	41	110	42		19	53	153	63		121	111
30	87	40	95	43		19	74	140	60	119	111	79
31	73		97	41		18		122		95	155	
TOTAL	5583	2370	1961	2481	2247	1184	871	3356	3004	2378	5379	2727
MEAN	180.1		63.26	80.03	80.25	38.19	29.03	108.3	100.1	76.71	173.5	90.90
MAX	624	139	193	153	290	196	78	175	160	238	978	161
MIN	73	40	31	40	24	18	15	49	60	46	52	47
AC-FT	11070	4700	3890	4920	4460	2350	1730	6660	5960	4720	10670	5410
CFSM	17.8	7.82	6.26	7.92	7.95	3.78	2.87	10.7	9.91		17.2	9.00
IN.	20.56	8.73	7.22	9.14	8.28	4.36	3.21	12.36	11.06	8.76	19.81	10.04
STATIST	CICS OF MO	ONTHLY MEAN	DATA	FOR WATER	YEARS 1980	- 2002	2, BY WATER	YEAR (WY)#			
MEAN	189.3	101.8	101.2	99.84	81.49	62.66	67.06	108.1	91.25	64.82	91.39	169.5
MAX	293	218	207	184	154	122	111	167	166		238	295
(WY)	1988	1990	1990	1984	1993	1986	1983	1983	1985	1985	1983	1991
MIN	104	37.0	21.7	46.3	24.8	19.9	29.0	53.3	28.8		30.0	52.8
(WY)	1985	1999	1984	1988	1999	1989	2002	1981	1993	1993	1989	1986

[#] See Period of Record; partial years used in monthly summary statistics and break in record

15087690 INDIAN RIVER NEAR SITKA—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR Y	/EAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1980 -	2002#
ANNUAL TOTAL	30850		33541				
ANNUAL MEAN	84.52		91.89		102.7		
HIGHEST ANNUAL MEAN					123		1987
LOWEST ANNUAL MEAN					82.7		2001
HIGHEST DAILY MEAN	624 Oct	18	978	Aug 12	2000	Oct 12	1982
LOWEST DAILY MEAN	12 Aug	g 23	a15	Apr 6	8.6	Jan 18	1989
ANNUAL SEVEN-DAY MINIMUM	17 Aug	20	16	Apr 2	10	Jan 13	1989
MAXIMUM PEAK FLOW			b4840	Aug 12	c5710	Sep 4	1990
MAXIMUM PEAK STAGE			14.23	Aug 12	d13.51	Sep 4	1990
INSTANTANEOUS LOW FLOW			£15	Apr 4	8.2	Jan 19	1989
ANNUAL RUNOFF (AC-FT)	61190		66530		74370		
ANNUAL RUNOFF (CFSM)	8.37		9.10		10.2		
ANNUAL RUNOFF (INCHES)	113.63		123.54		138.09		
10 PERCENT EXCEEDS	134		157		187		
50 PERCENT EXCEEDS	71		73		69		
90 PERCENT EXCEEDS	36		26		29		

[#] See Period of Record; partial years used in monthly summary statistics and break in record a Apr. 6 to Apr. 8 b From rating curve extended above 300 ft 3 /s c From rating curve extended above 3,100 ft 3 /s, at site and datum then in use At site and datum then in use f Apr. 6 to Apr. 8

15087700 INDIAN RIVER NEAR SITKA—Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Water years 1983, 2001 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: July 2001 to September 2002 (discontinued). WATER TEMPERATURE: May 2001 to September 2002 (discontinued).

INSTRUMENTATION. -- Electronic water temperature and specific conductance recorder since May 16, 2001, recorder set to 15 minute recording interval.

REMARKS. --

SPECIFIC CONDUCTANCE: No record May 16 to July 24, 2001 due to program error. Records represent specific conductance at sensor within 3 us/cm. No variation was found within the cross sections measured on five occasions during 2002 water year. No variation was found between the mean stream specific conductance and specific conductance at the sensor.

WATER TEMPERATURE: Probe installed on May 16 2001. Records represent water temperature at sensor within 0.5°C. No variation was found within the cross sections measured five times during 2002 water year. No variation was found between the mean stream temperature and temperature at the sensor.

EXTREMES FOR PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: Maximum recorded, 54 us/cm, February 7, 2002; minimum recorded, 15 us/cm, August 12, 2002. WATER TEMPERATURE: Maximum recorded, 10.5°C, August 12, 2002; minimum recorded, 0.5°C February 11, 2002.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum recorded, 54 us/cm, February 7; minimum recorded, 15 us/cm, August 12.
WATER TEMPERATURE: Maximum recorded, 10.5°C, August 12, minimum recorded, 0.5°C February 11.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
FEB								
01	0816	35.0	48	7.2	3.5	750	12.2	93
01	0817	30.0	48	7.2	3.5	750	12.1	93
01	0818	25.0	48	7.1	3.5	750	12.2	93
01	0819	20.0	48	7.0	3.5	750	12.2	93
01	0820	15.0	48	7.0	3.5	750	12.2	93
01	0821	10.0	48	7.0	3.5	750	12.1	93
01	0822	5.00	48	7.0	3.5	750	12.1	93

Date	Time	Medium code	Sample type	GAGE HEIGHT (FEET) (00065)	CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	STREAM WIDTH (FT) (00004)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)
OCT													
02	1000	9	9	9.26	270	10	49.6	762	11.9	99	7.7	36	7.5
NOV													
28	1000	9	9	7.92	41	20	41.0				6.5	53	
FEB													
01	0845	9	9	7.85	38	10	37.6	750	12.2	93	7.1	48	3.0
APR		_	_										
06	0900	9	9	7.61	16	10	25.6	747	12.1	88	7.1	51	2.0
MAY		_	_										
30	0845	9	9	8.74	143	10	49.4	753	12.2	95	7.3	38	
30	1535	D	9	8.62	129	280						40	9.0
JUN													
15	1305	D	9	8.52	114	280							
SEP													
05	0800	9	9	8.05	73	10	37.0	758	11.3	92	7.5	42	
18	0930	D	9	8.22	88	280							
20	1200	9	9	8.34	115	10	46.0	760	11.5	96	7.1	38	9.5

SOUTHEAST ALASKA

15087700 INDIAN RIVER NEAR SITKA—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date OCT	TEMPER - ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	DIS- SOLVED : (MG/L AS K)	SODIUM, DIS- SOLVED (MG/L AS NA)	WAT DIS	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
02	7.5	13	4.57	.481	.11	1.75	12	15	2.42	<.1	2.93	1.4	26
NOV 28							16	20					
FEB							10	20					
01 APR	3.5	17	5.64	.614	.13	2.14	17	20	4.04	<.1	3.62	1.8	28
06 MAY	1.5	19	6.26	.721	.12	2.30	14	17	3.89	E.1	4.11	1.9	34
30	4.5	13	4.54	.470	.14	1.84	13	15	3.13	<.1	2.72	1.4	22
30 JUN	4.5												
15 SEP													
05	6.5	16	5.31	.550	.12	1.93			2.28	<.1	3.67	1.8	29
18 20	7.5	14	4.73	.493	.18	1.88	13	16	2.12	<.1	3.18	1.5	22
Date	TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	MONIA + ORGANIC DIS. (MG/L AS N)	ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 I DIS- SOLVED (MG/L AS N) (00631)	NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P)	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	CARBON, INOR- GANIC, PARTIC. TOTAL (MG/L AS C) (00688)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)
OCT													
02 NOV	21	<.015	E.07	.15	.025	<.002		E.003	E.006	E.003			
28 FEB		<.015	<.10	<.10	.110	<.002	<.02	< .004	< .007	< .004	<.1	<.1	.6
01	28	<.015	<.10	<.10	.116	< .002	<.02	< .004	< .007	< .004	<.1	<.1	.9
APR 06	28	<.015	<.10	<.10	.147	<.002	<.02	< .004	<.007	E.003	<.1	<.1	.7
MAY 30	22	<.015	<.10	<.10	.103	<.002	<.02	<.004	<.007	<.004	<.1	<.1	1.3
30 JUN													
15													
SEP 05	26			E.06			<.02			.004	<.1	<.1	1.0
18 20	22	<.015	<.10	 E.07	.073	<.002	<.02	E.003	<.007	E.002	<.1	<.1	2.0
20	22	1.015	1.10	2.07	.075	1.002	1.02	2.003	1.007	2.002		7	2.0
Date	CARBON, ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)	PERI- PHYTON BIOMASS ASH WEIGHT G/SQ M (00572)	TOTAL DRY WEIGHT	A, PERI- PHYTON	CHLOR-A PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2) (70957)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	(UG/L AS MN	SEDI- MENT, D SUS- PENDEI) (MG/L)) (T/DAY	SAMPLE TYPE (CODE)			
OCT													
02 NOV						43	E1.3	3.0	2.2	3044			
28 FEB	<.1							1.0	.11	3044			
01	<.1					14	E1.2	1.0	.10	3044			
APR 06	<.1					<10	E1.2	<1.0					
MAY 30	<.1					13	<2.0	1.0	.39	3044			
30 JUN		41	42.20	.5	1.6								
15		41	43.00	. 7	3.2								
SEP 05	<.1					E10	E1.0			3044			
18 20	<.1	43	43.90	1.9	6.3	32	E2.1	3.0	 .93	3044			
20	~					22		5.0	. 23	5011			

15087700 INDIAN RIVER NEAR SITKA—Continued

SPECIFIC CONDUCTANCE, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		N	OVEMBER		D	ECEMBER			JANUAR	Z
1 2	40 41	36 32	39 38	48 44	39 37	44 42	52	52 52	52 52	48 48	47 47	47 48
3	45	41	43	47	42	44	52 52	52	52	47	46	46
4 5	46 47	45 45	46 47	48 49	47 48	47 48	52 52	52 51	52 52	49 49	47 48	48 48
6	45		43	49	49	49	52	51	52	48	38	
7	45	41 45	46	49	49	49	52 52	35	43	48	40	42 42
8 9	47 44	44 40	45 43	49 47	45 42	47 45	47 48	37 43	43 46	45 46	38 40	41 45
10	40	36	38	48	44	47	45	43	44	47	41	45
11	43	36	41	49	47	48	48	40	47	49	47	48
12	44	33	40	50	47 49	49	47	40 39	43			49
13 14	45 46	44 45	45 46	50 50	50 45	50 49	50 50	47 50	48 50	49 49	48 49	49 49
15	47	45	46	48	45	47	51	50	51	49	39	46
16	46	42	45	46	43	45	51	51	51	47	40	44
17 18	46 39	34 35	42 37	48 49	43 48	46 49	51 52	51 51	51 52	48 45	45 37	47 41
19	42	36	39	50	49	50	52	51	52	45	37	42
20	45	42	44	50	49	49	52	52	52	48	45	47
21 22	45 46	42 44	44 45	50 49	49 35	50 44	52 52	51 51 40	52 52	50 50	48 50	49 50
23	46	45	46	48	43	47	51	40	52 52 48	51	50	50
24 25	45 47	43 44	44 46	49 50	48 49	49 50	43 45	37	41 45	50	50 50	50 51
26 27	48 48	47 47	47 48	51 51	50 51	51 51	45 46	44 44	45 45	51 52	51 51	51 51
28	48	39	44	52	51	51 52	47	45	46	51	51	51
29 30	44 47	40 44	42 46	52 52	52 52	52 52	46 47	44 46	45 47	51 50	50 48	50 49
31	48	47	47				47	46	46	49	48	49
MONTH	48	32	44	52	35	48	52	35	48	52	37	47
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY		MIN FEBRUARY		MAX	MARCH		MAX	MIN APRIL	MEAN	XAM	MIN MAY	MEAN
1	50	FEBRUARY	50	48	MARCH			APRIL	51		MAY	46
1 2	50 50	FEBRUARY 49 49	50 50	48 45	MARCH 44 26	46 36		APRIL	51 51	47 48	MAY 45 47	46 47
1 2 3 4	50 50 50 50	FEBRUARY 49 49 49 48	50 50 50 49	48 45 44 47	MARCH 44 26 30 44	46 36 39 46	51 52 52 52	APRIL 51 51 51 52	51 51 52 52	47 48 50 50	MAY 45 47 48 49	46 47 49 50
1 2 3	50 50 50	FEBRUARY 49 49 49	50 50 50	48 45 44	MARCH 44 26 30 44 47	46 36 39 46 48	51 52 52	APRIL 51 51 51	51 51 52	47 48 50 50	MAY 45 47 48 49 50	46 47 49
1 2 3 4 5	50 50 50 50 50	FEBRUARY 49 49 49 48 48	50 50 50 49 49	48 45 44 47 48	MARCH 44 26 30 44 47	46 36 39 46 48	51 52 52 52 52 52	APRIL 51 51 51 52 52 52	51 51 52 52 52 52	47 48 50 50 50	MAY 45 47 48 49 50	46 47 49 50 50
1 2 3 4 5	50 50 50 50 50 50 54 53	FEBRUARY 49 49 49 48 48 50 50 51	50 50 50 49 49 50 51 52	48 45 44 47 48 49 50 50	MARCH 44 26 30 44 47 48 49 49	46 36 39 46 48 48	51 52 52 52 52 52 52 52 52	APRIL 51 51 51 52 52 52 52 52 52	51 51 52 52 52 52 52 52 52	47 48 50 50 50 51 51	MAY 45 47 48 49 50 51	46 47 49 50 50 50
1 2 3 4 5 6 7 8 9	50 50 50 50 50 50 54 53 52	FEBRUARY 49 49 49 48 48 50 50 51 43	50 50 50 49 49 50 51 52 50	48 45 44 47 48 49 50 50	MARCH 44 26 30 44 47 48 49 49 50	46 36 39 46 48 48 49 50	51 52 52 52 52 52 52 52 52	APRIL 51 51 52 52 52 52 52 52 52 52	51 51 52 52 52 52 52 52 52 52	47 48 50 50 50 51 51 51	MAY 45 47 48 49 50 51 51 50	46 47 49 50 50 50 51 51 51
1 2 3 4 5 6 7 8 9	50 50 50 50 50 50 54 53 52 47	49 49 49 48 48 50 50 51 43 40	50 50 50 49 49 50 51 52 50 43	48 45 44 47 48 49 50 50 50	MARCH 44 26 30 44 47 48 49 49 50 50	46 36 39 46 48 48 49 50	51 52 52 52 52 52 52 52 52 52 52 53	APRIL 51 51 52 52 52 52 52 52 52 52 52	51 51 52 52 52 52 52 52 52 52 52	47 48 50 50 50 51 51 51 51	MAY 45 47 48 49 50 50 51 51 51 50 45	46 47 49 50 50 51 51 51 47
1 2 3 4 5 6 7 8 9	50 50 50 50 50 50 54 53 52	FEBRUARY 49 49 49 48 48 50 50 51 43	50 50 50 49 49 50 51 52 50	48 45 44 47 48 49 50 50	MARCH 44 26 30 44 47 48 49 49 50	46 36 39 46 48 48 49 50	51 52 52 52 52 52 52 52 52	APRIL 51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	51 51 52 52 52 52 52 52 52 52	47 48 50 50 50 51 51 51	MAY 45 47 48 49 50 51 51 50	46 47 49 50 50 50 51 51 51
1 2 3 4 5 6 7 8 9 10	50 50 50 50 50 50 54 53 52 47 48 42 45	49 49 49 48 48 50 51 43 40 31 29 37	50 50 50 49 49 51 52 50 43 41 34 44	48 45 44 47 48 49 50 50 50 50 50	MARCH 44 26 30 44 47 48 49 50 50 50 50	46 36 39 46 48 48 49 50 50	51 52 52 52 52 52 52 52 52 52 52 53 53 53	APRIL 51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	51 51 52 52 52 52 52 52 52 52 52 52	47 48 50 50 50 51 51 51 51 50 46 46 45	MAY 45 47 48 49 50 51 51 51 44 44 44	46 47 49 50 50 51 51 51 47 45 45
1 2 3 4 5 6 7 8 9 10	50 50 50 50 50 50 50 54 53 52 47 48 42	49 49 49 48 48 48 50 50 51 43 40	50 50 50 49 49 51 52 50 43 41 34 44	48 45 44 47 48 49 50 50 50 50	MARCH 44 26 30 44 47 48 49 49 50 50	46 36 39 46 48 49 49 50 50	51 52 52 52 52 52 52 52 52 52 53	APRIL 51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	51 51 52 52 52 52 52 52 52 52 52 52	47 48 50 50 50 51 51 51 51 50	MAY 45 47 48 49 50 51 51 51 44 44 44	46 47 49 50 50 51 51 47 45 45
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	50 50 50 50 50 50 54 53 52 47 48 42 45 39 41	49 49 49 48 48 50 51 43 40 31 29 37 29 28	50 50 50 49 49 51 52 50 43 41 34 44 33 33	48 45 44 47 48 49 50 50 50 50 50 50 50	MARCH 44 26 30 44 47 48 49 50 50 50 50 50 50	46 36 39 46 48 48 49 49 50 50 50	51 52 52 52 52 52 52 52 52 53 53 53 53 53 52 52	APRIL 51 51 52 52 52 52 52 52 52 52 52 51 51 51	51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	47 48 50 50 50 51 51 51 51 50 46 45 47	MAY 45 47 48 49 50 51 51 50 45 44 44 45 46	46 47 49 50 50 51 51 47 45 45 46 47
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	50 50 50 50 50 50 54 53 52 47 48 42 45 39 41	49 49 49 48 48 50 51 43 40 31 29 37 29 28	50 50 50 49 49 50 51 52 50 43 41 34 44 33 33 33	48 45 44 47 48 49 50 50 50 50 50 50 50 50 50	MARCH 44 26 30 44 47 48 49 50 50 50 50 50 50 50 50	46 36 39 46 48 48 49 49 50 50 50 50 50	51 52 52 52 52 52 52 52 52 53 53 53 53 53 52 52	APRIL 51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	47 48 50 50 50 51 51 51 51 50 46 46 47 47 47	MAY 45 47 48 49 50 51 51 51 44 44 44 44 44 44 45 46	46 47 49 50 50 51 51 47 45 45 46 47 45 45
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	50 50 50 50 50 50 54 53 52 47 48 42 45 39 41 44 46 48	49 49 49 48 48 48 50 51 43 40 31 29 37 29 28	50 50 50 49 49 51 52 50 43 41 34 44 33 33 40 46 47	48 45 44 47 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50	MARCH 44 26 30 44 47 48 49 49 50 50 50 50 50 50 50 50 50	46 36 39 46 48 48 49 49 50 50 50 50 50 50	51 52 52 52 52 52 52 52 52 53 53 53 53 53 52 52	APRIL 51 51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	47 48 50 50 50 51 51 51 51 50 46 45 47 47	MAY 45 47 48 49 50 51 51 50 45 44 44 45 46 43 445	46 47 49 50 50 51 51 47 45 45 46 47 45 46
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	50 50 50 50 50 50 54 53 52 47 48 42 45 39 41	49 49 49 48 48 50 51 43 40 31 29 37 29 28	50 50 50 49 49 50 51 52 50 43 41 34 44 33 33 33	48 45 44 47 48 49 50 50 50 50 50 50 50 50 50 50	MARCH 44 26 30 44 47 48 49 50 50 50 50 50 50 50 50	46 36 39 46 48 48 49 49 50 50 50 50 50	51 52 52 52 52 52 52 52 52 53 53 53 53 53 52 52	APRIL 51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	47 48 50 50 50 51 51 51 51 50 46 46 47 47 47	MAY 45 47 48 49 50 51 51 51 44 44 44 44 44 44 45 46	46 47 49 50 50 51 51 47 45 45 46 47 45 45
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	50 50 50 50 50 50 54 53 52 47 48 42 45 39 41 44 46 48 48 48	FEBRUARY 49 49 48 48 50 50 51 43 40 31 29 37 29 28 32 44 46 47 48	50 50 50 49 49 50 51 52 50 43 41 34 44 33 33 40 46 47 48 48	48 45 44 47 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50	MARCH 44 26 30 444 47 48 49 50 50 50 50 50 50 50 50 51	46 36 39 46 48 48 49 50 50 50 50 50 50 50 50 50 50	51 52 52 52 52 52 52 52 52 53 53 53 53 53 52 52 52 52	APRIL 51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	47 48 50 50 50 51 51 51 51 50 46 46 47 47 47 47 46 46 46 45 42	MAY 45 47 48 49 50 50 51 51 50 45 44 44 45 46 43 44 45 46 43 39	466 477 499 500 501 511 511 47 455 446 47 4546 447 441 40
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	50 50 50 50 50 50 54 53 52 47 48 42 45 39 41 44 46 48 48 48 48	FEBRUARY 49 49 48 48 50 51 43 40 31 29 37 29 28 32 44 46 47 48 48	50 50 50 49 49 50 51 52 50 43 41 34 44 33 33 33 40 46 47 48 48 49	48 45 44 47 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50	MARCH 44 26 30 44 47 48 49 50 50 50 50 50 50 50 51 51 51	46 36 39 46 48 48 49 49 50 50 50 50 50 50 50 50 50 50	51 52 52 52 52 52 52 52 52 53 53 53 53 53 52 52 52 52 52	APRIL 51 51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	47 48 50 50 50 51 51 51 51 50 46 46 47 47 47 47 46 46 45 42	MAY 45 47 48 49 50 50 51 51 50 45 44 44 44 45 46 43 44 45 41 39	46 47 49 50 50 51 51 47 45 45 46 47 45 46 47 45 46 41 40 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	50 50 50 50 50 50 50 54 53 52 47 48 42 45 39 41 44 46 48 48 48 48 49 49 50 50 50 50 50 50 50 50 50 50 50 50 50	FEBRUARY 49 49 49 48 48 50 50 51 43 40 31 29 37 29 28 32 44 46 47 48 48 49 49	50 50 50 49 49 50 51 52 50 43 41 34 44 33 33 40 46 47 48 48 48 49 49 50	48 45 44 47 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50	MARCH 44 26 30 444 47 48 49 50 50 50 50 50 50 50 51 51 51 51 51	46 36 39 46 48 48 49 50 50 50 50 50 50 50 50 51 51 51	51 52 52 52 52 52 52 52 52 53 53 53 53 53 52 52 52 52 52 52 52 52 52 52 52 53 53 54 55 54 55 55 55 55 55 55 55 55 55 55	APRIL 51 51 52 52 52 52 52 52 52 52 52 52 52 52 51 51 51 52 52 52 52 64 44 47 49	51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	47 48 50 50 50 51 51 51 51 50 46 46 47 47 47 47 46 46 46 44 45 42 41 42 44	MAY 45 47 48 49 50 50 51 51 50 45 44 44 45 46 43 44 45 46 43 44 45 46 43 44 45 46 47 48 48 48 48 48 48 48 48 48 48 48 48 48	466 477 499 500 501 511 511 47 455 446 47 4546 447 41 40 442 444
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	50 50 50 50 50 50 54 53 52 47 48 42 45 39 41 44 46 48 48 48 48 49 49 50	FEBRUARY 49 49 48 48 50 51 43 40 31 29 37 29 28 32 44 46 47 48 48 49	50 50 50 49 49 50 51 52 50 43 41 34 44 33 33 40 46 47 48 48 49 49	48 45 44 47 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50	MARCH 44 26 30 44 47 48 49 49 50 50 50 50 50 50 50 51 51 51 51	46 36 39 46 48 48 49 49 50 50 50 50 50 50 50 50 51 51 51	51 52 52 52 52 52 52 52 52 53 53 53 53 53 52 52 52 52 52 52 53 54 54 54 54 54 54 54 54 54 54 54 54 54	APRIL 51 51 51 52 52 52 52 52 52 52 52 52 52 52 52 51 51 51 52 52 52 50 36 41 44 47	51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	47 48 50 50 50 51 51 51 51 50 46 45 47 47 47 47 46 46 45 42	MAY 45 47 48 49 50 50 51 51 51 44 44 45 46 43 445 41 39 39 41 42	46 47 49 50 50 51 51 47 45 46 447 45 46 441 40 42 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	50 50 50 50 50 50 50 54 53 52 47 48 42 45 39 41 46 48 48 48 49 49 50 50 50 50 50 50 50 50 50 50 50 50 50	FEBRUARY 49 49 48 48 50 50 51 43 40 31 29 37 29 28 32 44 46 47 48 48 49 49 49 49	50 50 49 49 49 50 51 52 50 43 41 34 44 33 33 40 46 47 48 48 49 49 49 49 49	48 45 44 47 48 49 50 50 50 50 50 50 50 50 50 51 51 51 51	MARCH 44 26 30 444 47 48 49 50 50 50 50 50 50 50 51 51 51 51 51 51 51	46 36 39 46 48 48 49 50 50 50 50 50 50 50 50 51 51 51 51	51 52 52 52 52 52 52 52 52 53 53 53 53 53 52 52 52 52 52 52 52 52 52 53 53 53 53 53 53 53 53 53 53 53 53 53	APRIL 51 51 52 52 52 52 52 52 52 52 52 52 52 51 51 51 52 52 52 52 54 44 47 49 49	51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	47 48 50 50 50 51 51 51 51 50 46 46 47 47 47 47 46 46 45 42 41 42 44 44 44	MAY 45 47 48 49 50 50 51 51 50 45 44 44 45 46 43 44 45 46 43 44 45 41 39 39 41 42 43 41	466 477 499 500 501 511 511 47 455 446 47 4546 447 41 42 442 444 442 442 444 442 444 442 444 444
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	50 50 50 50 50 50 54 53 52 47 48 42 45 39 41 44 46 48 48 48 49 49 50 50 50 50 50 50 50 50 50 50 50 50 50	FEBRUARY 49 49 49 48 48 50 51 43 40 31 29 37 29 28 32 44 46 47 48 48 49 49 50 49 46 47 48	50 50 50 49 49 50 51 52 50 43 41 34 44 44 33 33 33 46 47 48 49 49 50 50 50 48 49 49 49 49 49 49 49 49 49 49 49 49 49	48 45 44 47 48 49 50 50 50 50 50 50 50 50 50 50 51 51 51 51 51 51 51 51 51 51 51	MARCH 44 26 30 44 47 48 49 49 50 50 50 50 50 50 51 51 51 51 51 51 50 50 50 50	46 36 39 46 48 48 49 49 50 50 50 50 50 50 50 51 51 51 51 51 51 51 51 50 50	51 52 52 52 52 52 52 52 52 53 53 53 53 53 52 52 52 52 52 52 52 52 52 52 52 52 53 53 53 53 53 54 55 54 55 55 55 55 55 55 55 55 55 55	APRIL 51 51 52 52 52 52 52 52 52 52 52 52 52 51 51 51 51 52 52 52 52 54 44 47 49 49 49 49	51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	47 48 50 50 50 51 51 51 51 50 46 45 47 47 47 46 46 45 42 41 42 44 44 44 44 42 43 39	MAY 45 47 48 49 50 50 51 51 51 44 44 45 46 43 44 45 41 39 39 39 41 40 39 38	46 47 49 50 50 51 51 47 45 45 46 47 45 46 44 41 40 42 44 44 42 44 42 44 42 43 88
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	50 50 50 50 50 50 50 54 53 52 47 48 42 45 39 41 44 46 48 48 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50	FEBRUARY 49 49 48 48 50 50 51 43 40 31 29 37 29 28 32 44 46 47 48 49 49 49 49 40 46 45 6	50 50 50 49 49 50 51 52 50 43 41 34 44 33 33 33 40 46 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	48 45 44 47 48 49 50 50 50 50 50 50 50 50 50 51 51 51 51 51 51	MARCH 44 26 30 444 47 48 49 50 50 50 50 50 50 51 51 51 51 51 51 51 51 51 51 51 51 51	46 36 39 46 48 48 49 50 50 50 50 50 50 50 50 50 51 51 51 51 51 51 50 50 51	51 52 52 52 52 52 52 52 52 53 53 53 53 53 53 52 52 52 52 52 52 52 52 52 52 52 52 52	APRIL 51 51 52 52 52 52 52 52 52 52 52 52 51 51 51 52 52 52 52 54 44 47 49 49 49 49 49 49 48	51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	47 48 50 50 50 51 51 51 51 50 46 46 45 47 47 47 47 46 46 46 44 42 44 44 44 44 44 44 44 44 44 44 44	MAY 45 47 48 49 50 50 51 51 50 45 44 44 45 46 43 44 45 41 39 39 41 42 43 41 40 39 38 38	466 477 499 500 501 511 511 47 455 446 47 4546 444 41 42 424 444 42 42 42 43 339
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	50 50 50 50 50 50 54 53 52 47 48 42 45 39 41 44 46 48 48 48 49 49 50 50 50 50 50 50 50 50 50 50 50 50 50	FEBRUARY 49 49 49 48 48 50 51 43 40 31 29 37 29 28 32 44 46 47 48 48 49 49 50 49 46 47 48	50 50 50 49 49 50 51 52 50 43 41 34 44 44 33 33 33 46 47 48 49 49 50 50 50 48 49 49 49 49 49 49 49 49 49 49 49 49 49	48 45 44 47 48 49 50 50 50 50 50 50 50 50 50 50 51 51 51 51 51 51 51 51 51 51 51	MARCH 44 26 30 44 47 48 49 49 50 50 50 50 50 50 51 51 51 51 51 51 50 50 50 50	46 36 39 46 48 48 49 49 50 50 50 50 50 50 50 51 51 51 51 51 51 51 51 50 50	51 52 52 52 52 52 52 52 52 53 53 53 53 53 52 52 52 52 52 52 52 52 52 52 52 52 53 53 53 53 53 54 55 54 55 55 55 55 55 55 55 55 55 55	APRIL 51 51 52 52 52 52 52 52 52 52 52 52 52 51 51 51 51 52 52 52 52 54 44 47 49 49 49 49	51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	47 48 50 50 50 51 51 51 51 50 46 45 47 47 47 46 46 45 42 41 42 44 44 44 44 42 43 39	MAY 45 47 48 49 50 50 51 51 51 44 44 45 46 43 44 45 41 39 39 39 41 40 39 38	46 47 49 50 50 51 51 47 45 45 46 47 45 46 44 41 40 42 44 44 42 44 42 44 42 43 88
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30	50 50 50 50 50 50 50 54 53 52 47 48 42 45 39 41 44 46 48 48 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50	49 49 49 49 48 48 50 51 43 40 31 29 37 29 28 32 44 46 47 48 48 49 49 49 50 49 46	50 50 50 49 49 50 51 52 50 43 41 34 44 33 33 33 40 46 47 48 48 49 49 49 49 50 50 50 60 60 60 60 60 60 60 60 60 60 60 60 60	48 45 44 47 48 49 50 50 50 50 50 50 50 50 50 51 51 51 51 51 51 51 51	MARCH 44 26 30 444 47 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50	46 36 39 46 48 48 49 49 50 50 50 50 50 50 50 50 50 50 50 50 51 51 51 51 51 51 51	51 52 52 52 52 52 52 52 52 52 53 53 53 53 53 52 52 52 52 52 52 52 52 52 52 52 52 52	APRIL 51 51 52 52 52 52 52 52 52 52 52 52 52 52 51 51 51 51 52 52 52 52 54 44 47 49 49 49 48 48	51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	47 48 50 50 50 51 51 51 50 46 46 45 47 47 47 46 46 45 42 44 44 44 44 44 44 44 44 44 44 44 44	MAY 45 47 48 49 50 50 51 51 50 45 44 44 44 45 46 43 44 45 46 43 39 39 39 41 42 43 41 40 39 38 38	466 477 499 500 501 511 511 47 455 445 446 47 4546 47 42 442 442 442 442 443 483 4940 4940 4940 4940 4940 4940 4940 494

SOUTHEAST ALASKA

15087700 INDIAN RIVER NEAR SITKA—Continued

SPECIFIC CONDUCTANCE, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

		SPECIF	IC COND	UCTANCE,	in US/CM	@ 25C,	WATER YEAR	COCTOBER	2001 TO	SEPTEMBER	2002	
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBE	MEAN R
1 2 3 4 5	41 41 42 40 40	41 41 40 37 37	41 41 41 39 39	43 45 46 44 42	42 42 43 41 41	42 43 45 43	45 45 46 46 47	44 45 45 46 46	44 45 46 46 46	37 39 41 42 43	34 34 39 41 42	35 37 40 41 42
6 7 8 9 10	43 43 42 42 39	40 39 41 38 37	42 41 42 40 38	43 44 43 44	42 43 43 43 42	42 43 43 44 43	47 47 36 39 40	46 33 31 33 31	47 38 34 36 36	43 42 42 42 42	42 39 41 41 40	43 40 41 42 41
11 12 13 14 15	42 43 43 41 40	39 42 40 38 38	41 43 42 39 39	43 44 45 41 42	42 43 38 36 41	43 44 44 39 42	42 39 34 38 40	35 15 23 34 38	40 31 30 36 39	41 40 42 42 43	35 36 40 42 42	38 38 41 42 42
16 17 18 19 20	42 42 42 43 43	40 41 41 42 43	41 42 41 42 43	43 43 44 44 45	42 40 41 43 44	42 42 43 44 45	41 42 42 43 43	40 41 42 42 42	41 42 42 42 43	43 42 39 38 39	41 37 34 33 35	42 40 38 36 38
21 22 23 24 25	44 44 42 41 41	43 42 40 39 39	43 43 41 40 40	45 43 43 44 40	42 42 43 38 39	44 43 43 41 40	42 36 36 38 40	19 24 23 36 38	28 33 32 38 39	39 40 41 42 42	32 38 40 41 41	36 39 40 41 42
26 27 28 29 30 31	42 43 42 42 42	41 42 41 41 42	42 42 42 42 42	43 43 36 40 43	40 34 33 35 40 43	41 38 35 37 42 44	40 40 35 39 39 37	39 34 30 35 36 32	40 38 33 37 38 35	42 41 40 41 42	41 31 36 36 41	42 36 38 39 42
MONTH	44	37	41	46	33	42	47	15	39	43	31	40
		TEMPER	ATURE.	WATER. D	EGREES CE	LSTUS.	WATER YEAR	OCTOBER	2001 TO	SEPTEMBER	2002	
DAY	MAX	TEMPER MIN	RATURE, MEAN	WATER, D		LSIUS, MEAN	WATER YEAR	OCTOBER MIN	2001 TO	SEPTEMBER MAX	2002 MIN	MEAN
	MAX					MEAN	MAX		MEAN			
	MAX 7.5 7.5 7.0 7.0	MIN			MIN	MEAN	MAX 3.0 3.5	MIN	MEAN		MIN	
DAY 1 2 3 4	7.5 7.5 7.0 7.0	MIN OCTOBER 7.0 7.0 6.5 6.5	7.0 7.5 7.0 6.5	5.0 5.0 5.0 4.5	MIN NOVEMBER 4.5 4.0 3.5 4.0	MEAN 5.0 4.5 4.5 4.5	MAX 3.0 3.5 4.0 4.0 4.0 4.0 2.5	MIN DECEMBER 3.0 3.0 3.5 3.0	MEAN 3.0 3.5 3.5 4.0	MAX 4.5 4.5 4.0 4.5	MIN JANUARY 4.0 4.0 4.0 4.0	4.5 4.5 4.0 4.0
DAY 1 2 3 4 5 6 7 8 9	7.5 7.5 7.0 7.0 7.0 7.0 6.5 6.5	MIN OCTOBER 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5	7.0 7.5 7.0 6.5 6.5 6.5	5.0 5.0 5.0 4.5 4.5 5.0 5.0 5.0	MIN NOVEMBER 4.5 4.0 3.5 4.0 4.5 4.5 4.5	MEAN 5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5	3.0 3.5 4.0 4.0 4.0 4.0 2.5 3.0	MIN DECEMBER 3.0 3.5 3.0 3.0 3.1 1.0 1.0	MEAN 3.0 3.5 3.5 4.0 3.5 4.0 2.0	MAX 4.5 4.5 4.0 4.5 5.0 4.5 4.0 4.5 4.0 4.5	MIN JANUARY 4.0 4.0 4.0 4.0 4.5 3.5 3.5 3.5 4.0	4.5 4.5 4.0 4.0 4.5 4.0 4.0
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14	7.5 7.5 7.0 7.0 7.0 6.5 7.0 7.0 6.5 7.0 6.5 7.0 6.5	MIN OCTOBER 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	7.0 7.5 7.0 6.5 6.5 7.0 6.5 6.5 6.5 6.5 6.5	MAX 5.0 5.0 5.0 4.5 4.5 5.0 5.0 5.0 4.5 5.0 5.0 5.0 5.0 5.0	MIN NOVEMBER 4.5 4.0 3.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	MEAN 5.0 4.5 4.5 4.5 5.0 4.5 5.0 4.5 5.0 6.5 6.0 6.5 6.0 6.5	MAX 3.0 3.5 4.0 4.0 4.0 4.0 2.5 3.0 2.5 3.0 3.5 3.5	MIN DECEMBER 3.0 3.5 3.0 3.0 3.0 1.0 1.0 1.5 2.0 2.0 2.0 3.0 2.0	MEAN 3.0 3.5 3.5 4.0 3.5 2.0 2.0 2.0 2.0 2.0 3.0 2.5 3.5 3.5	MAX 4.5 4.5 4.0 4.5 5.0 4.5 4.0 4.5 4.5 4.5 4.5	MIN JANUARY 4.0 4.0 4.0 4.5 3.5 3.5 3.5 4.0 4.0 4.5 4.5 4.5	4.5 4.5 4.0 4.0 4.5 4.0 4.5 4.0 4.5 4.5
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	7.5 7.5 7.0 7.0 7.0 6.5 6.5 7.0 6.5 7.0 6.5 6.0 6.0 6.5	MIN OCTOBER 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	MEAN 7.0 7.5 7.0 6.5 6.5 6.5 6.5 6.5 6.6 6.0 6.0 6.0 6.0 6.0	MAX 5.0 5.0 4.5 4.5 5.0 5.0 5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	MIN NOVEMBER 4.5 4.0 3.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	MEAN 5.0 4.5 4.5 4.5 5.0 4.5 5.0 4.5 5.0 4.5 5.0 4.5 5.0 6.5 6.0 6.5	MAX 3.0 3.5 4.0 4.0 4.0 4.0 2.5 3.0 2.5 3.5 3.5 3.5 3.5 3.5	MIN DECEMBER 3.0 3.0 3.5 3.0 3.0 1.0 1.0 1.5 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	MEAN 3.0 3.5 3.5 4.0 3.5 2.0 2.0 2.0 2.0 3.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	MAX 4.5 4.5 4.0 4.5 5.0 4.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.6 4.7	MIN JANUARY 4.0 4.0 4.0 4.5 3.5 3.5 4.0 4.0 4.5 4.5 4.5 4.5 3.5 4.0 3.0 3.0	4.5 4.5 4.0 4.0 4.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 3.5
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	7.5 7.5 7.0 7.0 7.0 6.5 7.0 6.5 7.0 6.5 6.0 6.0 6.0 6.0 6.0 6.5 6.0 6.0	MIN OCTOBER 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	MEAN 7.0 7.5 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.5 5.5 5.0	MAX 5.0 5.0 5.0 4.5 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	MIN NOVEMBER 4.5 4.0 3.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 6.5 6.6 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7	MEAN 5.0 4.5 4.5 4.5 5.0 4.5 5.0 4.5 5.0 5.0 5.0 6.5 5.0 6.5 6.0 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6	MAX 3.0 3.5 4.0 4.0 4.0 4.0 2.5 3.0 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	MIN DECEMBER 3.0 3.0 3.5 3.0 3.0 1.0 1.5 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	MEAN 3.0 3.5 3.5 4.0 3.5 2.0 2.0 2.0 2.0 3.0 3.5 3.5 3.5 4.0 3.0 3.0 3.5 3.5 4.0	MAX 4.5 4.5 4.0 4.5 5.0 4.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.6 4.0 4.0 4.0 4.0 4.0 4.0 4.0	MIN JANUARY 4.0 4.0 4.0 4.0 4.5 3.5 3.5 4.0 4.0 4.5 4.5 4.5 3.5 4.0 3.0 3.5 3.5 3.5 4.0 3.0 3.0 3.5	4.5 4.5 4.0 4.0 4.5 4.0 4.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
DAY 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	7.5 7.5 7.0 7.0 7.0 6.5 7.0 7.0 6.5 7.0 6.5 6.0 6.0 6.0 6.0 6.0 5.5 5.0 5.0 5.0	MIN OCTOBER 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 5.5 5.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	MEAN 7.0 7.5 7.0 6.5 6.5 6.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	MAX 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	MIN NOVEMBER 4.5 4.0 3.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	MEAN 5.0 4.5 4.5 4.5 5.0 4.5 5.0 4.5 5.0 4.5 5.0 4.5 5.0 4.5 5.0 4.5 5.0 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3	MAX 3.0 3.5 4.0 4.0 4.0 4.0 2.5 3.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	MIN DECEMBER 3.0 3.5 3.0 3.0 3.0 1.0 1.0 1.5 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	MEAN 3.0 3.5 3.5 4.0 3.5 2.0 2.0 2.0 2.0 3.0 3.5 3.5 3.5 3.5 3.0 3.0 3.5 3.5 4.0 4.0 3.0 2.0 3.5 4.0 3.5 4.0	4.5 4.5 4.0 4.5 5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	MIN JANUARY 4.0 4.0 4.0 4.5 3.5 3.5 4.0 4.0 4.5 4.5 4.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	4.5 4.0 4.0 4.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

15087700 INDIAN RIVER NEAR SITKA—Continued

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY	7		MARCH			APRIL			MAY	
										3.5 4.5 4.0 4.5		
6 7 8 9 10	3.5 3.0 3.0 3.5 2.0	3.0 2.5 2.5 2.0 1.5	3.0 3.0 3.0 3.0 2.0	3.0 3.0 3.0 3.0	2.5 2.5 2.5 2.5 3.0	2.5 2.5 2.5 2.5 3.0	4.0 4.0 4.0 4.0	2.5 2.0 2.0 2.0 2.5	3.0 2.5 2.5 3.0 3.0	4.5 4.0 5.0 4.0	3.0 3.5 3.5 3.5 3.5	3.5 3.5 4.0 4.0 3.5
11 12 13 14 15	2.5 2.5 3.0 2.5 3.0	0.5 1.0 2.0 1.5 1.5	1.5 1.5 2.5 2.0	3.5 3.5 3.5 4.0 3.5	3.0 3.0 2.5 2.5 2.5	3.0 3.5 3.0 3.0 2.5	4.0 3.5 4.0 4.0 3.5	2.0 2.5 2.5 2.5 2.5	3.0 3.0 3.0 3.0 3.0	4.0 4.0 4.0 4.0	3.5 3.5 3.5 3.0 3.5	3.5 3.5 3.5 3.5 4.0
16 17 18 19 20	3.0 3.5 4.0 4.0	1.5 3.0 3.5 3.0	2.5 3.5 3.5 4.0 3.5	3.5 3.0 3.5 3.5 3.5	2.5 2.0 2.5 2.0	2.5 2.5 2.5 2.5 2.5	4.0 4.0 4.0 3.5 2.5	2.0 2.0 2.0 2.5 1.5	3.0 2.5 3.0 3.0 2.0	5.0 4.0 5.0 5.5	3.5 3.5 4.0 3.5 4.0	4.5 4.0 4.5 4.5
										4.5 4.5 4.5 5.5		
26 27 28 29 30 31	3.5 3.5 3.5 	2.5 2.5 3.0 	3.5 3.0 3.5 	3.5 3.5 3.0 3.5 3.5	2.5 2.0 2.0 2.5 2.5	3.0 2.5 2.5 3.0 3.0	4.0 4.0 5.0 4.5 4.5	2.5 3.0 3.0 3.0 3.0	3.0 3.5 3.5 3.5 3.5	5.0 5.0 5.0 5.0 5.0	4.5 4.5 4.5 4.5 4.5	4.5 4.5 5.0 4.5 4.5
MONTH	4.0	0.5	3.0	4.5	1.0	2.7	5.0	1.5	2.9	5.5	2.5	4.0
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY		JUNE			JULY			AUGUST			SEPTEMB	BER
1 2 3 4 5	5.0 5.0 5.5 5.0	JUNE 4.5 4.5 4.5 4.5 4.5 4.5	4.5 5.0 5.0 5.0	6.5 6.5 6.0 6.5	JULY 6.0 6.0 6.0 6.0 6.0	6.5 6.0 6.0 6.0	7.0 7.0 7.0 7.0 7.0	AUGUST 6.0 6.0 5.5 5.5 6.0	6.5 6.5 6.0 6.5	8.5 8.0 7.5 7.5 7.0	8.0 7.5 7.0 6.5 6.5	8.0 8.0 7.5 7.0 7.0
1 2 3 4 5	5.0 5.0 5.5 5.0	JUNE 4.5 4.5 4.5 4.5 4.5 4.5	4.5 5.0 5.0 5.0	6.5 6.5 6.0 6.5	JULY 6.0 6.0 6.0 6.0 6.0	6.5 6.0 6.0 6.0	7.0 7.0 7.0 7.0 7.0	AUGUST 6.0 6.0 5.5 5.5 6.0	6.5 6.5 6.0 6.5		8.0 7.5 7.0 6.5 6.5	8.0 8.0 7.5 7.0 7.0
1 2 3 4 5 6 7 8 9	5.0 5.5 5.0 5.0 5.0 5.0 5.5 5.0 5.5	JUNE 4.5 4.5 4.5 4.5 4.5 4.5 5.0	4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0	6.5 6.5 6.5 6.5 7.5 7.5 7.5	JULY 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.5 6.5	6.5 6.0 6.0 6.0 6.5 6.5 7.0 7.0	7.0 7.0 7.0 7.0 7.0 6.5 9.5 9.0 8.0	AUGUST 6.0 6.0 5.5 5.5 6.0 6.0 6.0 6.0 7.0	6.5 6.5 6.0 6.5 6.5 8.0 8.5 7.5	8.5 8.0 7.5 7.5 7.0	8.0 7.5 7.0 6.5 6.5 7.0 7.0 7.0	8.0 8.0 7.5 7.0 7.0 7.5 7.5 7.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	5.0 5.5 5.0 5.0 5.0 5.0 5.0 5.5 5.0 6.0 6.0	JUNE 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 5.0 5.0	4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	6.5 6.5 6.5 6.5 7.5 7.5 7.5 7.5 7.5	JULY 6.0 6.0 6.0 6.0 6.0 6.5 6.5 6.5 6.5 6.5	6.5 6.0 6.0 6.0 6.5 6.5 7.0 6.5 6.5 7.0	7.0 7.0 7.0 7.0 7.0 6.5 9.5 9.0 8.0 8.5 8.0 10.5 9.5	AUGUST 6.0 6.0 5.5 5.5 6.0 6.0 6.0 7.0 7.0 7.5 7.5	6.5 6.5 6.0 6.5 8.5 7.5 8.0	8.5 8.0 7.5 7.5 7.0 7.0 8.0 7.5 7.5 8.0 8.0	8.0 7.5 7.0 6.5 6.5 7.0 7.0 7.0 7.0 7.5 7.5 7.5	8.0 8.0 7.5 7.0 7.0 7.5 7.5 7.5 7.5 7.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	5.0 5.5 5.0 5.0 5.0 5.0 5.5 5.0 6.0 6.0 6.0 7.0 6.0	JUNE 4.5 4.5 4.5 4.5 4.5 4.5 4.5 5.0 5.0 5.5 5.5 5.5	4.5 5.0 5.0 5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	6.5 6.5 6.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	JULY 6.0 6.0 6.0 6.0 6.0 5.5 6.5 6.5 6.5 7.0 6.5 7.0 6.5	6.5 6.0 6.0 6.0 6.5 6.5 7.0 7.0 7.0 7.0 7.0	7.0 7.0 7.0 7.0 7.0 6.5 9.5 9.0 8.0 8.5 9.5 7.5 7.5 6.5 6.5 6.5	AUGUST 6.0 6.0 5.5 5.5 6.0 6.0 8.0 7.0 7.0 7.5 7.5 7.5 6.5 6.5 6.6	6.5 6.0 6.0 6.5 6.5 8.0 7.0 8.5 7.0 6.5 6.5 6.5 6.5	8.5 8.0 7.5 7.0 7.0 8.0 7.5 7.5 8.0 8.0 7.5 7.5 7.0 7.5	8.0 7.5 7.0 6.5 6.5 7.0 7.0 7.0 7.5 7.5 7.0 7.0 7.5 7.5 7.0	8.0 8.0 7.5 7.0 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.0 7.0 7.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	5.0 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	JUNE 4.5 4.5 4.5 4.5 4.5 5.0 5.0 5.5 5.5 5.6 6.0	4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	6.5 6.5 6.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7	JULY 6.0 6.0 6.0 6.0 6.0 6.5 6.5 6.5 6.5 7.0 6.5 7.5 7.5	6.5 6.0 6.0 6.0 6.5 6.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.5 8.0	7.0 7.0 7.0 7.0 7.0 6.5 9.5 9.0 8.0 8.5 9.5 7.5 7.5 6.5 6.5 6.5 6.5 7.0	AUGUST 6.0 6.0 6.0 6.0 6.0 6.0 7.0 7.5 7.5 7.5 6.5 6.5 6.5 6.5 7.0 7.5 7.5 7.5 7.5	6.5 6.0 6.0 6.5 6.0 6.5 6.5 7.0 7.0 6.5 6.5 7.0 6.5 7.0 6.5 7.0 6.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	8.5 8.0 7.5 7.0 7.0 8.0 7.5 7.5 8.0 8.0 7.5 7.5 8.0 8.0 8.0 7.5 7.5	8.0 7.5 7.0 6.5 6.5 7.0 7.0 7.0 7.0 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	8.0 8.0 7.5 7.0 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5

15087700 INDIAN RIVER AT SITKA

LOCATION.--Lat 57°03'12", long 135°18'52", in NE¹/₄ SW¹/₄ SE¹/₄ sec. 36, T. 55 S., R. 63 E. (Sitka A-4 quad), Hydrologic Unit 19010203, Greater Sitka Borough, in Tongass National Forest, on Baranof Island, on right bank 500 ft upstream from Sawmill Creek Road, 600 ft downstream from Sheldon Jackson College Diversion, and 0.6 mi above mouth.

DRAINAGE AREA.--12.0 mi²

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1998 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 30 ft above sea level, from topographic map.

REMARKS. Records good. Flow is diverted 600 ft upstream to Sheldon Jackson College. No estimated daily discharge.

		DISCHARG	E, CUBIC	FEET PE			YEAR OCTOBER VALUES	2001 T	O SEPTEME	BER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	156 282 100 67 54	77 123 108 71 55	20 19 19 18 18	56 52 59 48 42	20 19 19 21 19	28 270 143 43 29	9.9 9.8 9.6 9.6 9.4	59 47 34 27 25	103 101 93 133 132	37 35 33 37 50	61 53 46 41 37	147 123 71 53 44
6 7 8 9 10	94 61 61 85 241	44 41 71 129 83	17 74 70 65 85	96 104 122 73 71	16 15 15 16 52	24 22 20 19 18	9.2 9.2 9.2 9.2 9.3	23 24 23 25 51	92 106 89 109 152	38 34 33 32 36	33 176 308 192 244	36 59 44 38 43
11 12 13 14 15	156 452 157 103 80	61 46 40 48 61	49 86 37 28 24	51 45 40 38 63	240 418 61 383 432	18 16 15 15	9.3 9.3 9.7 10	75 74 95 74 60	102 79 81 102 96	36 31 35 87 43	127 1240 594 167 102	76 74 43 31 28
16 17 18 19 20	143 806 1060 606 163	80 68 46 39 47	23 21 20 20 18	83 46 123 140 65	176 68 51 42 35	13 13 12 12 12	10 10 10 11 57	85 95 79 105 153	75 68 66 58 54	38 44 42 34 31	86 79 73 67 52	33 56 88 147 105
21 22 23 24 25	133 104 89 113 75	49 130 76 48 38	18 19 38 211 105	46 37 34 30 26	30 26 23 21 21	12 12 11 11 11	41 20 15 14	157 133 122 100 114	50 50 59 57 55	37 49 44 71 87	828 190 384 94 75	177 94 76 65 62
26 27 28 29 30 31	58 53 79 111 67 50	32 29 26 23 21	92 79 70 83 67 69	23 21 21 23 24 26	23 30 23 	12 12 12 11 11	14 15 17 23 41	130 113 151 135 120 99	46 41 43 42 39	66 126 250 206 105 74	69 84 215 109 89 163	59 209 120 103 62
TOTAL MEAN MAX MIN MED AC-FT	5859 189 1060 50 103 11620	1810 60.3 130 21 49 3590	1582 51.0 211 17 37 3140	1728 55.7 140 21 46 3430	2315 82.7 432 15 24 4590	882 28.5 270 11 13 1750	454.7 15.2 57 9.2 10 902	2607 84.1 157 23 85 5170	2373 79.1 152 39 77 4710	1901 61.3 250 31 38 3770	6078 196 1240 33 94 12060	2366 78.9 209 28 64 4690
STATIST	CICS OF MON	NTHLY MEAN	DATA FOR	WATER Y	EARS 1999	- 2002	2, BY WATER Y	EAR (WY)			
MEAN MAX (WY) MIN (WY)	200 248 1999 141 2001	66.9 87.1 2001 38.0 1999	110 240 2000 51.0 2002	77.4 125 1999 55.7 2002	52.4 82.7 2002 23.6 1999	54.5 107 2001 28.2 1999	55.3 108 1999 15.2 2002	94.0 139 1999 72.3 2000	91.1 130 1999 74.7 2001	60.8 67.7 2000 51.6 2001	81.1 196 2002 22.0 2001	132 209 2000 78.9 2002
SUMMARY	STATISTIC	CS	FOR 20	01 CALE	IDAR YEAR		FOR 2002 WATE	ER YEAR	1	WATER YEAR	S 1999 -	2002
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MINSTANT ANNUAL 10 PERC		AN AN N MINIMUM W GE N FLOW C-FT) DS		28626 78.4 1060 15 16 56780 119 56 23	Oct 18 Aug 24 Aug 20		29955.7 82.1 1240 a9.2 9.2 b4930 26.46 9.0 59420 151 52 14	Aug 12 Apr 6 Apr 6 Aug 12 Aug 12 Apr 9		90.0 103 79.1 2390 a9.2 9.2 b5740 26.84 9.0 65180 163 55 21		2002 2002 1998

a Apr. 6 to Apr. 9, 2002 b From rating curve extended above 1050 ft^3/s

15087700 INDIAN RIVER NEAR SITKA—Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Water years 1983, 2001 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: July 2001 to September 2002 (discontinued). WATER TEMPERATURE: May 2001 to September 2002 (discontinued).

INSTRUMENTATION. -- Electronic water temperature and specific conductance recorder since May 16, 2001, recorder set to 15 minute recording interval.

REMARKS. --

SPECIFIC CONDUCTANCE: No record May 16 to July 24, 2001 due to program error. Records represent specific conductance at sensor within 3 us/cm. No variation was found within the cross sections measured on five occasions during 2002 water year. No variation was found between the mean stream specific conductance and specific conductance at the sensor.

WATER TEMPERATURE: Probe installed on May 16 2001. Records represent water temperature at sensor within 0.5°C. No variation was found within the cross sections measured five times during 2002 water year. No variation was found between the mean stream temperature and temperature at the sensor.

EXTREMES FOR PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: Maximum recorded, 54 us/cm, February 7, 2002; minimum recorded, 15 us/cm, August 12, 2002. WATER TEMPERATURE: Maximum recorded, 10.5°C, August 12, 2002; minimum recorded, 0.5°C February 11, 2002.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum recorded, 54 us/cm, February 7; minimum recorded, 15 us/cm, August 12.
WATER TEMPERATURE: Maximum recorded, 10.5°C, August 12, minimum recorded, 0.5°C February 11.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
	FEB							
01	0816	35.0	48	7.2	3.5	750	12.2	93
01	0817	30.0	48	7.2	3.5	750	12.1	93
01	0818	25.0	48	7.1	3.5	750	12.2	93
01	0819	20.0	48	7.0	3.5	750	12.2	93
01	0820	15.0	48	7.0	3.5	750	12.2	93
01	0821	10.0	48	7.0	3.5	750	12.1	93
01	0822	5.00	48	7.0	3.5	750	12.1	93

					DIS- CHARGE,			BARO- METRIC		OXYGEN, DIS-	PH WATER	SPE-	
					INST.			PRES-		SOLVED	WHOLE	CIFIC	
					CUBIC	SAM-		SURE	OXYGEN,	(PER-	FIELD	CON-	TEMPER-
		Medium	Sample	GAGE	FEET	PLING	STREAM	(MM)	DIS-	CENT	(STAND-	DUCT-	ATURE
Date	Time	code	type	HEIGHT	PER	METHOD,	WIDTH	OF	SOLVED	SATUR-	ARD	ANCE	AIR
				(FEET)	SECOND	CODES	(FT)	HG)	(MG/L)	ATION)	UNITS)	(US/CM)	(DEG C)
				(00065)	(00061)	(82398)	(00004)	(00025)	(00300)	(00301)	(00400)	(00095)	(00020)
OCT													
02	1000	9	9	9.26	270	10	49.6	762	11.9	99	7.7	36	7.5
NOV													
	1000	9	9	7.92	41	20	41.0				6.5	53	
FEB													
	0845	9	9	7.85	38	10	37.6	750	12.2	93	7.1	48	3.0
APR													
06	0900	9	9	7.61	16	10	25.6	747	12.1	88	7.1	51	2.0
MAY	=							==0					
	0845	9	9	8.74	143	10	49.4	753	12.2	95	7.3	38	
	1535	D	9	8.62	129	280						40	9.0
JUN	1305	Б	9	8.52	114	280							
SEP	1305	D	9	8.52	114	280							
	0800	9	9	8.05	73	10	37.0	758	11.3	92	7.5	42	
	0930	D	9	8.22	88	280	37.0	756	11.3	92	7.5	42	
	1200	9	9	8.34	115	10	46.0	760	11.5	96	7.1	38	9.5
۷0	1200	9	9	0.34	115	10	40.0	760	11.5	90	/.1	30	9.5

SOUTHEAST ALASKA

15087700 INDIAN RIVER NEAR SITKA—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date WA	EG C)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	DIS- SOLVED (MG/L AS MG)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM, DIS- SOLVED	WAT DIS TOT IT FIELD MG/L AS CACO3	HCO3	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SOLVED (MG/L AS	SOLVED (MG/L AS SO4)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 027 NOV	7.5	13	4.57	.481	.11	1.75	12	15	2.42	<.1	2.93	1.4	26
28 FEB							16	20					
01 3	3.5	17	5.64	.614	.13	2.14	17	20	4.04	<.1	3.62	1.8	28
APR 06 1	1.5	19	6.26	.721	.12	2.30	14	17	3.89	E.1	4.11	1.9	34
MAY 30 4 30 4		13	4.54	.470	.14	1.84	13	15 	3.13	<.1	2.72	1.4	22
JUN 15													
SEP 056	5.5	16	5.31	.550	.12	1.93			2.28	<.1	3.67	1.8	29
18		14	4.73	.493	.18	1.88	 13	 16	2.12	<.1	3.18		
20 /		14	4.73	.433	.10	1.00	13	10	2.12	<.1	3.10	1.5	22
SUM CON TUE D Date SO (MG	ENTS, DIS- LVED /L)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN,AM- MONIA +	GEN, AM-	GEN,	GEN,	GEN, PAR TICULTE WAT FLT SUSP (MG/L AS N)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	SOLVED (MG/L AS P)	PHOS-	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	INOR- GANIC,	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)
OCT 02 2	0.1	<.015	E.07	.15	.025	<.002		E.003	E.006	E.003			
NOV 28				<.10		<.002							. 6
FEB		<.015	<.10		.110		<.02	<.004	<.007	<.004	<.1	<.1	
01 2 APR		<.015	<.10	<.10	.116	<.002	<.02	<.004	<.007	<.004	<.1	<.1	. 9
06 2 MAY		<.015	<.10	<.10	.147	<.002	<.02	<.004	<.007	E.003	<.1	<.1	. 7
30 2 30		<.015	<.10	<.10	.103	<.002	<.02	<.004	<.007	<.004	<.1	<.1	1.3
JUN 15													
SEP 05 2	26			E.06			<.02			.004	<.1	<.1	1.0
18 20 2		<.015	<.10	 E.07	.073	<.002	<.02	 E.003	 <.007	 E.002	 <.1	 <.1	2.0
	_												
Date	1	CARBON, ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)	PERI- PHYTON BIOMASS ASH WEIGHT G/SQ M (00572)	TOTAL DRY WEIGHT G/SQ M	PHEO- PHYTIN A, PERI- PHYTON (MG/M2) (62359)		IRON, DIS- SOLVEI (UG/L AS FE)	DIS- SOLVE (UG/L) AS MN	SEDI- MENT, D SUS- PENDI	CHARG SUS ED PEND L) (T/DA	F, EE, E- SAMPI ED TYPE Y) (CODE	3 3)	
OCT 02			= =				43	E1.3	3.0	2.2	3044	1	
NOV 28													
28 FEB 01		<.1											
APR		<.1					14	E1.2	1.0			='	
06 MAY		<.1					<10	E1.2	<1.0				
30 30 JUN		<.1	41	42.20	.5	1.6	13 	<2.0	1.0	.3			
15 SEP			41	43.00	.7	3.2						-	
05		<.1	 43	 43.90	 1.9	 6.3	E10	E1.0	 				
20		<.1	43	43.90	1.9	6.3	32	E2.1	3.0				

15087700 INDIAN RIVER NEAR SITKA—Continued

SPECIFIC CONDUCTANCE, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		N	OVEMBER			DECEMBER			JANUAR!	Z
1 2 3 4 5	40 41 45 46 47	36 32 41 45 45	46	48 44 47 48 49	47 48	47 48	52 52	51	52	49	46 47	47 48 46 48 48
6 7 8 9 10	45 47 47 44 40	41 45 44 40 36	43 46 45 43 38	49 49 49 47 48	49 48 45 42 44	49 49 47 45 47	52 52 47 48 45	51 35 37 43 43	52 43 43 46 44	48 43 45 46 47		42 42 41 45 45
11 12 13 14 15	43 44 45 46 47	36 33 44 45 45	46	49 50 50 50 48	47 49 50 45 45		48 47 50 50	40 39 47 50	47 43 48 50 51	49 49 49 49	47 49 48 49 39	48 49 49 49
16 17 18 19 20	46 46 39 42 45	42 34 35 36 42	45 42 37 39 44	46 48 49 50	43 43 48 49	45 46 49 50 49	51 51 52 52 52		51 51 52 52 52	47 48 45 45 48	3 /	44 47 41 42 47
21 22 23 24 25	45 46 46 45 47	42 44 45 43 44	44	50 49 48 49 50	49 35 43 48 49	50 44 47 49 50	52 52 51 43 45	51 51 40 37 43	52 52 48 41 45	50 50 51 50 51		49 50 50 50 51
26 27 28 29 30 31	48 48 48 44 47 48	47 47 39 40 44 47	42	51 51 52 52 52	50 51 51 52 52	51 51 51 52 52	45 46 47 46 47 47	44 44 45 44 46	45 45 46 45 47 46	51 52 51 51 50 49	51 51 51 50 48 48	51 51 51 50 49
MONTH	48	32	44	52	35	48	52	35	48	52	37	47
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		MIN FEBRUARY			MARCH			APRIL			MAY	MEAN
		FEBRUARY			MARCH		MAX 51 52 52 52 52	APRIL			MAY	MEAN 46 47 49 50 50
1 2 3 4	50 50 50 50	FEBRUARY 49 49 49 48 48 50 50	50 50 50 49 49	48 45 44 47 48	MARCH 44 26 30 44 47 48 49	46 36 39 46 48	51 52 52 52 52	APRIL	51 51 52 52 52		MAY 45 47 48 49 50 50	46 47 49 50
1 2 3 4 5 6 7 8 9	50 50 50 50 50 50 50 54 53 52	49 49 49 48 48 50 50 51 43 40	50 50 50 49 49 50 51 52 50	48 45 44 47 48 49 50 50 50	MARCH 44 26 30 44 47 48 49 49 50	46 36 39 46 48 48 49 50	51 52 52 52 52 52 52 52 52 52 53	APRIL 51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	51 51 52 52 52 52 52 52 52 52 52	47 48 50 50 50 51 51 51 51	MAY 45 47 48 49 50 51 51 51 44 44	46 47 49 50 50 51 51 51 47
1 2 3 4 5 6 7 8 9 10 11 12 13 14	50 50 50 50 50 50 50 54 53 52 47 48 42 45 39	49 49 49 48 48 48 50 50 51 43 40 31 29 37	50 50 50 49 49 50 51 52 50 43 41 34 44 33	48 45 44 47 48 49 50 50 50 50 50 50	MARCH 44 26 30 44 47 48 49 50 50 50 50	46 36 39 46 48 48 49 50 50 50	51 52 52 52 52 52 52 52 52 52 53 53 53 53 53	APRIL 51 51 52 52 52 52 52 52 52 52 52 52 51 51	51 51 52 52 52 52 52 52 52 52 52 52 52 52	47 48 50 50 50 51 51 51 51 50 46 46 45 47	MAY 45 47 48 49 50 50 51 51 50 45 44 44 44 45	46 47 49 50 50 51 51 47 45 45 45
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	50 50 50 50 50 50 50 54 53 52 47 48 42 45 39 41 44 46 48	FEBRUARY 49 49 48 48 50 50 51 43 40 31 29 37 29 28 32 44 46 47	50 50 50 49 49 50 51 52 50 43 41 34 44 33 33 40 46 47 48	48 45 44 47 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50	MARCH 44 26 30 444 47 48 49 50 50 50 50 50 50 50 50 50 50 50 50	46 36 39 46 48 48 49 50 50 50 50 50 50 50 50	51 52 52 52 52 52 52 52 52 53 53 53 53 52 52 52 52	APRIL 51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	47 48 50 50 50 51 51 51 50 46 46 47 47 47	MAY 45 47 48 49 50 50 51 51 50 45 44 44 44 45 46 43 44 45 46	466 479 500 501 551 511 47 455 446 47 454 446 444
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	50 50 50 50 50 50 50 54 53 52 47 48 42 45 39 41 44 46 48 48 48 49 49 50 50 50	FEBRUARY 49 49 48 48 50 50 51 43 40 31 29 37 29 28 32 44 46 47 48 48 49 49	50 50 50 49 49 50 51 52 50 43 41 34 44 33 33 40 46 47 48 48 49 49 50	48 45 44 47 48 49 50 50 50 50 50 50 50 50 50 51 51 51 51	MARCH 44 26 30 444 47 48 49 50 50 50 50 50 50 50 51 51 51 51 51	46 36 39 46 48 48 49 49 50 50 50 50 50 50 50 50 50 50 51 51 51	51 52 52 52 52 52 52 52 52 53 53 53 53 53 52 52 52 52 52 52 52 52 52 53 54 54 54 54 55 54 55 55 55 55 55 55 55	APRIL 51 51 51 52 52 52 52 52 52 52 52 52 52 52 51 51 51 51 52 52 52 52 54 44 47 49	51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	47 48 50 50 50 51 51 51 50 46 46 47 47 47 47 46 46 46 45 42 41 42 44	MAY 45 47 48 49 50 50 51 51 50 45 44 44 45 46 43 44 45 46 47 48 48 48 48 48 48 48 48 48 48 48 48 48	467 479 500 501 511 511 47 455 446 447 4546 441 442 444

15087700 INDIAN RIVER NEAR SITKA—Continued

SPECIFIC CONDUCTANCE, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

		SPECIF	IC COND	UCTANCE,	in US/CM	@ 25C,	WATER YEAR	COCTOBER	2001 TO	SEPTEMBER	2002	
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBE	MEAN R
1 2 3 4 5	41 41 42 40 40	41 41 40 37 37	41 41 41 39 39	43 45 46 44 42	42 42 43 41 41	42 43 45 43	45 45 46 46 47	44 45 45 46 46	44 45 46 46 46	37 39 41 42 43	34 34 39 41 42	35 37 40 41 42
6 7 8 9 10	43 43 42 42 39	40 39 41 38 37	42 41 42 40 38	43 44 43 44	42 43 43 43 42	42 43 43 44 43	47 47 36 39 40	46 33 31 33 31	47 38 34 36 36	43 42 42 42 42	42 39 41 41 40	43 40 41 42 41
11 12 13 14 15	42 43 43 41 40	39 42 40 38 38	41 43 42 39 39	43 44 45 41 42	42 43 38 36 41	43 44 44 39 42	42 39 34 38 40	35 15 23 34 38	40 31 30 36 39	41 40 42 42 43	35 36 40 42 42	38 38 41 42 42
16 17 18 19 20	42 42 42 43 43	40 41 41 42 43	41 42 41 42 43	43 43 44 44 45	42 40 41 43 44	42 42 43 44 45	41 42 42 43 43	40 41 42 42 42	41 42 42 42 43	43 42 39 38 39	41 37 34 33 35	42 40 38 36 38
21 22 23 24 25	44 44 42 41 41	43 42 40 39 39	43 43 41 40 40	45 43 43 44 40	42 42 43 38 39	44 43 43 41 40	42 36 36 38 40	19 24 23 36 38	28 33 32 38 39	39 40 41 42 42	32 38 40 41 41	36 39 40 41 42
26 27 28 29 30 31	42 43 42 42 42	41 42 41 41 42	42 42 42 42 42	43 43 36 40 43	40 34 33 35 40 43	41 38 35 37 42 44	40 40 35 39 39 37	39 34 30 35 36 32	40 38 33 37 38 35	42 41 40 41 42	41 31 36 36 41	42 36 38 39 42
MONTH	44	37	41	46	33	42	47	15	39	43	31	40
		TEMPER	ATURE.	WATER. D	EGREES CE	LSTUS.	WATER YEAR	OCTOBER	2001 TO	SEPTEMBER	2002	
DAY	MAX	TEMPER MIN	RATURE, MEAN	WATER, D		LSIUS, MEAN	WATER YEAR	OCTOBER MIN	2001 TO	SEPTEMBER MAX	2002 MIN	MEAN
	MAX					MEAN	MAX		MEAN			
	MAX 7.5 7.5 7.0 7.0	MIN			MIN	MEAN	MAX 3.0 3.5	MIN	MEAN		MIN	
DAY 1 2 3 4	7.5 7.5 7.0 7.0	MIN OCTOBER 7.0 7.0 6.5 6.5	7.0 7.5 7.0 6.5	5.0 5.0 5.0 4.5	MIN NOVEMBER 4.5 4.0 3.5 4.0	MEAN 5.0 4.5 4.5 4.5	MAX 3.0 3.5 4.0 4.0 4.0 4.0 2.5	MIN DECEMBER 3.0 3.0 3.5 3.0	MEAN 3.0 3.5 3.5 4.0	MAX 4.5 4.5 4.0 4.5	MIN JANUARY 4.0 4.0 4.0 4.0	4.5 4.5 4.0 4.0
DAY 1 2 3 4 5 6 7 8 9	7.5 7.5 7.0 7.0 7.0 7.0 6.5 6.5	MIN OCTOBER 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5	7.0 7.5 7.0 6.5 6.5 6.5	5.0 5.0 5.0 4.5 4.5 5.0 5.0 5.0	MIN NOVEMBER 4.5 4.0 3.5 4.0 4.5 4.5 4.5	MEAN 5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5	3.0 3.5 4.0 4.0 4.0 4.0 2.5 3.0	MIN DECEMBER 3.0 3.5 3.0 3.0 3.1 1.0 1.0	MEAN 3.0 3.5 3.5 4.0 3.5 4.0 2.0	MAX 4.5 4.5 4.0 4.5 5.0 4.5 4.0 4.5 4.0 4.5	MIN JANUARY 4.0 4.0 4.0 4.0 4.5 3.5 3.5 3.5 4.0	4.5 4.5 4.0 4.0 4.5 4.0 4.0
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14	7.5 7.5 7.0 7.0 7.0 6.5 7.0 7.0 6.5 7.0 6.5 7.0 6.5	MIN OCTOBER 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	7.0 7.5 7.0 6.5 6.5 7.0 6.5 6.5 6.5 6.5 6.5	MAX 5.0 5.0 5.0 4.5 4.5 5.0 5.0 5.0 4.5 5.0 5.0 5.0 5.0 5.0	MIN NOVEMBER 4.5 4.0 3.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	MEAN 5.0 4.5 4.5 4.5 5.0 4.5 5.0 4.5 5.0 6.5 6.0 6.5 6.0 6.5	MAX 3.0 3.5 4.0 4.0 4.0 4.0 2.5 3.0 2.5 3.0 3.5 3.5	MIN DECEMBER 3.0 3.5 3.0 3.0 3.0 1.0 1.0 1.5 2.0 2.0 2.0 3.0 2.0	MEAN 3.0 3.5 3.5 4.0 3.5 2.0 2.0 2.0 2.0 2.0 3.0 2.5 3.5 3.5	MAX 4.5 4.5 4.0 4.5 5.0 4.5 4.0 4.5 4.5 4.5 4.5	MIN JANUARY 4.0 4.0 4.0 4.5 3.5 3.5 4.0 4.0 4.5 4.5 4.5 4.5	4.5 4.5 4.0 4.0 4.5 4.0 4.5 4.0 4.5 4.5
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	7.5 7.5 7.0 7.0 7.0 6.5 6.5 7.0 6.5 7.0 6.5 6.0 6.0 6.5	MIN OCTOBER 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	MEAN 7.0 7.5 7.0 6.5 6.5 6.5 6.5 6.5 6.6 6.0 6.0 6.0 6.0 6.0	MAX 5.0 5.0 4.5 4.5 5.0 5.0 5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	MIN NOVEMBER 4.5 4.0 3.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	MEAN 5.0 4.5 4.5 4.5 5.0 4.5 5.0 4.5 5.0 4.5 5.0 4.5 5.0 6.5 6.0 6.5	MAX 3.0 3.5 4.0 4.0 4.0 4.0 2.5 3.0 2.5 3.5 3.5 3.5 3.5 3.5	MIN DECEMBER 3.0 3.0 3.5 3.0 3.0 1.0 1.0 1.5 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	MEAN 3.0 3.5 3.5 4.0 3.5 2.0 2.0 2.0 2.0 3.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	MAX 4.5 4.5 4.0 4.5 5.0 4.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.6 4.7	MIN JANUARY 4.0 4.0 4.0 4.5 3.5 3.5 4.0 4.0 4.5 4.5 4.5 4.5 3.5 4.0 3.0 3.0	4.5 4.5 4.0 4.0 4.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 3.5
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	7.5 7.5 7.0 7.0 7.0 6.5 7.0 6.5 7.0 6.5 6.0 6.0 6.0 6.0 6.0 6.5 6.0 6.0	MIN OCTOBER 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	MEAN 7.0 7.5 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.5 5.5 5.0	MAX 5.0 5.0 5.0 4.5 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	MIN NOVEMBER 4.5 4.0 3.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 6.5 6.6 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7	MEAN 5.0 4.5 4.5 4.5 5.0 4.5 5.0 4.5 5.0 5.0 5.0 6.5 5.0 6.5 6.0 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6	MAX 3.0 3.5 4.0 4.0 4.0 4.0 2.5 3.0 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	MIN DECEMBER 3.0 3.0 3.5 3.0 3.0 1.0 1.5 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	MEAN 3.0 3.5 3.5 4.0 3.5 2.0 2.0 2.0 2.0 3.0 3.5 3.5 3.5 4.0 3.0 3.0 3.5 3.5 4.0	MAX 4.5 4.5 4.0 4.5 5.0 4.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.6 4.0 4.0 4.0 4.0 4.0 4.0 4.0	MIN JANUARY 4.0 4.0 4.0 4.0 4.5 3.5 3.5 4.0 4.0 4.5 4.5 4.5 3.5 4.0 3.0 3.5 3.5 3.5 4.0 3.0 3.0 3.5	4.5 4.5 4.0 4.0 4.5 4.0 4.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
DAY 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	7.5 7.5 7.0 7.0 7.0 6.5 7.0 7.0 6.5 7.0 6.5 6.0 6.0 6.0 6.0 6.0 5.5 5.0 5.0 5.0	MIN OCTOBER 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 5.5 5.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	MEAN 7.0 7.5 7.0 6.5 6.5 6.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	MAX 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	MIN NOVEMBER 4.5 4.0 3.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	MEAN 5.0 4.5 4.5 4.5 5.0 4.5 5.0 4.5 5.0 4.5 5.0 4.5 5.0 4.5 5.0 4.5 5.0 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3	MAX 3.0 3.5 4.0 4.0 4.0 4.0 2.5 3.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	MIN DECEMBER 3.0 3.5 3.0 3.0 3.0 1.0 1.0 1.5 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	MEAN 3.0 3.5 3.5 4.0 3.5 2.0 2.0 2.0 2.0 3.0 3.5 3.5 3.5 3.5 3.0 3.0 3.5 3.5 4.0 4.0 3.0 2.0 3.5 4.0 3.5 4.0	4.5 4.5 4.0 4.5 5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	MIN JANUARY 4.0 4.0 4.0 4.5 3.5 3.5 4.0 4.0 4.5 4.5 4.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	4.5 4.0 4.0 4.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

SOUTHEAST ALASKA

15087700 INDIAN RIVER NEAR SITKA—Continued

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	3.5 3.5 3.5 3.5 3.5	3.5 3.0 3.5 2.5 3.0					3.5 4.0 4.0 3.5 4.0					
6 7 8 9 10	3.5 3.0 3.0 3.5 2.0	3.0 2.5 2.5 2.0 1.5	3.0 3.0 3.0 3.0 2.0	3.0 3.0 3.0 3.0 3.5	2.5 2.5 2.5 2.5 3.0	2.5 2.5 2.5 2.5 3.0	4.0 4.0 4.0 4.0	2.5 2.0 2.0 2.0 2.5	3.0 2.5 2.5 3.0 3.0	4.5 4.0 5.0 4.0	3.0 3.5 3.5 3.5 3.5	3.5 3.5 4.0 4.0 3.5
11 12 13 14 15	2.5 2.5 3.0 2.5 3.0	0.5 1.0 2.0 1.5					4.0 3.5 4.0 4.0 3.5					
							4.0 4.0 4.0 3.5 2.5					
							2.5 3.5 3.5 4.0 4.5					
							4.0 4.0 5.0 4.5 4.5					
MONTH	4.0	0.5	3.0	4.5	1.0	2.7	5.0	1.5	2.9	5.5	2.5	4.0
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY			MIN AUGUST		MAX	MIN SEPTEMB	
		JUNE			JULY			AUGUST			SEPTEMB	ER
1 2 3 4 5	5.0 5.0 5.5 5.0 5.0	JUNE 4.5 4.5 4.5 4.5 4.5	4.5 5.0 5.0 5.0	6.5 6.5 6.0 6.5	JULY 6.0 6.0 6.0 6.0	6.5 6.0 6.0 6.0		AUGUST 6.0 6.0 5.5 5.5 6.0	6.5 6.5 6.0 6.0	8.5 8.0 7.5 7.5	8.0 7.5 7.0 6.5 6.5	8.0 8.0 7.5 7.0
1 2 3 4 5 6 7 8 9	5.0 5.5 5.0 5.0 5.0 5.5 5.0 5.5	JUNE 4.5 4.5 4.5 4.5 4.5	4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	6.5 6.5 6.0 6.5 6.5 7.5 7.5 7.5	JULY 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.5 6.5	6.5 6.0 6.0 6.0 6.5 6.5 7.0	7.0 7.0 7.0 7.0 7.0	AUGUST 6.0 6.0 5.5 5.5 6.0 6.0 6.0 7.0	6.5 6.5 6.0 6.5 6.5 8.5 7.5 8.0	8.5 8.0 7.5 7.5 7.0 7.0 8.0 7.5 7.5	8.0 7.5 7.0 6.5 6.5 7.0 7.0 7.0	8.0 8.0 7.5 7.0 7.0 7.5 7.5 7.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	5.0 5.0 5.5 5.0 5.0 5.5 5.0 5.5 5.0 6.5 7.0	JUNE 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 5.0 5.0	4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	6.5 6.5 6.5 6.5 7.5 7.5 7.5 7.5 7.5	JULY 6.0 6.0 6.0 6.0 6.0 6.5 6.5 6.5 6.5 6.5	6.5 6.0 6.0 6.0 6.5 6.5 7.0 7.0	7.0 7.0 7.0 7.0 7.0 6.5 9.5 9.0 8.0 8.5 8.0 10.5 9.5	AUGUST 6.0 6.0 5.5 5.5 6.0 6.0 6.0 7.0 7.0 7.5 7.5	6.5 6.5 6.0 6.0 6.5 8.0 8.5 7.5 8.0 7.0 8.5 8.5	8.5 8.0 7.5 7.0 7.0 8.0 7.5 8.0 8.0 8.0	8.0 7.5 7.0 6.5 6.5 7.0 7.0 7.0 7.0 7.5 7.5 7.5 7.5	8.0 8.0 7.5 7.0 7.0 7.5 7.5 7.5 7.5 7.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	5.0 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 6.0 7.0 6.0	JUNE 4.5 4.5 4.5 4.5 4.5 4.5 5.0 5.0 5.5 5.5 5.5	4.50 5.00 5.00 4.50 5.00 5.00 5.00 5.00	6.5 6.5 6.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	JULY 6.0 6.0 6.0 6.0 6.0 5.5 6.5 6.5 6.5 7.0 6.5 7.0 6.5	6.5 6.0 6.0 6.0 6.5 6.5 7.0 7.0 6.5 6.5 7.0 7.0 7.0	7.0 7.0 7.0 7.0 7.0 6.5 9.5 9.0 8.0 8.0 10.5 7.5 7.5 6.5 6.5 6.5	AUGUST 6.0 6.0 5.5 5.5 6.0 6.0 6.0 7.0 7.5 7.5 7.5 7.0 6.5 6.5 6.0	6.5 6.0 6.0 6.5 8.0 7.0 8.5 7.0 8.5 7.0 6.5 6.5 6.5	8.5 8.0 7.5 7.0 7.0 8.0 7.5 7.5 8.0 8.0 7.5 7.5 7.5 8.0	8.0 7.5 7.0 6.5 6.5 7.0 7.0 7.0 7.0 7.5 7.5 7.5 7.0 6.5 7.5 7.5	8.0 8.0 8.0 7.0 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	5.00 5.05 5.00 5.05 5.00 5.00 5.00 5.00	JUNE 4.5 4.5 4.5 4.5 4.5 5.0 4.5 5.0 5.5 5.5 5.6 6.0	4.50 5.00 5.00 4.50 5.00 5.00 5.00 5.00	6.5 6.5 6.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7	JULY 6.0 6.0 6.0 6.0 6.0 6.5 6.5 6.5 6.5 7.0 6.5 7.0 6.5 7.0 7.5	6.5 6.0 6.0 6.0 6.5 6.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.5 8.0	7.0 7.0 7.0 7.0 7.0 7.0 6.5 9.5 9.5 8.0 8.0 10.5 7.5 6.5 6.5 6.5 7.0	AUGUST 6.0 6.0 6.0 6.0 6.0 7.0 7.0 7.5 7.0 6.5 6.5 6.0 6.5 7.0 7.5 7.7 7.0 7.5 7.7 7.0 7.5 7.7 7.0 7.5 7.7 7.0 7.5 7.0 7.5 7.0 7.5 7.0	6.5 6.0 6.0 6.5 8.0 7.5 8.5 7.0 8.5 7.0 6.5 6.5 6.5 9.0 8.5 7.0	8.5 8.0 7.5 7.0 8.0 7.5 7.5 8.0 8.0 7.5 7.5 7.5 8.0 8.0 7.5 7.5 7.5	8.0 7.5 7.0 6.5 6.5 7.0 7.0 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	8.0 8.0 7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5

15088000 SAWMILL CREEK NEAR SITKA

LOCATION.--Lat $57^{\circ}03'05''$, long $135^{\circ}13'40''$, in $NE^{1}/_{4}$ SW $^{1}/_{4}$ sec. 34, T. 55 S., R. 64 E. (Sitka A-4 quad.), Hydrologic Unit 19010401, on Baranof Island, in Tongass National Forest, on left bank 500 ft upstream from mouth, 1.6 mi downstream from Blue Lake, and 4.0 mi east of Sitka.

DRAINAGE AREA. -- 39.0 mi2.

PERIOD OF RECORD.-- September 1920 to December 1923, February 1928 to September 1942, October 1945 to September 1957, 1994 (peak discharge only, published in WRD AK 95-1), and May 2001 to current year. Records prior to 1945 furnished by U.S. Forest Service.

REVISED RECORDS. -- WSP 1372: 1921-22 and 1928-36.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is sea level, from topographic map. Prior to April 1947, staff gages or water-stage recorders at several sites within 1,700 ft of present site at various datums. April 1947 to September 1957 at site about 200 ft upstream at different datum.

REMARKS.-- No estimated daily discharges.Records good. Minor regulation above station by Sitka Public Utilities hydroelectric plant during periods 1920-23 and 1937-42. In 1959, Blue Lake Dam, 1.6 mi upstream, was completed. The area of the lake is 1225 acres. The dam is concrete with a spillway elevation of 342.0 ft above sea level. In 1960, the Blue Lake Hydro plant, located 400 ft downstream from gage, was put into operation. Water is taken from Blue Lake and piped via a penstock to Blue Lake hydro, through 2-3,000 kw turbines and discharged back into Sawmill Creek just below high tide level. This penstock also provides water for the City of Sitka and for the filter plant for the Sitka Sawmill. In the years following, Campground Hydro, a smaller generation plant was constructed about 1,000 ft below Blue Lake Dam. It also has a penstock from Blue Lake and discharges directly into Sawmill Creek. A fish bypass valve has been installed at Campground Hydro that automatically releases 50 ft³/s to the tailrace anytime the hydro plant is shut down. Another small generator was installed just above the Sawmill Filter Plant diversion from Blue Lake Hydro penstock with the capability of bypassing the filter plant and discharging back into Sawmill Creek above the gage site. Water that went to the filter plant was piped to the sawmill and eventually discharged directly into Silver Bay. The sawmill has since closed and water is now supplied to Sawmill Cove Industrial Park. Flow is constantly regulated except when Blue Lake is spilling.

EXTREMES OUTSIDE PERIOD OF RECORD.-- It was reported that in October 1972, a storm produced a peak elevation at Blue Lake of 353.0 ft or 11.0 ft of spill at the spillway. Extending the spillway rating, this flood was estimated to be 17,000 ft³/s. It was reported to have been the largest since 1921.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	1500 1240	81 93	67 67	78 77	70 71	65 96	58 58	79 76	49 49	70 177	298 296	1210 1180
3 4	811 397	101 86	67 67	79 78	71 72	96	52 58	69 65	49 54	289	293	843
5	211	79	68	78 76	72	74 67	58 58	63	54 55	290 293	292 291	526 362
6	262	75	68	94	70	64	58	63	51	290	291	286
7 8	308 296	74 82	73 80	93 99	68 68	63 62	58 58	62 62	53 50	288 288	309 575	279 285
9	328	94	77	85	71	61	58	54	53	287	1010	311
10	568	85	91	84	85	61	59	60	64	288	1270	344
11	642	79	81	78	94	61	59	63	55	288	950	427
12	1460	75 73	91	76	145	60 60	59	62	52	287	2280 4760	466
13 14	1120 606	73 74	78 75	75 75	91 125	60 60	62 62	66 60	50 50	291 304	2080	382 302
15	345	78	72	86	147	59	62	57	49	292	1210	276
13	343	70	72	00	147	33	02	37	4.0	2,72	1210	270
16	458	81	71	92	113	59	62	61	48	283	697	270
17	800	80	70	82	85	59	62	60	48	291	467	316
18	2720	75	70	107	78	58	63	56	47	292	347	640
19	2070	72	69	118	73	58	64	61	47	291	296	1270
20	969	75	69	90	71	58	87	64	47	290	280	1270
21	498	75	68	80	68	58	89	62	47	291	1180	1310
22	305	93	69	76	65	58	75	58	47	293	1540	1110
23	184	83	81	74	63	58	69	57	47	294	1850	769
24	138	76	145	74	62	59	65	54	47	300	1260	587
25	96	73	106	73	62	59	64	56	59	302	894	437
26	84	70	100	71	62	60	64	56	69	301	764	341
27	76	69	92	71	64	61	63	52	70	313	744	466
28	83	68	89	71	63	61	64	56	70	344	1130	521
29	90	68	89	71		60	69	54	70	329	1170	524
30	82	68	83	72		59	74	52	70	308	844	337
31	76		82	72		59		49		301	996	
TOTAL	18823	2355	2475	2527	2248	1953	1913	1869	1616	8845	30664	17647
MEAN	607.2	78.50	79.84	81.52	80.29	63.00	63.77	60.29	53.87	285.3	989.2	588.2
MAX	2720	101	145	118	147	96	89	79	70	344	4760	1310
MIN	76	68	67	71	62	58	52	49	47	70	280	270
AC-FT	37340	4670	4910	5010	4460	3870	3790	3710	3210	17540	60820	35000
CFSM IN.	15.6	2.01	2.05	2.09	2.06	1.62	1.64	1.55 1.78	1.38 1.54	7.32 8.44	25.4	15.1
TIN.	17.95	2.25	∠.36	2.41	2.14	1.86	1.82	1./8	1.54	8.44	29.25	16.83

752.8 1287 1947

359

1941

15088000 SAWMILL CREEK NEAR SITKA—Continued

STATISTICS	OF	MONTHI.V	MEDM	מדעת	FOR	MATED	VENDS	1920 -	2002	RV	WATED	VEVD	(WV)#
SIMITSIICS	UГ	MONIULI	MEAN	DAIA	rur	WAIER	IEARS	19ZU -	2002.	DI	WAILK	ILAK	(WI)#

MEAN MAX (WY) MIN (WY)	1204	998 1936 78.5	818	177.0 500 1942 29.9 1956		129.3 365 1947 24.8 1922	663 1936 61.5	549.9 861 1936 60.3 2002	725.4 1179 1936 53.9 2002	976 1935	681.3 1235 1939 291 2001
SUMMARY ANNUAL ANNUAL		rics		FOR	2002 WATER 92935 254.6	R YEAR		WATE	R YEARS 1	.920 - 200	2#
HIGHES	T ANNUAL								715		.936
	ANNUAL M DAILY M				4760	Aug 13			255 5500	Oct 22 1	1002
	DAILY ME				a4760	Jun 18			11	Mar 30 1	
		AN Y MINIMUM			47	Jun 18			12	Mar 25 1	
	M PEAK FL				7280	Aug 12			b10700	Nov 19 1	
	M PEAK FD				18.26				D10700	NOV 19 1	. 5 5 5
	TANEOUS L				44	Apr 3			C		
	RUNOFF (184300	MPI 3			340400		
	RUNOFF (6.53				12.0		
	RUNOFF (88.65				163.68	1	
	CENT EXCE				664				938	•	
	CENT EXCE				76				367		
	CENT EXCE				58				66		

See Period of Record; partial years used in monthly statistics Jun. 18-24
On the basis of a slope-area computation of peak flow below Campground Hydro and adding diversion values at the time of peak between Campground Hydro and gage; peak flow below Blue Lake Tailrace was computed to be 11,100 ft³/s Undetermined a b

15088200 SILVER BAY TRIBUTARY AT BEAR COVE NEAR SITKA

LOCATION.--Lat $57^{\circ}01'09''$, long $135^{\circ}09'45''$, in $SW^{1}/_{4}$ $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec. 13, T. 56 S., R. 64 E. (Sitka A-4 quad), Hydrologic Unit 19010203, in Tongass National Forest, on Baranof Island, on right bank 350 ft upstream from mouth, and 6.5 mi southwest of Sitka.

DRAINAGE AREA.--0.38 mi².

PERIOD OF RECORD. -- October 1999 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 110 ft above sea level, from topographic map.

REMARKS.-- Records fair except for the period August 12 to September 30 and estimated discharges which are poor.

		DISCHA	ARGE, CU	BIC FEET PER		, WATER LY MEAN		ER 2001 T	O SEPTEM	BER 2002		
DAY	OCT	NOV	DE	C JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.3 15 2.5 0.87 0.60	8.5 6.5 10 2.5 1.7	0.07 0.04 0.07 0.12 0.13	2.5 3.5 6.5 2.3 3.1	0.44 0.41 0.40 0.66 0.52	1.00 7.5 4.7 1.4 0.78	0.37 0.42 0.50 0.46 0.35	12 5.2 3.4 1.8 1.6	4.5 4.9 4.8 5.6 6.3	1.1 0.90 0.93 2.6 1.8	1.2 1.0 0.57 0.50 0.44	3.9 3.3 1.2 0.64 0.54
6 7 8 9 10	9.3 2.0 4.1 6.7	1.3 1.7 6.1 7.8 5.3	0.14 7.3 4.5 2.8 4.6	23 7.4 6.4 4.4 3.2	0.37 0.32 0.30 1.1 5.0	0.54 0.39 0.32 0.30 0.31	0.37 0.47 0.65 0.90 1.0	1.6 1.8 1.9 2.3 3.8	2.9 5.4 3.6 6.8 7.3	1.2 1.2 1.1 0.90 1.4	0.35 2.7 14 12	0.32 1.3 1.2 2.0 3.2
11 12 13 14 15	11 21 6.5 2.6 6.0	2.2 1.4 1.4 4.0 3.1	1.6 4.2 1.1 0.58 0.39	1.5 1.1 0.84 0.73 2.3	8.6 18 2.2 11 26	0.29 0.29 0.27 0.27 0.25	1.1 1.2 1.5 1.6 1.5	4.9 6.0 11 4.7 3.8	3.3 3.0 3.7 4.2 3.1	1.2 0.76 4.7 12 1.9	5.3 51 15 3.1 1.4	4.0 2.1 0.83 0.72 1.7
16 17 18 19 20	16 25 27 17 4.2	2.6 2.3 2.0 3.3 6.0	0.33 0.31 0.30 0.29 0.28	2.3 2.6 6.5 6.5	4.8 1.6 1.1 0.82 0.65	0.24 0.24 0.24 0.21 0.22	2.0 2.6 2.5 2.6 6.9	14 7.4 6.9 17 18	2.0 2.2 2.1 3.1 2.1	1.6 2.9 1.8 1.3 0.93	1.2 1.00 0.88 1.0 0.91	2.2 3.5 4.6 7.2 3.4
21 22 23 24 25	5.7 2.9 2.9 4.6 2.4	4.4 5.9 2.3 1.3 0.68	0.27 0.35 8.6 36 10	0.83 e0.71 0.54 0.46 e0.45	0.56 0.44 0.39 0.36 0.35	0.24 0.28 0.47 0.52 0.50	6.2 2.7 2.6 1.8 2.2	11 7.3 5.3 6.2 9.2	1.7 2.0 2.5 2.8 2.0	1.4 2.2 2.2 4.0 9.6	14 5.7 5.8 3.0 2.7	9.6 2.3 3.8 2.9 2.3
26 27 28 29 30 31	1.7 1.6 10 6.5 2.4 1.6	0.36 0.32 0.25 0.17 0.13	8.4 5.8 7.1 6.2 4.5 5.1	e0.43 e0.42 e0.42 0.46 0.54	0.41 0.86 0.76 	0.93 0.86 0.51 0.47 0.50	2.7 2.3 4.3 7.5 9.7	8.0 6.8 11 8.7 5.6 4.2	1.3 1.3 1.9 1.4 1.4	4.6 8.4 17 4.1 1.8 1.2	3.3 2.9 9.8 2.5 2.4 6.0	1.8 10 7.9 2.0 0.84
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	236.97 7.644 27 0.60 4.6 470 20.1 23.20	95.51 3.184 10 0.13 2.3 189 8.38 9.35	121.47 3.918 36 0.04 1.1 241 10.3 11.89	3.044 23 0.42	88.42 3.158 26 0.30 0.65 175 8.31 8.66	25.46 0.821 7.5 0.21 0.39 50 2.16 2.49	70.99 2.366 9.7 0.35 1.7 141 6.23 6.95	212.4 6.852 18 1.6 6.0 421 18.0 20.79	99.2 3.307 7.3 1.3 3.0 197 8.70 9.71	98.72 3.185 17 0.76 1.8 196 8.38 9.66	184.65 5.956 51 0.35 2.7 366 15.7 18.08	91.29 3.043 10 0.32 2.2 181 8.01 8.94
STATIS	TICS OF MO	ONTHLY ME	AN DATA	FOR WATER Y	EARS 2000	0 - 2002	2, BY WATER	YEAR (WY) #			
MEAN MAX (WY) MIN (WY)	6.835 7.64 2002 5.34 2001	3.531 4.56 2000 2.85 2001	4.727 7.73 2000 2.54 2001	2.566 3.04 2002 1.68 2000	2.353 3.16 2002 1.12 2000	1.985 2.78 2001 0.82 2002	2.384 2.66 2001 2.12 2000	5.905 6.85 2002 5.14 2001	4.708 6.20 2000 3.31 2002	3.347 4.93 2000 1.93 2001	3.472 5.96 2002 0.46 2001	5.077 6.36 2000 3.04 2002
SUMMA	RY STATIS	TICS	F	OR 2001 CALE	NDAR YEAR	2	FOR 2002 T	WATER YEA	R	WATER YE	EARS 2000	- 2002
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL	T ANNUAL M ANNUAL M T DAILY M DAILY MEAL SEVEN-DA TM PEAK FIG	EAN EAN AN Y MINIMUM OW		1337.70 3.669 36 0.04 0.08 2650 9.64 130.95 7.8 2.4 0.29	Dec 24 Dec 2 Aug 14		1419.4 3.88 51 0.00 0.11 264 19.68 a0.00 2820 10.2 138.99 9.44 2.22 0.38	Aug 12 4 Dec 2 0 Nov 30 Aug 12 8 Aug 12 0 Dec 2		3.9 4.5 3.3 51 0.0 0.0 264 19.6 a0.0 2840 10.3 140.1 8.5 2.4 4	Aug 12 Aug 12 Aug 12 Aug 12 Aug 14 Aug 12 Au	2000 2001 2 2002 2 2001 2 2001 2 2002 2 2002 2 2002 2 2002

a Dec. 2 and Dec. 3, 2001 e Estimated

15090000 GREEN LAKE NEAR SITKA

LOCATION.--Lat $56^{\circ}59'14''$, long $135^{\circ}06'37''$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec. 29, T. 56 S., R. 65 E. (Port Alexander D-4 quad), Hydrologic Unit 19010203, Greater Sitka Borough, on Baranof Island, in Tongass National Forest, 0.4 mi upstream from mouth at Silver Bay, and 9.4 mi southeast of Sitka.

DRAINAGE AREA. -- 28.8 mi².

- PERIOD OF RECORD.--September 1915 to September 1925 (published as "Green Lake Outlet"); monthly discharges only published in WSP 1372. October 1983 to current year (month end reservoir contents and monthly discharges).
- REVISED RECORDS.--WSP 1372: 1916, 1917, 1922 (monthly discharge). WDR AK-84-1: Drainage area. WDR AK-86-1: 1984, 1985 (month-end reservoir contents, change in month-end and yearly contents, adjusted mean monthly discharges, and extremes). WRD AK-00-01: 1998-1999 (M m).
- GAGE.--Staff gage on upstream face of dam. Datum of gage is at mean low water, which is about 5 ft below sea level. Totalizing MWH meters are on the two turbines in Green Lake powerhouse. September 1915 to September 1925, recording gage at site of present day dam, elevation of gage was 220 ft above sea level, by barometer; prior to December 27, 1916 at datum 1 ft higher. Water years 1983-88, nonrecording remote lake-level indicator at Blue Lake powerhouse (6 mi northwest of gage).
- REMARKS.--Reservoir is formed by concrete arch dam located at the outlet of Green Lake, construction began in 1978 and was completed in 1982. Total and usable capacity below spillway crest elevation of 395 ft is 88,000 and 75,000 acre-ft, respectively. Reservoir is used for power. Discharge released through the turbines is computed from relation between discharge, head, and power generation; release flow empties directly into Silver Bay and is not returned to stream. Spill is computed from a theoretical relation between discharge and stage above the crest of the 100 ft wide spillway. Turbine and spillway ratings and reservoir capacity table furnished by City and Borough of Sitka in 1983. Corrected reservoir capacity table furnished in April 1987.
- COOPERATION. -- Daily reservoir elevations and MWH power generation provided by City and Borough of Sitka.
- AVERAGE DISCHARGE.--28 years (water years, 1916-25, 1985-2002), 315 $\mathrm{ft^3/s}$, 148.5 in/yr, 228,200 acre-ft/yr. Mean discharge for water years 1985-99 adjusted for change in contents of Green Lake.
- EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 93,780 acre-ft, September 22-23, 1994, elevation, 400.5 ft; minimum contents observed, 23,170 acre-ft, June 1, 1996, elevation, 307.6 ft; Maximum daily discharge, 5,020 ft³/s, September 22-23, 1994; no flow released, February 5-8, 1987 and November 27-29, 1988.
- EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 90,630 acre-ft, October 18, elevation 397.5 ft; minimum contents observed, 37,420 acre-ft, May 12-15, elevation 333.2 ft; Maximum daily discharge (not adjusted for storage) 1525 ft³/s, October 18; minimum daily discharge, 5.3 ft³/s, August 13.

MONTH END RESERVOIR ELEVATION, IN FEET ABOVE SEA LEVEL, AND CONTENTS, IN ACRE FEET WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DATE	ELEVATION	CONTENTS	CHANGE IN CONTENTS
Sep 30	397.7	90,840	
Oct 31	394.9	87,910	-2,930
Nov 30	390.5	83,730	-4,210
Dec 31	383.2	76,880	-6,850
Jan 31	376.4	70,760	-6,120
Feb 28	368.4	63,890	-6,870
Mar 31	352.4	50,920	-12,970
Apr 30	337.3	40,000	-10,920
May 31	343.8	44,220	+4,220
Jun 30	362.2	58,760	+14,540
Jul 31	370.7	65,850	+7,090
Aug 31	389.4	82,680	+16,830
Sep 30	395.6	88,630	+5,950
-			
		CAL YR 2001	-4,690
		WTR YR 2002	-2,240

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MEAN VALUES

MONTH	RELEASE	SPILL	TOTAL	ADJUSTED
OCT	145	465	610	563
NOV	198	9	207	136
DEC	223	0	223	112
JAN	219	0	219	119
FEB	247	0	247	123
MAR	272	0	272	61
APR	280	0	280	96
MAY	266	0	266	335
JUN	262	0	262	506
JUL	244	0	244	359
AUG	223	0	223	497
SEP	202	111	313	413
CAL YR 2001	168	180.1	349	342
WTR YR 2002	232	49.4	281	278

15101490 GREENS CREEK AT GREENS CREEK MINE NEAR JUNEAU

LOCATION.--Lat $58^{\circ}05'00''$, long $134^{\circ}37'54''$, in $NW^{1}_{/4}$ SE $^{1}_{/4}$ sec. 4, T. 44 S., R. 66 E. (Juneau A-2 quad), Hydrologic Unit 19010204, on Admiralty Island, in Admiralty Island National Monument, Tongass National Forest, on right bank, 100 ft upstream from mine portal, 0.3 mi downstream from Big Sore Creek, 7.0 mi upstream from mouth at Hawk Inlet, and 19 mi southwest of Juneau.

DRAINAGE AREA. -- 8.62 mi².

PERIOD OF RECORD. -- August 1989 to current year.

REVISED RECORD.--WRD AK-99-1, 1990-1994(M), 1996-1998(M).

GAGE.--Water-stage recorder. Datum of gage is 890.16 ft above sea level (levels by Greens Creek Mining Company). Prior to February 16, 1999, recording gage at site 30 ft upstream at datum 9.84 ft higher.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Greens Creek Mining Company pumps water from gage pool for use in mill. Diversion flow is recorded on totalizing meters in gage house. Pump records are available from Greens Creek Mining Company.

		DISCH	ARGE, CUB	IC FEET P		, WATER Y	YEAR OCTOE VALUES	BER 2001 '	TO SEPTEM	BER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	111 92 70 48 39	24 25 46 26 22	e12 e13 e13 e12 12	14 13 12 11	5.2 5.3 4.8 4.7 4.5	2.0 8.7 13 6.6 5.4	1.5 1.4 1.2 1.2	29 23 17 15 14	98 102 99 109 107	63 88 81 86 78	32 30 28 26 25	85 73 55 44 37
6 7 8 9 10	44 52 57 62 53	21 20 19 22 24	11 11 13 10 9.4	24 21 19 17 19	4.5 e4.3 e3.9 4.0 4.3	e4.8 e4.1 e3.5 e2.8 2.5	1.3 1.3 1.2 1.3	13 13 14 17 25	96 91 95 104 102	72 66 67 64 60	25 59 80 88 71	35 42 46 40 45
11 12 13 14 15	66 107 81 58 63	21 19 18 22 22	9.0 8.7 8.4 8.5	15 13 12 11	3.4 5.7 5.9 15	2.3 2.0 e1.9 1.9	1.2 1.2 1.2 1.2 1.3	27 31 73 67 48	90 83 85 95 104	59 47 50 74 56	59 94 88 75 56	46 37 34 34 37
16 17 18 19 20	93 78 99 95 73	19 18 18 18 22	8.4 7.6 7.5 6.8 5.8	11 10 9.5 9.1 8.5	11 6.3 4.7 3.9 3.4	1.6 1.6 1.5 1.5	1.4 1.6 1.7 1.8 4.2	68 84 86 100 111	97 93 89 83 81	50 54 48 42 38	42 37 37 33 32	37 46 91 86 76
21 22 23 24 25	66 49 37 33 30	23 23 22 19 e18	5.3 5.1 8.5 30 23	e7.8 7.2 e7.0 e6.7 e6.5	3.1 3.0 e2.9 e2.7 2.4	1.5 1.4 1.5 1.5	4.4 3.1 2.9 2.5 3.0	115 109 114 102 102	74 71 81 87 98	51 51 51 57 54	59 63 82 69 73	104 82 71 62 58
26 27 28 29 30 31	28 27 28 32 25 23	e16 e14 e14 e13 e13	20 22 21 20 17 16	e6.2 e5.7 e6.3 6.7 5.8 5.3	2.2 2.2 2.1 	1.5 1.5 1.5 1.5 1.6	3.9 5.2 11 17 24	106 105 136 134 111	91 80 75 71 62	48 46 46 41 36 34	80 82 90 90 83 90	53 73 56 46 40
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1819 58.68 111 23 3610 6.81 7.85	621 20.70 46 13 1230 2.40 2.68	383.4 12.37 30 5.1 760 1.43 1.65	342.3 11.04 24 5.3 679 1.28 1.48	136.4 4.871 15 2.1 271 0.57 0.59	87.4 2.819 13 1.4 173 0.33 0.38	106.9 3.563 24 1.2 212 0.41 0.46	2107 67.97 136 13 4180 7.88 9.09	2693 89.77 109 62 5340 10.4 11.62	1758 56.71 88 34 3490 6.58 7.59	1878 60.58 94 25 3730 7.03 8.10	1671 55.70 104 34 3310 6.46 7.21
STATIST	TICS OF M	ONTHLY ME	CAN DATA I	FOR WATER	YEARS 198	9 - 2002	, BY WATER	YEAR (WY	7)#			
MEAN MAX (WY) MIN (WY)	61.12 97.9 1999 34.7 1994	29.72 49.5 1994 14.6 1991	25.14 65.7 1990 8.27 1997	14.76 22.3 1991 5.50 1997	13.17 36.9 1992 3.43 1999	11.50 27.2 1992 2.82 2002	28.60 49.6 1994 3.56 2002	79.36 107 1992 56.4 2001	88.93 147 1992 59.5 1998	56.59 90.5 2000 31.5 1998	41.95 69.7 1991 18.7 1994	60.36 95.0 1991 33.3 1995

See Period of Record, partial years used in monthly statistics Estimated

15101490 GREENS CREEK AT GREENS CREEK MINE NEAR JUNEAU—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1989 - 2002#
ANNUAL TOTAL	14820.4	13603.4	
ANNUAL MEAN	40.60	37.27	42.82
HIGHEST ANNUAL MEAN			60.1 1992
LOWEST ANNUAL MEAN			31.8 1998
HIGHEST DAILY MEAN	132 Jun 20	136 May 28	465 Oct 20 1998
LOWEST DAILY MEAN	a3.8 Apr 2	1.2 Apr 3	b1.2 Apr 3 2002
ANNUAL SEVEN-DAY MINIMUM	4.0 Mar 31	1.2 Apr 8	1.2 Apr 8 2002
MAXIMUM PEAK FLOW		152 Sep 21	c710 Oct 20 1998
MAXIMUM PEAK STAGE		2.56 Sep 21	d14.79 Oct 20 1998
INSTANTANEOUS LOW FLOW		f0.98 Mar 20	f0.98 Mar 20 2002
ANNUAL RUNOFF (AC-FT)	29400	26980	31020
ANNUAL RUNOFF (CFSM)	4.71	4.32	4.97
ANNUAL RUNOFF (INCHES)	63.96	58.71	67.49
10 PERCENT EXCEEDS	96	91	91
50 PERCENT EXCEEDS	26	24	32
90 PERCENT EXCEEDS	6.5	1.9	6.3

[#] See Period of Record, partial years used in monthly statistics
a Apr. 2-3
b Apr. 3-4, 8, and 11-14, 2002
c From rating curve extended above 140 ft³/s on basis of slope area measurement of peak flow
d Same site, different datum
f Mar. 20, and Apr. 7-11, 2002

15102200 FAVORITE CREEK NEAR ANGOON

 $\texttt{LOCATION.--Lat 57°26'52'', long 134°27'35'', in SE}_{4}^{1} \ \texttt{NE}_{4}^{1} \ \texttt{SW}_{4}^{1} \ \texttt{sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic states and the second states are supported by the second states are$ Unit 19010204, in Tongass National Forest, on Admiralty Island, on right bank 1.2 mi upstream from confluence with North Fork Favorite Creek, 2.2 miles from the mouth of Favorite Creek and about 5.7 mi south east of Angoon.

DRAINAGE AREA. -- 2.52 mi²

PERIOD OF RECORD. -- November 2000 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 370 ft above sea level, from topographic map.

REMARKS.-- Records good, except for discharges above 80 ft^3/s , and estimated daily discharges, which are poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	22 18	30 22	e4.4 e4.0	8.9 8.6	3.0	2.5	1.8	12 9.4	41 41	19 19	6.2 5.8	18 17
3 4 5	15 12 11	71 19 14	3.8 3.7 3.6	8.8 7.3 13	2.8 7.4 3.9	8.1 4.1 e3.3	1.7 1.7 1.6	6.8 5.1 4.3	43 46 40	17 14 13	5.4 5.0 4.6	13 11 9.5
6	12	11			3.2	e3.0	1.6	3.9	31	12	4.4	8.6
7 8 9	18 17 15	9.1 26 22	4.2 5.1 3.9	72 28 17 45	e2.9 e5.0 e10	e2.7 e2.4 e2.3	1.5 1.5 1.5	4.0 5.0 5.8	28 29 36	11 11 13	6.6 14 13	9.2 9.1 9.6
10	13	20	3.5	30	27	e2.3	1.5	8.7	37	14	9.8	9.9
11 12 13	19 23	13 9.5	3.3 3.4 3.1	16 12	7.1 26	e2.3 2.3 2.2	1.5 1.6 1.9	13 20 35	30 25 24	14 12 11	8.4 14 15	
14 15	19 23 14 11 22	57 26	2.9	16 12 9.9 8.5 8.0	7.1 26 8.0 7.8 38	2.1 e1.9	2.4	22 17	27 32	10 9.7	12	7.5 8.3
16 17	18 14	16			23 8 1	e1.8 e1.8	2.2	27 26	31 28	10 11	8.7 7.7	14 11
18 19	13 13	11 12	e2.4 e2.3 2.2	7.6 6.8 8.2 7.1 6.2	23 8.1 5.8 4.7	1.8	2.6	22 24	27 22	10 9.6	6.8	16 13
20 21	12 13	14	2 1	5.2	4.1	1.8	5.3 5.5	32 38	20 18	9.2 11	5.4 6.0	11 39
22	13 11	17 14	2.1 2.2 46	e4.6 4.3	e3.5	1.7	4.4	40 42 36	17 21	12 12	7.2 8.7	18 15
24 25	13 10	17 14 11 9.2	123 35	4.2 e4.0	e3.4 e3.1 e2.9	1.7 2.6	4.1 3.9	36 34	31 45	15 13	12 18	12 11
26 27	8.9 9.3 49	7.7 6.6	18	e3.8	2.7 2.7 2.5	3.9	4.2 4.1	37 39	33 26	11 9.5	33 33	11 e14
28 29	31	7.7 6.6 5.8 5.1 4.7	21 17	e3.6 e3.4 3.2 3.2 3.2	2.5	2.4	4.2 4.1 6.0 8.5 11	87 107	23	8.9 8.1	29 21	e10 e7.0
30 31	13 11	4.7	12 9.8	3.2		2.0 1.9	11	66 45	19	11 9.5 8.9 8.1 7.4 6.7	16 26	e5.0
TOTA MEAN	L 494.2 15.94	527.7 17.59	383.7 12.38	11 98	8 043	2.574	2 250	874.0 28.19	20 70	11 75	12 22	10 15
MAX MIN	49 8.9	71 4.7	123 2.1	72 3.2	38 2.5	1.7	11 1.5	107 3.9	46 17	19 6.7	33 4.4	39 5.0
MED AC-F	13 T 980	17.59 71 4.7 14 1050 6.98	3.7 761	72 3.2 7.6 737 4.75	38 2.5 4.0 447 3.19	2.3 158 1.02	2.4 193 1.29	24 1730	28 1770	11.75 19 6.7 11 722 4.66 5.37	8.7 751	11 723
CFSM IN.	7.30	7.79	5.66	5.48	3.19	1.02	1.44	12.90	13.15	5.37	5.59	5.38
STAT	ISTICS OF M	ONTHLY MEA	AN DATA F	OR WATER	YEARS 2000	- 2002,	BY WATER	YEAR (WY)	#			
MEAN MAX	15.9	17.6	16.1	22.5	9.395	5.37	8.47	28.2	30.3	14.89 18.0	12.2	14.05 16.0
(WY) MIN	15.9	2002 17.6	2001	2001 12.0	2001 8.04	2001	2001 3.25	2002 19.1		11.7	2002 7.41	2001
(WY)	2002	2002	2002	2002	2002	2002	2002	2001	2002	2002	2001	2002
	ARY STATIST	ICS	FOR			F				WATER YEAR	RS 2000 -	2002#
ANNU	AL TOTAL AL MEAN EST ANNUAL I	MEAN		5594.3 15.33			5051.8 13.8			13.84 13.8	1	2002
HIGH	ST ANNUAL M EST DAILY M	EAN		123	Dec 24		123 a1.5	Dec 24		13.8 123	Dec 24	2002 2001
ANNU	ST DAILY MEA	Y MINIMUM		123 2.1 2.3	Dec 20 Dec 16			Apr 7 Apr 5		13.84 13.8 13.8 123 a1.5 1.5	Apr 7	2002
MAXI	MUM PEAK FLO MUM PEAK ST ANTANEOUS LO	AGE					232 11.14 b1.4	4 Dec 24			5 Dec 1	2000
ANNU	AL RUNOFF (AC-FT)		11100	3		10020	-		10030	-	
	AL RUNOFF (82.58 30	3		74.5′ 31	7		74.62 31	2	
	ERCENT EXCE			12 3.3			9.8 2.3			9.8 2.3		
	ee Period of pr. 7-11	Record, par	tial year	used in mor	nthly statis	stics						
b A	pr. 4 and 9, stimated	2002 but ma	y have bee	en lower dur	ing period	of ice af	fected reco	rd				

a b e

SOUTHEAST ALASKA

15102200 FAVORITE CREEK NEAR ANGOON—Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--February 2002 to June 2002.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

					DIS-						
					CHARGE,						
					INST.	0314		TURBID-	MEMBER	men per	
		Medium	01-	CACE	CUBIC FEET	SAM- PLING	STREAM	ITY LAB HACH	TEMPER- ATURE	TEMPER- ATURE	SAMPLER
Date	Time	code	Sample	GAGE HEIGHT	PER	METHOD,	WIDTH	2100AN	AIURE	WATER	TYPE
Date	TIME	code	type	(FEET)	SECOND	CODES	(FT)	(NTU)	(DEG C)	(DEG C)	(CODE)
				(00065)	(00061)	(82398)	(00004)	(99872)	(00020)	(00010)	(84164)
				(00005)	(00001)	(02330)	(00004)	(33072)	(00020)	(00010)	(04104)
FEB											
19	1110	9	9	10.02	4.6	8010	11.7	3.0	-2.0	. 0	8010
MAR											
20	1430	9	9	9.80	1.8	8010	12.0	3.8	2.0	. 0	8010
JUN											
03	1300	9	9	10.56	41	8010	20.7	1.0		4.5	8010

15106920 KADASHAN RIVER ABOVE HOOK CREEK NEAR TENAKEE

LOCATION.--Lat $57^{\circ}39'46''$, long $135^{\circ}11'06''$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ sec. 34, T. 48 S., R. 63 E. (Sitka C-4 quad), Greater Sitka Borough, Hydrologic Unit 19010203, on Chichagof Island, in Tongass National Forest, on right bank 0.6 mi upstream from Hook Creek, 3.5 mi upstream from mouth at Kadashan Bay, and 9 mi south of Tenakee.

DRAINAGE AREA.--10.2 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--January 1968 to September 1978, October 1980 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 100 ft above sea level, from topographic map. Prior to October 24, 1969, at site 90 ft downstream at different datum; October 24, 1969 to September 30, 1978, at site 75 ft downstream at datum 1.89 ft higher.

REMARKS. -- Records fair, except for estimated daily discharges, which are poor.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 500 ft3/s and maximum (*)

	Date		Time	Discharge (ft ³ /s)		Height	Date	Time		charge (age Heigh (ft)	t
	Oct 1	.2	0430	634	3 .	.82	Aug 12	1645	*	879	*4.33	
	Oct 1	.7	1600	517	3 .	.63						
			DISCHA	ARGE, in CI		R YEAR OCT		TO SEPTE	MBER 2002			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	100	106	e20	29	15	21	12	83	125	19	13	68
2	125	134	e19	26	14	111	12	61	110	29	12	75
3	64	246	e23	25	13	82	12	41	85	25	11	55
4	48	97	e23	23	19	33	11	31	114	23	10	40
5	41	83	e32	28	17	e20	11	27	78	24	9.6	36
6	58	61	45	161	14	e17	11	25	62	22	10	32
7	58	49	52	85	13	e15	11	26	68	18	90	84
8	59	81	121	67	32	e13	11	32	61	17	102	75
9	72	142	39	68	67	e12	11	38	87	16	56	66
10	96	94	40	67	163	e11	10	60	75	18	35	66
11	117	70	36	43	58	e10	11	102	53	18	26	60
12	395	48	36	34	173	e9.7	11	95	45	15	239	42
13	114	44	27	31	45	e9.5	12	120	48	17	91	35
14	78	91	22	30	115	e9.0	14	84	54	20	54	32
15	113	83	22	46	149	e8.6	16	76	53	15	38	42
16	185	71	e18	50	115	e8.4	16	107	45	15	32	44
17	228	59	e14	32	52	e8.2	16	95	41	16	30	66
18	212	48	e15	45	40	e8.0	16	90	37	15	26	145
19	175	45	e15	46	34	e7.8	21	113	32	18	24	80
20	103	52	e15	33	28	e7.7	49	133	29	16	26	58
21	108	52	15	23	23	e8.3	52	123	25	22	216	186
22	82	71	18	e19	19	e9.0	34	122	24	27	77	64
23	63	60	60	e30	e17	e10	28	112	27	25	109	51
24	90	41	292	e23	e16	11	28	97	33	43	56	43
25	70	32	116	17	e16	12	29	92	40	30	50	43
26	50	26	63	e14	23	19	30	104	27	22	75	40
27	46	e25	51	e13	20	20	29	91	26	39	112	53
28	84	e22	53	e17	18	17	39	176	22	29	192	44
29	127	e21	55	e16		15	54	135	20	21	116	38
30	60	e20	41	e15		14	65	100	19	17	61	32
31	46		33	e15		13		84		14	113	
TOTAL	3267	2074	1431	1171	1328	570.2	682	2675	1565	665	2111.6	1795
MEAN	105.4	69.13	46.16	37.77	47.43	18.39	22.73	86.29	52.17	21.45	68.12	59.83
MAX	395	246	292	161	173	111	65	176	125	43	239	186
MIN	41	20	14	13	13	7.7	10	25	19	14	9.6	32
AC-FT	6480	4110	2840	2320	2630	1130	1350	5310	3100	1320	4190	3560
CFSM	10.3	6.78	4.53	3.70	4.65	1.80	2.23	8.46	5.11	2.10	6.68	5.87
IN.	11.91	7.56	5.22	4.27	4.84	2.08	2.49	9.76	5.71	2.43	7.70	6.55
STATIST	rics of M	ONTHLY N	MEAN DATA	FOR WATER	YEARS 19	68 - 2002	, BY WATER	R YEAR (WY	·) #			
MEAN	117.4	77.05	63.74	49.67	48.57	44.14	66.52	101.6	66.41	30.68	33.65	74.96
MAX	234	152	147	147	118	129	118	101.6	151	60.2	79.0	141
(WY)	1975	1975	2000	1985	1985	1994	1994	1972	1972	1970	1983	1981
MIN	50.6	17.7	8.05	6.15	5.95	9.21	22.7	42.0	19.8	6.41	9.44	17.5
(WY)	1970	1974	1978	1969	1969	1974	2002	1981	1998	1989	1977	1986
(/		±2,±	10,0	100	1000	20,1	2002	1701	2000	2000	2011	1000

See Period of Record; partial years used in monthly summary statistics Estimated

15106920 KADASHAN RIVER ABOVE HOOK CREEK NEAR TENAKEE—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1968 - 2002#
ANNUAL TOTAL	21838.6	19334.8	
ANNUAL MEAN	59.83	52.97	64.46
HIGHEST ANNUAL MEAN			80.8 1992
LOWEST ANNUAL MEAN			44.1 1978
HIGHEST DAILY MEAN	723 Sep 13	395 Oct 12	1010 Oct 19 1998
LOWEST DAILY MEAN	8.5 Aug 17	7.7 Mar 20	a3.2 Jul 28 1989
ANNUAL SEVEN-DAY MINIMUM	8.9 Aug 12	8.1 Mar 15	4.2 Jan 13 1974
MAXIMUM PEAK FLOW		879 Aug 12	b1970 Oct 8 1990
MAXIMUM PEAK STAGE		4.33 Aug 12	5.83 Oct 8 1990
INSTANTANEOUS LOW FLOW		C	3.2 Jul 28 1989
ANNUAL RUNOFF (AC-FT)	43320	38350	46700
ANNUAL RUNOFF (CFSM)	5.87	5.19	6.32
ANNUAL RUNOFF (INCHES)	79.65	70.52	85.86
10 PERCENT EXCEEDS	112	113	139
50 PERCENT EXCEEDS	46	38	43
90 PERCENT EXCEEDS	15	13	12

[#] See Period of Record; partial years used in monthly summary statistics
a Jul. 28 to Jul. 29, 1989
b From rating curve extended above 330 ft³/s on basis of area-velocity study at
gage height 4.8 ft and shape of previous rating
c See lowest daily mean

15106920 KADASHAN RIVER ABOVE HOOK CREEK NEAR TENAKEE—Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1967-72, 1974-77, 1981-1985, and 1987 to current year.

PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: November 1967 to September 1978, December 1981 to December 1984, March 1987 to March 1988, and September 1988 to current year.

INSTRUMENTATION.--Digital water-temperature recorder, November 1967 to December 1984, set for 1-hour punch interval. Electronic water-temperature recorder since March 13, 1987, set for 2-hour recording interval. Electronic water-temperature recorder with 15-minute recording interval since July 11, 1996.

REMARKS.--Records represent water temperature at the sensor within $0.5\,^{\circ}\text{C}$. Temperature at the sensor was compared with the stream average by cross sections on February 21, and July 15. No variation was found in the temperature cross sections. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF DAILY RECORD .--

WATER TEMPERATURE: Maximum, 16.5° C, July 15, 1993; minimum, 0.0° C, on many days during most winters.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum, 12.0°C, July 24, August 1-2, and 4-5; minimum, 0.0°C, on many days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

			SAMPLE		DIS-		
			LOC-		CHARGE,		
			ATION,		INST.		
			CROSS		CUBIC	TEMPER-	TEMPER-
		STREAM	SECTION	GAGE	FEET	ATURE	ATURE
Date	Time	WIDTH	(FT FM	HEIGHT	PER	WATER	AIR
		(FT)	L BANK)	(FEET)	SECOND	(DEG C)	(DEG C)
		(00004)	(00009)	(00065)	(00061)	(00010)	(00020)
FEB							
21	1045	23.0	3.00	1.50	22	1.0	-2.0
21	1046	23.0	6.00	1.50	22	1.0	-2.0
21	1047	23.0	9.00	1.50	22	1.0	-2.0
21	1048	23.0	12.0	1.50	22	1.0	-2.0
21	1049	23.0	15.0	1.50	22	1.0	-2.0
21	1050	23.0	18.0	1.50	22	1.0	-2.0
21	1051	23.0	21.0	1.50	22	1.0	-2.0
JUL							
15	1025	26.0	7.00	1.38	16	9.0	17.5
15	1026	26.0	11.0	1.38	16	9.0	17.5
15	1027	26.0	15.0		16	9.0	17.5
15	1028	26.0	19.0	1.38	16	9.0	17.5
15	1029	26.0	23.0	1.38	16	9.0	17.5
15	1030	26.0	27.0	1.38	16	9.0	17.5

TEMPERATURE WATER, (DEGREES CELSIUS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NC	OVEMBER		DI	ECEMBER			JANUARY	
1 2 3 4 5	8.0 8.0 8.0 7.5 7.0	7.5 7.5 7.5 7.0 6.5	7.5 7.5 7.5 7.5 7.0	4.0 4.0 4.0 3.5 3.5	3.5 3.5 3.0 3.0	3.5 3.5 3.5 3.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.0 2.0 2.0 2.0 2.0	1.5 2.0 2.0 1.5 2.0	1.5 2.0 2.0 2.0 2.0
6 7 8 9 10	7.5 7.0 7.0 7.0	7.0 6.5 6.5 6.5	7.0 7.0 7.0 7.0	3.5 3.0 3.0 3.5 3.5	3.0 3.0 3.0 2.5 3.0	3.0 3.0 3.0 3.0 3.5	0.0 0.0 0.0 0.5 1.0	0.0 0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.0	2.0 2.0 2.0 2.0 2.0	0.5 1.0 1.5 1.5	1.0 1.5 1.5 2.0 1.5
11 12 13 14 15	6.5 6.0 6.0 6.0	5.5 5.5 5.0 5.0	6.0 5.5 5.5 5.5	3.5 3.0 3.0 3.0 3.5	3.0 3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0	1.0 1.0 1.0 0.5	0.5 1.0 0.5 0.0	1.0 1.0 1.0 0.5	2.0 2.0 2.0 2.0 2.5	2.0 2.0 1.5 2.0 1.5	2.0 2.0 2.0 2.0 2.0
16 17 18 19 20	5.5 5.5 6.0 5.5 5.0	5.0 5.0 5.5 5.0 4.5	5.0 5.5 6.0 5.5 5.0	3.5 3.5 3.5 4.0 4.0	3.0 3.0 3.5 3.0 3.5	3.5 3.5 3.5 3.5 3.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.0 2.0 2.0 2.0 1.5	1.5 1.5 1.5 1.5	1.5 2.0 2.0 1.5 1.5
21 22 23 24 25	5.5 5.5 4.5 4.5	5.0 4.5 4.5 4.0 3.5	5.0 5.0 4.5 4.0 4.0	4.0 4.0 3.5 3.5 2.5	4.0 3.5 3.0 2.5 0.5	4.0 4.0 3.5 3.0 1.5	1.0 1.0 1.0 0.0	0.0 0.5 0.0 0.0	0.5 1.0 0.5 0.0	1.0 0.0 0.0 0.5 0.0	0.0 0.0 0.0 0.0	0.5 0.0 0.0 0.0
26 27 28 29 30 31	3.5 4.0 3.5 3.5 4.0 3.5	3.0 3.0 3.0 3.0 3.5 3.5	3.5 3.5 3.5 3.5 3.5	0.5 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.5 0.0 0.0 0.0	1.5 1.5 1.5 2.0	1.0 1.5 1.5 1.5 1.5	1.0 1.5 1.5 1.5 1.5	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
MONTH	8.0	3.0	5.5	4.0	0.0	2.7	2.0	0.0	0.5	2.5	0.0	1.2

SOUTHEAST ALASKA

15106920 KADASHAN RIVER ABOVE HOOK CREEK NEAR TENAKEE—Continued

TEMPERATURE WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	1.0 1.0 1.0 1.0	1.0 0.5 1.0 0.5 1.0	1.0 1.0 1.0 1.0	1.5 1.0 1.0 0.5	1.0 0.0 0.0 0.0	1.0 0.5 0.5 0.5	1.0 1.0 0.5 0.5	0.0 0.0 0.0 0.0	0.5 0.5 0.0 0.0	2.5 3.0 2.5 3.0 3.0	1.5 1.0 1.0 1.0	2.0 2.0 2.0 2.0 2.0
6 7 8 9	1.0 0.5 0.0 0.0	0.5 0.0 0.0 0.0	1.0 0.5 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.0 1.0 1.0 1.0	0.0 0.0 0.0 0.0	0.5 0.5 0.5 0.5	3.5 3.0 4.0 3.0 3.0	1.0 2.0 1.5 2.0	2.0 2.5 3.0 2.5 2.5
	0.5 0.5 1.0 1.0			0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0	2.0 2.0 2.0 2.5 2.5	0.0 1.0 1.0 1.0	1.0 1.5 1.5 1.5	2.5 3.0 3.0 3.5 3.5		
	1.5 1.5 1.5 1.5		1.0 1.0 1.5 1.5	0.0 0.0 0.0 0.0			2.5 2.5 2.5 2.0 1.5			4.0 4.0 4.5 5.0	2.5 2.0 2.5 2.5 2.5	3.0 3.5 3.5 3.5
	1.0 1.0 0.0 0.0			0.0 0.0 0.5 1.0		0.0 0.0 0.5 0.5	1.0 2.0 2.5 2.5 3.0	0.5 0.5 0.5 1.0	1.0 1.0 1.5 1.5	3.5 3.5 4.5 5.0 6.0	3.0 3.0 3.0 3.5 3.0	3.5 3.5 3.5 4.0 4.5
26 27 28 29 30 31	1.0 1.0 1.5	0.0 0.5 1.0 	0.5 1.0 1.0 	1.0 1.5 1.0 1.5 1.5	0.5 0.5 0.5 1.0 0.5 0.5	1.0 1.0 1.0 1.0 1.0	2.5 2.5 3.0 3.0	0.5 1.0 1.5 1.0	1.5 1.5 2.0 2.0 2.0	5.0 4.5 4.5 5.0 5.5	3.5 3.5 3.5 4.0 4.0	4.0 4.0 4.5 4.5
MONTH	1.5	0.0								6.0		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	JUNE			JULY			AUGUST			SEPTEMBE	R
	MAX 5.0 5.5 5.5 6.0	JUNE	4.5 5.0 5.0 5.0	8.5 8.5 8.0 8.5 8.5	JULY 8.0 7.5 7.5 7.5 7.5	8.5 8.0 8.0 8.0	12.0 12.0 11.0 12.0	10.0 9.5 8.5 9.0	11.0 10.5 10.0 10.5	10.0 10.0 9.5 9.0	9.5 9.5 9.5 9.0 7.5 8.0	9.5 9.5 9.0 8.5 8.5
1 2 3 4 5 6 7 8		JUNE 4.0 4.5 4.0 4.5 4.5	4.5 5.0 5.0 5.0	8.5 8.5 8.0 8.5 8.5	JULY 8.0 7.5 7.5 7.5 7.5	8.5 8.0 8.0 8.0	12.0 12.0 11.0 12.0	10.0 9.5 8.5 9.0	11.0 10.5 10.0 10.5		9.5 9.5 9.5 9.0 7.5 8.0	9.5 9.5 9.0 8.5 8.5
1 2 3 4 5 6 7 8 9	5.0 5.5 5.5 5.6	JUNE 4.0 4.5 4.0 4.5 4.5 4.5 5.0 5.5	4.5 5.0 5.0 5.0 5.0 5.0 5.5 6.0	8.5 8.5 8.0 8.5 8.5 9.0 10.5 11.0 10.5	JULY 8.0 7.5 7.5 7.5 7.5 8.0 7.5 8.0 9.5 9.0	8.5 8.0 8.0 8.0 8.0 8.0 9.0 9.5 10.0	12.0 12.0 11.0 12.0 12.0 12.0 11.5 11.0 10.5	10.0 9.5 8.5 9.0 9.0 10.5 10.0 10.5	11.0 10.5 10.0 10.5 10.5 10.5 10.5	10.0 10.0 9.5 9.0	9.5 9.5 9.0 7.5 8.0 8.0 8.5 9.0 9.0	9.5 9.5 9.0 8.5 8.5 8.5 9.0 9.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14	5.0 5.5 5.5 5.5 6.0 6.0 6.0 6.0 6.0 6.5 6.0 7.5 8.5 9.5	JUNE 4.0 4.5 4.5 4.5 4.5 5.5 5.5 6.0	4.5 5.0 5.0 5.0 5.0 5.5 6.0 5.5 6.0 5.5 7.5	8.5 8.5 8.0 8.5 8.5 9.0 10.5 11.0 10.5 10.0	JULY 8.0 7.5 7.5 7.5 7.5 8.0 7.5 8.0 9.5 9.0 9.0 8.5 9.0	8.5 8.0 8.0 8.0 8.0 8.5 9.0 9.5 10.0 9.0 9.0	12.0 12.0 11.0 12.0 12.0 12.0 11.5 11.0 10.5 10.5	AUGUST 10.0 9.5 8.5 9.0 9.0 10.5 10.0 10.5 10.0 10.0 9.5	11.0 10.5 10.0 10.5 10.5 11.0 10.5 10.5	10.0 10.0 9.5 9.0 9.0 9.5 9.5 9.0 9.0 9.0	9.5 9.5 9.0 7.5 8.0 8.0 8.5 9.0 9.0 8.5	9.5 9.5 9.0 8.5 8.5 8.5 9.0 9.0 9.0 9.0
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18	5.0 5.5 5.5 5.5 6.0 6.0 6.0 6.0 6.5 6.0 7.5 8.5 9.5 9.5 9.5 8.5	JUNE 4.0 4.5 4.5 4.5 4.5 5.5 5.5 6.0 7.0 7.0 6.5	4.5 5.0 5.0 5.0 5.0 5.5 6.0 5.5 6.0 7.5 8.0 8.5 7.5	8.5 8.5 8.0 8.5 8.5 9.0 10.5 11.0 10.5 10.0 9.5 10.0 9.5 10.0 10.5	JULY 8.0 7.5 7.5 7.5 7.5 8.0 7.5 8.0 9.5 9.0 9.0 8.5 9.0 9.0 8.5 9.0 9.0 9.0 9.0 9.0	8.5 8.0 8.0 8.0 8.5 9.5 10.0 9.0 9.0 9.5 9.5 9.5 9.5 9.5	12.0 12.0 11.0 12.0 12.0 12.0 11.5 11.0 10.5 10.5 10.0 9.5 9.0 9.5	AUGUST 10.0 9.5 8.5 9.0 9.0 10.5 10.0 10.5 10.0 9.5 10.0 9.5 10.0 9.5 8.5	11.0 10.5 10.0 10.5 10.5 11.0 10.5 10.5	10.0 10.0 9.5 9.0 9.0 9.5 9.0 9.0 9.0 9.0 8.5 8.0 8.5 9.0 9.0	9.5 9.5 9.0 7.5 8.0 8.0 8.5 9.0 9.0 8.5 8.5 8.0 7.0 7.0 8.0 8.0	9.5 9.5 9.0 8.5 8.5 8.5 9.0 9.0 9.0 9.0 8.5 7.5 8.5 8.5
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	5.0 5.5 5.5 5.5 6.0 6.0 6.0 6.0 6.5 6.0 7.5 8.5 9.5 9.5 9.5 9.5 8.0 7.5	JUNE 4.0 4.5 4.5 4.5 4.5 5.5 5.5 5.5 6.0 7.0 6.5 7.0 8.0 7.5	4.5 5.0 5.0 5.0 5.0 5.5 6.0 5.5 6.0 7.5 8.0 8.5 7.5 7.0 7.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.5 8.5 8.6 8.5 8.5 9.0 10.5 11.0 10.5 10.0 9.5 10.0 10.5 10.0 10.5 10.0 10.5	JULY 8.0 7.5 7.5 7.5 7.5 8.0 7.5 8.0 9.5 9.0 9.0 8.5 9.0 9.0 8.5 9.0 9.0 10.0 10.0 10.5 11.0	8.5 8.0 8.0 8.0 8.0 8.5 9.0 9.5 10.0 9.0 9.0 9.5 9.5 9.5 9.5 9.5 9.5	12.0 12.0 11.0 12.0 12.0 12.0 11.5 11.0 10.5 10.5 10.0 9.5 9.0 9.5 10.0 9.5	AUGUST 10.0 9.5 8.5 9.0 9.0 10.5 10.0 10.0 9.5 10.0 9.5 8.5 9.0 8.0 9.0 8.5 9.0 9.5 9.0	11.0 10.5 10.0 10.5 10.5 11.0 10.5 10.5	10.0 10.0 9.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5	SEPTEMBE 9.5 9.5 9.0 7.5 8.0 8.0 8.5 9.0 9.0 8.5 8.0 7.0 7.0 8.0 8.0 7.5 8.0 7.5 8.0 7.5 8.0	9.5 9.5 9.0 8.5 8.5 8.5 9.0 9.0 9.0 9.0 8.5 7.5 8.0 8.5 8.5 8.5

15106970 MIDDLE BASIN CREEK NEAR TENAKEE

 $\texttt{LOCATION.--Lat 57°41'33'', long 135°12'06'', in NE}_{4}^{1} \ \text{NE}_{4}^{1} \ \text{SE}_{4}^{1} \ \text{sec. 21, T. 48 S., R. 63 E. (Sitka C-4 quad), Hydrologic new control of the control o$ Unit 19010203, in Tongass National Forest, on Chichagof Island, on left bank 0.3 mi upstream from confluence with Kadashan River, and about 7 mi south of Tenakee.

DRAINAGE AREA.--0.12 mi²

WATER-DISCHARGE RECORDS

 ${\tt PERIOD} \ {\tt OF} \ {\tt RECORD.--October} \ {\tt 1981} \ {\tt to} \ {\tt July} \ {\tt 1987} \ ({\tt unpublished} \ {\tt fragmentary} \ {\tt records} \ {\tt provided} \ {\tt by} \ {\tt the} \ {\tt U.S.} \ {\tt Forest} \ {\tt Service}) \ .$ July 1999 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 190 ft above sea level, from topographic map.

REMARKS.-- Records fair, except for estimated daily discharges, which are poor.

			-		-		<i>-</i>	-				
		DISCHA	ARGE, CU	BIC FEET	PER SECOND, DAII	, WATER LY MEAN		ER 2001 '	TO SEPTEME	BER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0.66 0.77 0.71 0.67 0.65	1.1 1.3 3.2 1.8	0.39 0.37 0.38 0.38	0.53 0.54 0.51 0.46 0.52	0.32 0.32 0.32 0.37 0.32	0.30 0.61 0.64 0.42 0.34	0.14 0.14 0.14 0.14 0.16	0.30 0.29 0.24 0.22 0.19	2.3 2.2 2.2 2.2 2.2	0.46 0.46 0.40 0.39 0.32	0.20 0.19 0.18 0.18	0.94 0.95 0.81 0.72 0.66
6 7 8 9 10	0.65 0.64 0.60 0.59 0.63	1.2 0.97 0.98 1.2	0.36 0.47 0.43 0.39 0.42	0.71 0.64 0.56 0.58 0.56	0.30 0.27 0.24 0.42 0.89	0.30 0.29 0.26 e0.27 0.28	0.16 0.14 0.14 0.15 0.17	0.18 0.18 0.18 0.18 0.20	2.0 1.8 1.7 1.7	0.31 0.31 0.31 0.28 0.29	0.18 0.27 0.31 0.24 0.19	0.63 0.64 0.59 0.55
11 12 13 14 15	0.67 1.4 1.2 1.2	0.87 0.84 0.84 0.89 0.88	0.39 0.42 0.39 0.35 0.34	0.56 0.52 0.49 0.46 0.51	0.54 1.2 0.61 0.93 1.3	0.29 0.25 0.22 0.20 0.19	0.16 0.17 0.19 0.19 0.18	0.24 0.30 0.37 0.35 0.35	1.6 1.4 1.3 1.3	0.27 0.25 0.28 0.25 0.24	0.19 0.47 0.39 0.30 0.32	0.46 0.42 0.38 0.39 0.41
16 17 18 19 20	1.7 1.9 2.3 2.8 2.6	0.79 0.71 0.71 0.69 0.73	0.31 0.31 0.30 0.29 0.30	0.47 0.46 0.51 0.54 0.52	1.1 0.71 0.63 0.58 0.47	0.18 0.18 0.17 0.17	0.16 0.14 0.14 0.16 0.25	0.47 0.50 0.54 0.63 0.75	1.3 1.2 1.1 0.96 0.88	0.24 0.24 0.21 0.21 0.20	0.31 0.29 0.29 0.28 0.28	0.38 0.40 0.60 0.48 0.44
21 22 23 24 25	2.3 2.0 1.7 1.5	0.68 0.67 0.59 0.56 0.53	0.30 0.32 0.48 1.2 0.71	0.43 0.37 0.44 0.42 0.34	0.40 0.33 0.29 0.27 0.27	0.17 0.19 0.20 0.19 0.22	0.27 0.21 0.18 0.17 0.17	0.97 1.4 1.8 1.8	0.85 0.84 0.84 0.71 0.68	0.23 0.22 0.24 0.28 0.20	0.53 0.41 0.48 0.42 0.46	0.85 0.67 0.70 0.67 0.64
26 27 28 29 30 31	1.1 1.0 1.1 1.2 1.0 0.90	0.49 0.46 0.45 0.41 0.38	0.61 0.61 0.60 0.59 0.55	0.30 0.28 0.31 0.32 0.35	0.28 0.33 0.29 	0.27 0.23 0.21 0.20 0.18 0.17	0.17 0.18 0.20 0.22 0.25	1.8 2.0 2.4 2.9 2.7 2.4	0.62 0.60 0.60 0.57 0.52	0.19 0.20 0.18 0.19 0.19	0.55 0.65 0.90 0.89 0.91	0.61 0.61 0.56 0.51 0.46
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	38.84 1.253 2.8 0.59 1.1 77 10.4 12.04	0.38 0.81 54 7.59 8.47	13.87 0.447 1.2 0.29 0.39 28 3.73 4.30	14.55 0.469 0.71 0.28 0.49 29 3.91 4.51	14.30 0.511 1.3 0.24 0.35 28 4.26 4.43	7.94 0.256 0.64 0.15 0.22 16 2.13 2.46	5.24 0.175 0.27 0.14 0.17 10 1.46 1.62	28.53 0.920 2.9 0.18 0.47 57 7.67 8.84	39.17 1.306 2.3 0.52 1.3 78 10.9 12.14	8.23 0.265 0.46 0.18 0.24 16 2.21 2.55	12.44 0.401 1.0 0.18 0.31 25 3.34 3.86	17.63 0.588 0.95 0.38 0.60 35 4.90 5.47
MEAN MAX (WY) MIN (WY)	1.799 2.98 2000 1.16 2001	1.463 2.65 2000 0.83 2001	1.666 3.75 2000 0.45 2002	0.594 0.84 2001 0.47 2000	VEARS 1999 0.459 0.57 2001 0.30 2000	0.387 0.51 2001 0.26 2002	0.294 0.43 2000 0.17 2002	0.680 0.92 2002 0.51 2001	0.962 1.31 2002 0.74 2000	0.405 0.65 1999 0.27 2002	0.325 0.40 2002 0.21 2001	0.920 1.34 2000 0.59 2002

See Period of Record; partial years used in monthly statistics Estimated

15106970 MIDDLE BASIN CREEK NEAR TENAKEE—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1999 - 2002#
ANNUAL TOTAL	226.49	228.06	
ANNUAL MEAN	0.621	0.625	0.820
HIGHEST ANNUAL MEAN			1.20 2000
LOWEST ANNUAL MEAN			0.62 2002
HIGHEST DAILY MEAN	3.2 Nov 3	3.2 Nov 3	31 Dec 27 1999
LOWEST DAILY MEAN	0.17 Aug 18	a0.14 Apr 1	0.14 Apr 1 2002
ANNUAL SEVEN-DAY MINIMUM	0.18 Aug 13	0.15 Apr 1	0.15 Apr 1 2002
MAXIMUM PEAK FLOW		5.9 Nov 3	b66 Dec 27 1999
MAXIMUM PEAK STAGE		4.38 Nov 3	5.16 Dec 27 1999
INSTANTANEOUS LOW FLOW		0.11 Mar 20	c0.11 Mar 20 2002
ANNUAL RUNOFF (AC-FT)	449	452	594
ANNUAL RUNOFF (CFSM)	5.17	5.21	6.84
ANNUAL RUNOFF (INCHES)	70.21	70.70	92.88
10 PERCENT EXCEEDS	1.1	1.3	1.3
50 PERCENT EXCEEDS	0.49	0.45	0.50
90 PERCENT EXCEEDS	0.25	0.18	0.24

[#] See Period of Record; partial years used in monthly statistics a Apr. 1-4, 7-8, 17, and 18 b From rating curve extended above 3.0 $\rm ft^3/s$ c Mar. 20, Apr. 2, 3, 7-9, 17, and 18, 2002

15106970 MIDDLE BASIN CREEK NEAR TENAKEE—Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--October 1981 to July 1987 (unpublished fragmentary records provided by the U.S. Forest Service), July 2000 to current year.

PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: July 2000 to current year.

INSTRUMENTATION.--Electronic water-temperature recorder with 15-minute recording interval since July 09, 2000.

REMARKS.--Records represent water temperature at the sensor within 0.5°C. Temperature at the sensor was compared with the average of the river by cross section on July 15. No variation was found within the cross section. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURE: Maximum, 9.5°C, August 12, 2002; minimum, 0.0°C, March 15-17, 20, and April 9, 2002.

EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 9.5°C, August 12; minimum, 0.0°C, March 15-17, 20, and April 9.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	STREAM WIDTH (FT)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK)	GAGE HEIGHT (FEET)	DIS- CHARGE, INST. CUBIC FEET PER SECOND	TEMPER- ATURE WATER (DEG C)	TEMPER- ATURE AIR (DEG C)
JUL		(00004)	(00009)	(00065)	(00061)	(00010)	(00020)
15	1140	4.70	1.00	3.68	.25	7.5	12.0
15	1142	4.70	2.00	3.68	.25	7.5	12.0
15	1143	4.70	3.00	3.68	.25	7.5	12.0
15	1144	4.70	4.00	3.68	.25	7.5	12.0

TEMPERATURE, W	JATER. (DEGREES	CELSTUS).	WATER	YEAR	OCTOBER	2001	TO	SEPTEMBER	2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	OVEMBER		DE	ECEMBER			JANUARY	
1 2 3 4 5	7.0 7.0 6.5 6.5 6.5	6.5 6.5 6.5 6.5	6.5 6.5 6.5 6.5	4.5 4.5 4.5 4.0 4.0	4.0 4.0 4.0 4.0	4.0 4.5 4.5 4.0	1.0 1.0 2.0 2.0 2.0	0.5 0.5 1.0 2.0 1.0	1.0 1.0 1.5 2.0	2.5 2.5 3.0 2.5 3.0	2.5 2.5 2.5 2.5 2.5	2.5 2.5 2.5 2.5 3.0
6 7 8 9 10	6.5 6.5 6.5 6.5	6.5 6.0 6.0 6.0	6.5 6.0 6.0 6.0	4.0 4.0 4.0 4.0 4.5	3.5 3.5 3.5 3.5 4.0	4.0 3.5 4.0 4.0	2.0 2.0 2.0 2.0 2.5	1.0 1.5 2.0 2.0	2.0 2.0 2.0 2.0 2.0	3.0 3.5 3.0 3.5 3.5	3.0 3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.5 3.0
11 12 13 14 15	6.0 6.0 6.0 5.5 5.5	5.5 5.5 5.5 5.0 5.0	6.0 6.0 5.5 5.5	4.0 4.0 4.0 4.0 4.0	4.0 3.5 3.5 3.5 4.0	4.0 3.5 3.5 4.0 4.0	2.5 2.5 2.5 2.0 1.5	2.0 2.0 2.0 1.5 1.5	2.5 2.5 2.5 2.0 1.5	3.5 3.5 3.0 3.0	3.0 3.0 3.0 3.0 3.0	3.5 3.0 3.0 3.0 3.0
16 17 18 19 20	5.5 5.5 5.5 5.0	5.5 5.0 5.5 5.0	5.5 5.5 5.0 5.0	4.0 4.0 4.0 4.5 4.5	4.0 4.0 4.0 4.0 4.5	4.0 4.0 4.0 4.0 4.5	1.5 1.5 1.5 2.0 2.0	1.0 1.0 1.5 0.5	1.0 1.5 1.5 1.5 2.0	3.5 3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0 2.5	3.0 3.0 3.0 3.0 3.0
21 22 23 24 25	5.0 5.0 5.0 4.5 4.5	5.0 5.0 4.5 4.0 4.0	5.0 5.0 4.5 4.5	4.5 4.5 4.5 4.0 3.5	4.5 4.5 4.0 3.5 2.0	4.5 4.5 4.0 4.0 3.0	2.0 2.0 2.0 2.0 2.5	2.0 2.0 1.5 1.5 2.0	2.0 2.0 2.0 2.0 2.5	2.5 1.5 2.0 2.0 2.0	1.5 1.5 1.5 1.5	2.0 1.5 2.0 2.0 1.5
26 27 28 29 30 31	4.0 4.0 4.0 4.5 4.5	4.0 4.0 4.0 4.0 4.0	4.0 4.0 4.0 4.0 4.0	2.0 1.5 1.5 1.0	1.5 1.0 1.0 1.0	2.0 1.5 1.5 1.0	2.5 2.5 2.5 2.5 2.5 2.5	2.5 2.5 2.5 2.5 2.5 2.5	2.5 2.5 2.5 2.5 2.5 2.5	1.5 1.0 1.5 2.0 2.0	0.5 0.5 1.0 1.5 2.0	1.0 0.5 1.5 2.0 2.0
MONTH	7.0	3.5	5.3	4.5	1.0	3.6	2.5	0.5	2.0	3.5	0.5	2.5

SOUTHEAST ALASKA

15106970 MIDDLE BASIN CREEK NEAR TENAKEE—Continued

TEMPERATURE, WATER, (DEGREES CELSIUS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	2.0 2.0 2.5 2.5 2.5	2.0 1.5 2.0 2.0	2.0 2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0 1.5	2.0 2.0 2.0 1.5	2.0 2.0 2.0 1.5	1.5 1.5 1.5 1.0	0.5 0.5 0.5 0.5	1.0 1.0 1.0 1.0	3.0 2.5 2.5 2.5 2.0	2.5 2.0 1.5 1.5	2.5 2.0 2.0 2.0 1.5
6 7 8 9 10	2.5 2.0 1.5 2.0 2.0	2.0 1.0 0.5 1.0	2.0 1.5 1.0 1.5 2.0	1.0 1.0 1.0 0.5	1.0 0.5 0.5 0.5	1.0 1.0 0.5 0.5	1.5 1.5 1.5 1.5	0.5 0.5 0.5 0.0	1.0 1.0 1.0 1.0	2.5 2.5 3.0 2.5 3.0	1.0 2.0 1.5 2.0 2.5	2.0 2.5 2.5 2.5 2.5
12 13 14	2.0 2.0 2.5 2.5 2.5	2.0 2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0 2.0	1.0 1.0 1.0 1.0	1.0 1.0 1.0 0.5	1.0 1.0 1.0 1.0	1.5 2.0 2.0 2.0 2.0	0.5 1.0 1.5 1.0	1.0 1.5 1.5 1.5	3.0 3.0 3.0 3.5 3.5	2.5 2.5 3.0 2.5 3.0	3.0 3.0 3.0 3.0
16 17 18 19 20	2.5 2.5 2.5 2.5 2.5	2.0 1.5 2.0 2.0	2.0 2.0 2.0 2.0 2.0	1.0 1.0 1.0 1.0	0.0 0.0 0.5 0.5	0.5 0.5 0.5 1.0	2.0 2.0 2.0 2.0 2.0	1.0 1.0 1.0 1.5	1.5 1.5 1.5 2.0 2.0	4.0 3.5 4.0 4.5 5.0	3.0 3.0 3.0 3.5 3.5	3.5 3.5 3.5 4.0 4.0
22 23 24	2.0 2.0 1.5 1.5 2.0	1.5 1.0 0.5 0.5	2.0 1.5 1.0 1.0	1.5 1.5 1.5 1.5	0.5 1.0 1.0 1.0	1.0 1.5 1.5 1.5	2.0 2.0 2.0 2.0 2.5	1.5 1.5 1.5 1.5	2.0 1.5 1.5 1.5	4.5 5.0 5.0 5.0	4.0 4.5 4.5 4.5 4.5	4.5 4.5 4.5 5.0
27 28 29 30 31	 	1.5 2.0 			1.0	1.5 1.5 1.5 1.5 1.5	2.0 2.5 2.0 2.0 2.5 3.0 3.0			5.5 5.5 5.5 5.5 5.0	5.0 5.0 5.0 5.0 5.0	5.5 5.0 5.5 5.0 5.0
MONTH	2.5	0.5	1.8	2.0	0.0	1.2	3.0	0.0	1.5	5.5	1.0	3.5
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN R
DAY 1 2 3 4 5	5.0 5.5	JUNE		7.0 6.5 6.5 6.5 6.5	JULY	6.5 6.5 6.5 6.5	8.5 8.0 8.0 8.5 8.5	7.5 7.5 7.0 7.0	8.0 8.0 7.5 8.0 8.0	8.0 7.5 8.0 7.5 7.5	7.5 7.5 7.5 7.5 7.0 7.0	
1 2 3 4 5 6 7 8 9	5.0 5.5 5.5 5.5	JUNE 5.0 5.0 5.0 5.0 5.0	5.0 5.0 5.5 5.0 5.5 5.5 5.5	7.0 6.5 6.5 6.5 6.5 7.0 7.5 7.0	JULY 6.5 6.5 6.5 6.5 6.5 6.5 7.0	6.5 6.5 6.5 6.5	I	7.5 7.5 7.0 7.0	8.0 8.0 7.5 8.0 8.0	5	7.5 7.5 7.5 7.5 7.0 7.0	7.5 7.5 7.5 7.5
1 2 3 4 5 6 7 8 9 10	5.0 5.5 5.5 5.5 5.5 5.6 6.0 6.0	JUNE 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	5.0 5.0 5.5 5.0 5.5 5.5 5.5	7.0 6.5 6.5 6.5	JULY 6.5 6.5 6.5 6.5 6.5 6.5 7.0	6.5 6.5 6.5 6.5 6.5 7.0 7.0	8.5 8.0 8.0 8.5 8.5	7.5 7.5 7.0 7.0 7.0 8.0 8.0 8.0 8.0	8.0 8.0 7.5 8.0 8.0	8.0 7.5 8.0 7.5 7.5	7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.5 7.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	5.0 5.5 5.5 5.5 5.5 5.5 6.0 6.0 6.0	JUNE 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.5 5.5	5.0 5.0 5.5 5.5 5.5 5.5 5.5 5.5 6.5	7.0 6.5 6.5 6.5 7.0 7.5 7.0 7.0 7.5 7.0	JULY 6.5 6.5 6.5 6.5 6.5 7.0 7.0 6.5 7.0 7.0	6.5 6.5 6.5 6.5 6.5 7.0 7.0 7.0 7.0 7.0	8.5 8.0 8.5 8.5 8.5 8.5 8.5 8.0 8.0	7.5 7.5 7.0 7.0 7.0 8.0 8.0 8.0 8.0 8.0 8.0	8.0 8.0 7.5 8.0 8.0 8.0 8.0 8.0 8.0 8.5 8.5	8.0 7.5 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.5	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	5.0 5.5 5.5 5.5 5.5 5.5 6.0 6.0 6.5 7.5 7.0 6.5 6.5	JUNE 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.5 6.0 6.0 6.0 6.0	5.0 5.0 5.5 5.5 5.5 5.5 5.5 5.5 6.5 6.0 6.0	7.0 6.5 6.5 6.5 7.0 7.5 7.0 7.0 7.5 7.5 7.5 7.5 7.5 7.5	JULY 6.5 6.5 6.5 6.5 6.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	6.5 6.5 6.5 6.5 6.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	8.5 8.0 8.5 8.5 8.5 8.5 8.5 8.0 8.0 8.0 8.0 8.0	7.5 7.5 7.0 7.0 7.0 7.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.0 8.0 7.5 8.0 8.0 8.0 8.0 8.0 8.5 8.0 8.5 8.0 8.5	8.0 7.5 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	5.0 5.5 5.5 5.5 5.5 5.5 6.0 6.0 6.5 7.5 7.0 6.5 6.5 7.5 6.5 7.5	JUNE 5.0 5.0 5.0 5.0 5.0 5.0 5.5 5.0 6.0 6.0 6.0 6.0 6.0 6.5 6.5	5.00 5.00 5.00 5.55 5.55 5.55 5.50 6.55 6.66 6.66	7.0 6.5 6.5 6.5 7.0 7.0 7.0 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 8.0 8.0	JULY 6.5 6.5 6.5 6.5 6.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.5 7.5	6.5 6.5 6.5 6.5 6.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	8.5 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	AUGUST 7.5 7.5 7.0 7.0 7.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.5 8.0 8.0 8.0 8.0 8.0 7.5	8.0 8.0 7.5 8.0 8.0 8.0 8.0 8.0 8.0 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.0 7.5 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.5 7.5	7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0

15109048 PETERSON CREEK BELOW NORTH FORK NEAR AUKE BAY

LOCATION.(REVISED) -- Lat $58^{\circ}17'00''$, long $134^{\circ}39'54''$, in $SE^{1}_{/4}$ NW $^{1}_{/4}$ SW $^{1}_{/4}$ sec. 29, T. 41 S., R. 66 E. (Juneau B-2 SW), Hydrologic Unit 19010301, City and Borough of Juneau, on Douglas Island, in Tongass National Forest, on left bank 100 ft downstream from North Fork Peterson Creek, 1.25 mi upstream from mouth, 7.2 mi south of Auke Bay, and 9.6 mi west of Douglas.

DRAINAGE AREA.--4.33 mi², revised.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- November 1998 to current year.

REVISED RECORDS.--WDR AK-00-1: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 50 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are poor.

			DISCHAF	RGE, in CF	S, WATER	YEAR OCTO	BER 2001	TO SEPTEM	BER 2002			
					DA	AILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	16	8.5	e1.7	8.0	6.9	3.8	e2.2	11	19	5.5	4.3	25
2	18	11	e1.7	6.9	6.0	23	e2.3	11	20	12	4.0	20
3	13	21	e1.7	6.3	5.6	29	e2.4	8.8	19	17	3.8	15
4	12	16	e1.8	5.9	5.5	13	e2.4	6.7	28	14	3.6	12
5	11	11	e1.8	5.7	4.7	7.7	e2.4	5.0	34	11	3.5	9.7
6	12	8.6	e1.8	9.6	4.5	e6.0	e2.4	4.1	24	9.6	3.2	8.3
7	12	7.2	e2.3	12	5.1	e4.8	e2.4	3.7	17	7.9	3.7	7.0
8	20	7.2	18	16	e5.5	e4.0	e2.4	3.5	15	6.6	13	7.1
9	15	30	e12	13	6.5	e3.2	e2.4	3.5	18	6.1	21	7.6
10	12	16	e10	13	33	e2.5	2.4	6.1	25	5.9	12	7.8
11	13	12	8.0	10	14	e2.1	2.4	8.8	18	6.6	9.4	11
12	24	9.1	5.3	10	39	e1.7	2.4	9.7	13	6.7	50	9.6
13	16	7.5	4.5	8.8	18	e1.5	2.4	16	11	7.1	34	8.3
14	13	8.1	4.1	7.4	31	e1.3	2.5	21	12	14	17	6.8
15	13	9.0	e3.4	7.5	32	e1.2	2.6	14	12	10	10	6.2
16	45	7.8	e3.0	11	48	e1.0	2.5	13	11	8.2	7.2	5.4
17	33	8.1	e2.7	8.8	20	e0.90	2.5	16	10	7.4	5.1	5.9
18	33	6.8	e2.5	10	12	e0.92	2.6	18	9.6	6.4	4.3	21
19	36	6.2	e2.5	11	8.1	e0.95	2.9	24	8.2	5.5	4.2	21
20	24	5.7	e2.5	9.7	6.2	e0.95	3.8	28	7.0	4.8	5.3	17
21	16	5.5	e2.7	7.3	5.0	e0.95	4.2	29	6.4	5.0	20	76
22	13	5.7	e3.3	e6.5	e4.1	e1.1	3.8	25	5.7	5.9	14	30
23	10	6.2	e4.2	e6.0	e3.6	e1.2	3.5	26	5.8	6.4	19	18
24	8.8	5.7	37	e7.0	e3.3	e1.4	3.5	21	6.2	12	16	15
25	7.6	5.1	29	e5.5	e3.0	e1.7	3.4	20	7.4	12	15	16
26	6.7	4.5	22	e5.0	4.2	e1.9	3.3	22	7.8	8.8	25	17
27	6.7	e3.5	16	e5.0	3.8	e2.2	3.3	23	7.0	7.3	45	17
28	9.6	e2.9	15	e5.5	3.7	e2.2	3.5	26	5.9	6.3	60	14
29	24	e2.5	15	6.9		e2.1	4.6	26	5.2	5.6	30	11
30	14	e2.1	12	7.3		e2.1	7.1	21	5.0	5.0	26	9.2
31	10		9.8	8.4		e2.1		16		4.5	26	
TOTAL	517.4	260.5	257.3	261.0	342.3	128.47	90.5	486.9	393.2	251.1	514.6	454.9
MEAN	16.69	8.683	8.300	8.419	12.22	4.144	3.017	15.71	13.11	8.100	16.60	15.16
MAX	45	30	37	16	48	29	7.1	29	34	17	60	76
MIN	6.7	2.1	1.7	5.0	3.0	0.90	2.2	3.5	5.0	4.5	3.2	5.4
AC-FT	1030	517	510	518	679	255	180	966	780	498	1020	902
CFSM	3.85	2.01	1.92	1.94	2.82	0.96	0.70	3.63	3.03	1.87	3.83	3.50
IN.	4.45	2.24	2.21	2.24	2.94	1.10	0.78	4.18	3.38	2.16	4.42	3.91
STATIS	TICS OF M	ONTHLY ME	AN DATA	FOR WATER	YEARS 19	99 - 2002,	BY WATER	R YEAR (WY) #			
MEAN	17.76	11.24	17.56	8.790	6.073	6.314	8.846	14.45	13.80	10.01	10.55	16.39
MAX	20.6	19.7	43.2	12.4	12.2	7.96	19.2	18.1	14.9	15.9	16.6	22.5
(WY)	2000	2000	2000	1999	2002	2001	1999	1999	1999	2000	2002	2000
MIN	15.9	4.99	8.30	5.57	2.00	4.14	3.02	11.2	13.1	7.29	3.95	13.2
(WY)	2001	1999	2002	2000	1999	2002	2002	2001	2002	1999	2001	1999

See Period of Record Estimated

15109048 PETERSON CREEK BELOW NORTH FORK NEAR AUKE BAY—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1999 - 2002#
ANNUAL TOTAL	3458.8	3958.17	
ANNUAL MEAN	9.476	10.84	12.06
HIGHEST ANNUAL MEAN			15.5 2000
LOWEST ANNUAL MEAN			9.84 2001
HIGHEST DAILY MEAN	52 Feb 27	76 Sep 21	364 Dec 27 1999
LOWEST DAILY MEAN	1.7 Dec 1	a0.90 Mar 17	0.90 Mar 17 2002
ANNUAL SEVEN-DAY MINIMUM	1.8 Nov 30	0.97 Mar 16	0.97 Mar 16 2002
MAXIMUM PEAK FLOW		178 Sep 21	616 Dec 28 1999
MAXIMUM PEAK STAGE		9.14 Sep 21	10.80 Dec 28 1999
ANNUAL RUNOFF (AC-FT)	6860	7850	8740
ANNUAL RUNOFF (CFSM)	2.19	2.50	2.79
ANNUAL RUNOFF (INCHES)	29.72	34.01	37.85
10 PERCENT EXCEEDS	19	24	22
50 PERCENT EXCEEDS	7.7	7.6	7.9
90 PERCENT EXCEEDS	3.0	2.4	3.0

[#] See Period of Record

15109048 PETERSON CREEK BELOW NORTH FORK NEAR AUKE BAY—Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 2000 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date MAR	Tim	e WID (F (000	LO AT CR EAM SEC TH (FT L B 04) (00	TION, COSS COSS COSS COSS COSS COSS COSS COS	SPE- CIFIC CON- DUCT- NCE JS/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN DIS- SOLVEI (MG/L) (00300)	CENT D SATU) ATIO) (0030)	_ ` ED - I' R - N)		
21 21 21 21	115 115 115 115	3 7.5 6 7.5	0 4. 0 5.	00 00 00 00	59 59 59 59	6.2 6.1 6.1 6.1	.0.0.0	764 764 764 764	14.3 14.3 14.3 14.2	97 97 97 97			
Date		edium Sa code t	ype HEI (FI	CH. II AGE F IGHT I	DIS- ARGE, NST. UBIC EET PER COND 0061)	INUM-	SAM- PLING METHOD, CODES (82398)		(NTU)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)		WATER WHOLE FIELD (STAND- ARD UNITS)
NOV 06 19 DEC	1130 1200	9		5.61 5.51	8.6 6.2	 70	10 20	18.7 20.0	 .6	 760	 10.4	 84	 6.9
27 JAN	1156	H	9	I	E5.0								
03 07 17 FEB	0940 1010 1030	F 9 9	9 6		6.3 L2 8.6	 100	 20	19.5 19.2	 2.6	760 738 768	5.7 13.1 13.0	 99 93	7.4 7.0
12 MAR	1503	9	9 7	7.56	13		10	32.0					
12 21 MAY	1545 1204	9 9		5.46	1.8 E.95	 25	10 70	7.80 7.50	3.7	747 764	11.9 14.3	83 97	6.5 6.1
14 17	1135 1505	9 H			22 L5	45	10	23.2	1.6	761 	12.3	93 	7.4
JUL 02 02	1005 1010	9 F			12	 				763 763	11.4 8.9	95 	7.9
Date		AIR (DEG C)	ATURE WATER (DEG C)	TOTAL (MG/L AS CACO3)	DIS SOLV (MG/ AS C	- DIS- ED SOLVE L (MG/I A) AS MG	SODIUM, DIS- D SOLVED (MG/L	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3	DIS IT FIELD MG/L AS HCO3	DIS- SOLVED (MG/L AS BR)	DIS- SOLVED (MG/L AS CL)	(MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
NOV 06 19	 56		3.5 6.0	 24	7.2	 9 1.30	1.80	 18	 22	<.01	2.21	 .06	 5.73
DEC 27					=								
JAN 03					-								
07 17 FEB	36 43	3.5	2.5	20	6.0		1.66	16	20	<.01	1.95	.05	5.31
12 MAR		3.0	. 0		-								
12 21 MAY	56 59	-2.5 1.0	.0	 26	7.7		2.33	22	 27	<.01	2.40	.08	6.51
14 17	47	3.0	3.5	22	6.8		1.47	17	20	<.01	1.84	.07	4.64
JUL 02 02	42		7.5		-							 	

15109048 PETERSON CREEK BELOW NORTH FORK NEAR AUKE BAY—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

				NITRO-	NITRO-			ORTHO-		DED.		CUDO	
Date	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	E AT 180 DEG. C DIS- SOLVED (MG/L)	AMMONIA DIS-	ORGANIC DIS. (MG/L AS N)	NO2+NO3 DIS- SOLVED (MG/L AS N)	DIS- SOLVED (MG/L AS N)	DIS- SOLVED (MG/L AS P)	PHATE, DIS-	DIS- SOLVED (UG/L AS BA)	DIS- SOLVED (UG/L AS BE)	DIS- SOLVED (UG/L AS CD)	(UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)
NOV 06													
19 DEC	2.01		<.015		.019	E.002				<.5	<8	<10	<13
27 JAN													
03 07	 			 							 		
17 FEB	1.96		<.015		.023	E.002				<.5	<8	<10	<13
12 MAR													
12 21 MAY	2.34	 55	<.015	 	.057	<.002	.004	 - < .00°	7 6.9	 <.5	 <8	 <10	 <13
14 17	2.34	27	< .04	.11	.08	<.008	<.06	<.02	5.3	<.5	< 8	<10	<13
JUL 02 02	 		 	 					 	 	 		
Date	(UG/L AS CU)	DIS- SOLVED (UG/L AS FE)	DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	DIS- SOLVED (UG/L AS MN)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)		DIS- SOLVED (UG/L AS SR)	DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	(MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
NOV													
06 19 DEC	 <6	324	E.06	 <4	22.0	 <50	< 30	 <9	43.4	 <8	<24	8.0 1.0	.19 .02
27 JAN 03													
07 17	 E5	 304	.10	 <4	13.8	 <50	 <30	 <9	 37.5	 <8	 <24	1.0	.02
FEB 12												4.0	.47
MAR 12												1.0	.0
21 MAY	<6	186	E.06	<4	18.1	<50	<30	<9	48.8	< 8	<24	1.0	
14 17 JUL	<6 	149	<.08	<4 	6.3	<50 	<30 	<9 	39.1	< 8 	<24	5.0 	.29
02 02													
Date'	BED MAT. SIEVE DIAM. % FINER THAN .062 MM (80164)	BED MAT. SIEVE DIAM. % FINER THAN .125 MM (80165)	BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	THAN 1.500 M	DIA R % FII THA M 1.00	VE SI M. DI NER % F AN TI MM 2.0	HAN 00 MM 4	THAN 1.00 MM	BED MAT. SIEVE DIAM. % FINER THAN 8.00 MM (80171)	BED MAT. SIEVE DIAM. % FINE THAN 16.0 M	DIAM R % FIN THAI IM 32.0	TE I. IER SAM N TY MM (CO	PLER YPE DDE) 164)
NOV 06												31)44
19 DEC													145
27 JAN	0	1	2	8	22	2	40	58	78	92	100) 80	10
03 07													
17 FEB													145
12 MAR												30)44
12 21)45
MAY 14								-,-,)45
17 JUL	0	1	8	27	41	. !	55	66	81	94	100		10
02					 		 						-

15129000 ALSEK RIVER NEAR YAKUTAT (International gaging station)

LOCATION.--Lat $59^{\circ}23'42"$, long $138^{\circ}04'55"$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec. 19, T. 29 S., R. 44 E. (Yakutat B-1 quad), Hydrologic Unit 19010401, in Glacier Bay National Park, on right bank across from terminus of Walker Glacier, 33 mi upstream from Dry Bay, and 55 mi southeast of Yakutat.

DRAINAGE AREA.--10,820 mi².

PERIOD OF RECORD. -- July 1991 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 250 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1 27800 11000 5980 e4600 e3550 e4000 e3250 10200 53700 68800 74400 6750 2 30900 11400 5510 e4500 e3550 e4100 e3200 11000 50800 68200 76200 5960 3 27500 11800 e5400 e4400 e3500 e4300 e3100 10500 49500 69100 79900 7860 4 25300 11500 e5350 e4400 e3500 e4100 e3000 10200 50700 73300 82100 79200 5 25300 10700 e5400 e4400 e3350 e4000 e2950 9960 50500 69300 83700 5350 6 26000 9930 e5500 e4900 e3300 e3800 e2950 9910 51200 67400 85100 4910 7 25300 9610 e5600 e5300 e3200 e3500 e2950 9910 51200 67400 81700 5000 8 24100 9760 e5600 e4900 e3100 e3400 e2950 9910 51200 67700 81700 5000 8 24100 9760 e5600 e4900 e3100 e3400 e2950 10100 50300 67700 81700 5000 10 25100 9590 e5600 e4900 e3050 e3200 e2950 11300 57700 77800 86500 4430 10 25100 9590 e5600 e4900 e3200 e3200 e2950 11300 57700 77800 86500 4430 10 25100 9590 e5600 e4900 e3200 e3200 e2950 11300 57700 77800 86500 4430 11 25000 9430 e5500 e5900 e3200 e3200 e2950 11300 57000 77800 84000 4000 11 25000 9430 e5500 e4900 e3200 e3200 e2950 11300 57000 77800 84000 4000 12 23100 8640 e5450 e4800 e5500 e3200 e2950 11500 58000 70500 114000 3470 13 21800 8480 e5400 e4600 e6000 e3100 e3100 13500 58000 70500 114000 3470 13 21800 8490 e5400 e4600 e6000 e3100 e3350 14800 57300 71300 175000 3340 14 19900 8490 e5400 e4300 e5800 e3100 e3700 17000 74300 73600 132000 3050
2 30900 11400 5510 e4500 e3550 e4100 e3200 11000 50800 68200 76200 5960 3 27500 11800 e5400 e4400 e3500 e4100 e3100 10500 49500 69100 79900 7860 5 25300 11500 e5350 e4400 e3500 e4100 e3000 10200 50700 73300 82100 7820 6 26000 9930 e5500 e4400 e3350 e4000 e2950 9960 50500 69300 83700 5350 6 26000 9930 e5500 e4900 e3300 e3800 e2950 9910 51200 67400 85100 4910 7 25300 9610 e5600 e4900 e3100 e2950 10100 50300 67700 81700 5000 8 24100 9760 e5600 e4900 e3100 e3400 e2950 10700 51600 72900 82700 4820 9 23600
3 27500 11800 e5400 e4400 e3500 e4300 e3100 10500 49500 69100 79900 78600 4 25300 11500 e5350 e4400 e3500 e4100 e3000 10200 50700 73300 82100 7820 5 25300 10700 e5400 e4400 e3350 e4000 e2950 9960 50500 69300 83700 5350 6 26000 9930 e5500 e4900 e3300 e3500 e2950 9910 51200 67400 85100 4910 7 25300 9610 e5600 e5300 e3200 e2950 10100 50300 67700 81700 5000 8 24100 9760 e5600 e4900 e3100 e3400 e2990 10700 51600 72900 82700 4820 9 23600 9290 e5600 e4900 e3200 e2950 11300
4 25300 11500 e5350 e4400 e3500 e4100 e3000 10200 50700 73300 82100 7820 5 25300 10700 e5400 e4400 e3350 e4000 e2950 9960 50500 69300 83700 5350 6 26000 9930 e5500 e4900 e3300 e3800 e2950 9910 51200 67400 85100 4910 7 25300 9610 e5600 e5300 e3200 e3500 e2950 10100 50300 67700 81700 5000 8 24100 9760 e5600 e4900 e3100 e3400 e2990 10700 51600 72900 82700 4820 9 23600 9290 e5600 e4900 e3100 e2950 11300 57700 77800 86500 4430 10 25100 9430 e5500 e3300 e3100 e2950 11500
6 26000 9930 e5500 e4900 e3300 e2950 9910 51200 67400 85100 4910 7 25300 9610 e5600 e5300 e3200 e3500 e2950 10100 50300 67700 81700 5000 8 24100 9760 e5600 e4900 e3100 e2900 10700 51600 72900 82700 4820 9 23600 9290 e5600 e4900 e3050 e3300 e2950 11300 57700 77800 86500 4430 10 25100 9590 e5600 e4900 e3200 e2950 11500 62100 76900 84000 4000 11 25000 9430 e5500 e5000 e3300 e3100 e3000 12500 62100 72500 78000 3640 12 23100 8640 e5450 e4800 e5500 e3100 e3350 14800 57300
7 25300 9610 e5600 e5300 e3200 e3500 e2950 10100 50300 67700 81700 5000 8 24100 9760 e5600 e4900 e3100 e3400 e2900 10700 51600 72900 82700 4820 9 23600 9290 e5600 e4900 e3050 e3300 e2950 11300 57700 77800 86500 4430 10 25100 9590 e5600 e4900 e3200 e2950 11500 62100 76900 84000 4000 11 25000 9430 e5500 e5000 e3300 e3100 e3000 12500 62100 72500 78000 3640 12 23100 8640 e5450 e4800 e5500 e3100 e3100 13500 58000 70500 114000 3470 13 21800 8480 e5400 e4600 e6000 e3100 e3350
8 24100 9760 e5600 e4900 e3100 e2900 10700 51600 72900 82700 4820 9 23600 9290 e5600 e4900 e3050 e3300 e2950 11300 57700 77800 86500 4430 10 25100 9590 e5600 e4900 e3200 e2950 11500 62100 76900 84000 4000 11 25000 9430 e5500 e5000 e3300 e3100 e3000 12500 62100 72500 78000 3640 12 23100 8640 e5450 e4800 e5500 e3100 e3100 58000 70500 114000 3470 13 21800 8480 e5400 e4600 e6000 e3100 e3350 14800 57300 71300 175000 3340 14 19900 8490 e5400 e4300 e5800 e3100 e3600 16000 60600
9 23600 9290 e5600 e4900 e3050 e3300 e2950 11300 57700 77800 86500 4430 10 25100 9590 e5600 e4900 e3200 e2950 11500 62100 76900 84000 4000 11 25000 9430 e5500 e5000 e3300 e3100 e3000 12500 62100 72500 78000 3640 12 23100 8640 e5450 e4800 e5500 e3100 e3100 13500 58000 70500 114000 3470 13 21800 8480 e5400 e4600 e6000 e3100 e3350 14800 57300 71300 175000 3340 14 19900 8490 e5400 e4300 e5800 e3100 e3600 16000 60600 72600 161000 3190 15 18500 8560 e5350 e4400 e5600 e3100 e3700 17000 74300 73600 132000 3050
10 25100 9590 e5600 e4900 e3200 e3200 e2950 11500 62100 76900 84000 4000 11 25000 9430 e5500 e5000 e3300 e3100 e3000 12500 62100 72500 78000 3640 12 23100 8640 e5450 e4800 e5500 e3100 e3100 13500 58000 70500 114000 3470 13 21800 8480 e5400 e4600 e6000 e3100 e3350 14800 57300 71300 175000 3340 14 19900 8490 e5400 e4300 e5800 e3100 e3600 16000 60600 72600 161000 3190 15 18500 8560 e5350 e4400 e5600 e3100 e3700 17000 74300 73600 132000 3050
12 23100 8640 e5450 e4800 e5500 e3100 e3100 13500 58000 70500 114000 3470 13 21800 8480 e5400 e4600 e6000 e3100 e3350 14800 57300 71300 175000 3340 14 19900 8490 e5400 e4300 e5800 e3100 e3600 16000 60600 72600 161000 3190 15 18500 8560 e5350 e4400 e5600 e3100 e3700 17000 74300 73600 132000 3050
13 21800 8480 e5400 e4600 e6000 e3100 e3350 14800 57300 71300 175000 3340 14 19900 8490 e5400 e4300 e5800 e3100 e3600 16000 60600 72600 161000 3190 15 18500 8560 e5350 e4400 e5600 e3100 e3700 17000 74300 73600 132000 3050
14 19900 8490 e5400 e4300 e5800 e3100 e3600 16000 60600 72600 161000 3190 15 18500 8560 e5350 e4400 e5600 e3100 e3700 17000 74300 73600 132000 3050
15 18500 8560 e5350 e4400 e5600 e3100 e3700 17000 74300 73600 132000 3050
16 17400 8440 e5300 e4200 e5300 e3050 e3800 18000 85800 75900 101000 2950
17 16900 8400 e5300 e4100 e5100 e3000 e4000 19500 92000 79800 81100 2840 18 19800 8930 e5200 e4200 e5050 e3000 e4300 23400 93500 83800 68900 2830
18 19800 8930 e5200 e4200 e5050 e3000 e4300 23400 93500 83800 68900 2830 19 20500 8760 e5100 e4000 e4800 e3000 4690 27800 84100 86200 62100 2790
20 18700 8490 e5200 e3900 e4600 e2980 5420 32200 78900 83500 60600 2670
21 17600 8320 e5200 e3800 e4450 e3000 5820 37800 75500 82400 73800 2540
22 16800 8310 e5400 e3800 e4200 e3000 5700 40400 71400 80200 86900 2480 23 16000 8230 e6000 e3750 e4000 e2900 5700 39900 68900 83700 93500 2380
23 16000 8230 e6000 e3750 e4000 e2900 5700 39900 68900 83700 93500 2380
25 14800 7470 e6600 e3700 e3600 e3050 5640 45800 70600 98500 74400 2450
26 14100 7010 e6300 e3650 e3700 e3150 5790 50900 69100 101000 61400 2640
27 13400 6250 e5900 e3650 e4050 e3200 5960 54700 63500 97500 54500 2870
28 12600 6380 e5600 e3650 e4000 e3300 6430 56800 62900 91000 65100 3000 29 12500 6120 e5200 e3600 e3300 7230 57600 66300 79700 71700 2890
30 12000 6060 e4900 e3550 e3300 8310 58600 70400 71300 74400 2740
31 11400 e4700 e3550 e3300 56100 73300 72200
TOTAL 619000 263010 171240 131100 116150 102630 131380 840870 1962000 2432700 2666900 114020
MEAN 19970 8767 5524 4229 4148 3311 4379 27120 65400 78470 86030 3801
MAX 30900 11800 6700 5300 6000 4300 8310 58600 93500 101000 175000 7860 MIN 11400 6060 4700 3550 3050 2900 2900 9910 49500 67400 54500 2360
AC-FT 1228000 521700 339700 260000 230400 203600 260600 1668000 3892000 4825000 5290000 226200
CFSM 1.85 0.81 0.51 0.39 0.38 0.31 0.40 2.51 6.04 7.25 7.95 3.5
IN. 2.13 0.90 0.59 0.45 0.40 0.35 0.45 2.89 6.75 8.36 9.17 3.9
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1991 - 2002, BY WATER YEAR (WY)#
MEAN 23830 9055 6622 5097 4306 4141 6412 26050 67930 85820 76710 4952
MAX 40300 14130 12470 9118 6625 6619 10870 40100 83970 98590 99370 7633
(WY) 1995 2001 2000 2001 1993 1992 1992 1993 1993 1993 1994 199 MIN 12040 5828 3229 3045 2707 3033 4379 16770 53490 73510 59750 2904
MIN 12040 5828 3229 3045 2707 3033 4379 16770 53490 73510 59750 2904 (WY) 1997 1997 1997 1995 1995 1995 2002 2001 1996 1996 1996 199
SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1991 - 2002#
ANNUAL TOTAL 10970510 10577180
ANNUAL MEAN 30060 28980 30490
10000 ANNUAL MEAN
HIGHEST DAILY MEAN 116000 Jul 23 175000 Aug 13 175000 Aug 13 2002
HIGHEST DAILY MEAN 116000 Jul 23 175000 Aug 13 175000 Aug 13 2002 LOWEST DAILY MEAN 3940 Apr 2 a2900 Mar 23 2280 Mar 13 1999 ANNUAL SEVEN-DAY MINIMUM 4020 Apr 1 2950 Apr 4 2310 Mar 8 1999
LOWEST ARNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN 116000 Jul 23 175000 Aug 13 175000 Aug 13 2002 LOWEST DAILY MEAN 3940 Apr 2 a2900 Mar 23 2280 Mar 13 1999 ANNUAL SEVEN-DAY MINIMUM 4020 Apr 1 2950 Apr 4 2310 Mar 8 1999 ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE 89.52 Aug 13 89.52 Aug 13 2002 ANNUAL RUNOFF (AC-FT) 21760000 20980000 22090000
MAXIMUM PEAK FLOW B1/8000 Aug 13 B1/8000 Aug 13 2002 MAXIMUM PEAK STAGE 89.52 Aug 13 89.52 Aug 13 2002
ANNUAL RUNOFF (AC-FT) 21760000 20980000 22090000
11. 11. 11. 11. 11. 11. 11. 11. 11. 11.
ANNUAL RUNOFF (INCHES) 37.72 36.37 38.29 10 PERCENT EXCEEDS 84600 78400 82600
TO FERCENT EXCEEDS 11500 10700 12000
90 PERCENT EXCEEDS 4680 3300 3500

See Period of Record; partial years used in monthly summary statistics Mar. 23-24 and Apr. 8 From rating extended above 100,000 $\rm f^3s$

Estimated

15129500 SITUK RIVER NEAR YAKUTAT

LOCATION.--Lat $59^\circ 35'00''$, long $139^\circ 29'31''$, in $SE^1/_4$ $SW^1/_4$ sec. 9, T. 27 S., R. 35 E. (Yakutat C-4 quad.), Yakutat Borough, Hydrologic Unit 19010401, in Tongass National Forest, on left bank 20 ft downstream from Alsek Road bridge, 3.5 mi downstream from Situk Lake, 8.8 mi northeast of Yakutat, and 10 mi upstream from mouth.

DRAINAGE AREA.--36 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1988 to current year.

GAGE.--Water-stage recorder. Datum of gage is sea level, by U.S. Forest Service.

REMARKS.--Records good, except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,000 ft^3/s and $\mathrm{maximum}(\star)$:

	Date	Time	`	charge t ³ /s)	Gage Height (ft)		Date	e '	Time I	Discharge (ft ³ /s)	Gage Height (ft)	
	Jan 09	2215	5 1	.130	68.57		Aug 1	12	1645	*2340	*70.86	
	Jan 11	0815	5 1	.130	68.57		Aug 2	21	1645	1310	68.94	
							3					
DAY	OCT	DISCHAF NOV	RGE, CUB:	IC FEET I		, WATER LY MEAN MAR	YEAR OCTOB VALUES APR	BER 2001	TO SEPTE	MBER 2002 JUL	AUG	SEP
DAI	001	110 V	DEC	UAIN	FED	PIPAIC	ALK	LILLI	OON	001	AUG	DEL
1 2 3 4 5	335 407 381 361 329	314 381 426 466 387	e180 e160 e150 e140 e130	286 261 249 241 277	173 165 156 162 164	147 e255 261 e210 e180	e67 e64 e62 e60 e57	144 161 160 151 146	217 226 233 232 268	173 175 170 167 164	239 211 189 171 157	450 399 356 320 293
6 7 8 9 10	333 313 287 338 482	332 291 285 276 483	e120 e110 e100 e95 e90	450 709 727 862 921	157 e149 142 139 156	e160 e150 e140 e130 e120	e55 e53 e51 e50 e49	142 147 149 149 183	273 258 242 261 315	158 151 144 139 135	149 212 235 309 417	282 427 437 414 375
11 12 13 14 15	515 517 470 406 356	488 435 360 320 365	e87 e83 e80 e77 e75	1000 753 579 474 478	191 304 e295 311 298	e110 e100 e97 e90 e85	49 49 e49 48 48	193 197 192 219 274	371 335 297 269 248	132 128 121 117 112	446 1720 2100 1600 1030	345 317 314 322 413
16 17 18 19 20	313 343 597 625 589	350 343 503 416 358	e74 e73 e75 e90 118	471 404 419 384 340	e250 e220 e200 e180 e160	e81 e78 e77 e76 e75	e48 48 49 59 95	283 258 251 251 253	237 228 221 216 216	108 109 114 109 105	705 534 437 375 383	362 352 403 385 399
21 22 23 24 25	577 530 454 399 348	322 297 290 264 244	130 148 172 375 575	297 264 250 248 218	e150 e130 e120 e110 e130	e75 e75 e75 75 74	110 111 111 109 107	255 259 257 245 231	213 201 190 183 194	100 96 103 188 275	1060 969 874 764 619	429 368 332 303 314
26 27 28 29 30 31	312 277 258 293 282 258	227 213 200 188 186	557 538 488 415 365 319	e200 e190 185 176 192 186	150 154 149 	74 78 76 74 e73 e70	105 105 107 113 121	220 216 217 222 223 222	207 216 203 189 178	309 377 498 410 335 278	503 433 521 572 532 515	311 361 333 307 286
TOTAL MEAN MAX MIN AC-FT CFSM IN.	12285 396.3 625 258 24370 11.0 12.69	10010 333.7 503 186 19850 9.27 10.34	6189 199.6 575 73 12280 5.55 6.40	12691 409.4 1000 176 25170 11.4 13.11	5065 180.9 311 110 10050 5.02 5.23	3441 111.0 261 70 6830 3.08 3.56	2209 73.63 121 48 4380 2.05 2.28	6470 208.7 283 142 12830 5.80 6.69	7137 237.9 371 178 14160 6.61 7.37	5700 183.9 498 96 11310 5.11 5.89	18981 612.3 2100 149 37650 17.0 19.61	10709 357.0 450 282 21240 9.92 11.07

e Estimated

15129500 SITUK RIVER NEAR YAKUTAT—Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1989 - 2002, BY WATER YEAR (WY)#

MEAN 541.6 345.6 MAX 878 598 (WY) 2000 1993 MIN 283 173 (WY) 1998 1999	386.7 287.4 739 620 2000 2001 142 131 1991 1996	240.7 471 1997 81.2 1999	237.0 516 1992 54.2 1989	237.5 370 1998 73.6 2002	277.0 418 1991 160 1996	232.5 345 1991 127 1993	191.7 292 1991 77.7 1993	280.4 612 2002 105 1994	508.5 838 1991 339 1997
SUMMARY STATISTICS	FOR 2001 CALE	ENDAR YEAR	1	FOR 2002 1	WATER YEAR		WATER YEARS	1989	- 2002#
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	111863 306.5	5		100887 276.4	4		314.3 382 230		1992 1996
HIGHEST DAILY MEAN LOWEST DAILY MEAN	1170 73	Feb 27 Dec 17		2100 a48	Aug 13 Apr 14		2850 2850 b47		7 1999 5 1989
ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW	77	Dec 12		48 2340	Apr 11 Aug 12		48 3840		3 1989 3 1999
MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW				70.8 c47	86 Aug 12		72.99 d47	Oct 1	3 1999 5 1989
ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM)	221900 8.5	51		200100	68		227700 8.73		
ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS	115.5 583	59		104.: 488	25		118.61 597		
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	248 128			228 77			237 114		

[#] See Period of Record
a Apr. 14-17
b Mar. 5-7 1989
c Apr. 15 and 17, lowest observed, but may have been lower during periods of gage malfunction.
d Mar. 5, 1989 and Apr. 15 and 17, 2002

15129500 SITUK RIVER NEAR YAKUTAT—Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Water years 1971 to 1973 and 1988 to current year.

PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: October 1970 to September 1973 (fragmentary) and May 1988 to current year.

INSTRUMENTATION.--Water-temperature recorder October 1970 to September 1973, at a site 500 ft downstream. Electronic water-temperature recorder since May 1988, set for 2-hour recording interval. Recording interval changed to 15minutes on March 6, 1996.

REMARKS.--Records represent water temperature at sensor within 0.5°C. Temperature at the sensor was compared with the stream average by cross section on March 12. No variation was found within the cross section, or between mean stream temperature and sensor temperature. October 1 to December 7 record considered fair, due to 4 hour recording interval.

EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 20.0°C, July 4, 1997; minimum, 0.0°C, on many days during winters.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum, 18.0°C, July 8; minimum, 0.0°C on many days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

			SAMPLE		DIS-			
			LOC-		CHARGE,			
			ATION,		INST.			
			CROSS		CUBIC	SAM-	TEMPER-	TEMPER-
		STREAM	SECTION	GAGE	FEET	PLING	ATURE	ATURE
Date	Time	WIDTH	(FT FM	HEIGHT	PER	METHOD,	WATER	AIR
		(FT)	L BANK)	(FEET)	SECOND	CODES	(DEG C)	(DEG C)
		(00004)	(00009)	(00065)	(00061)	(82398)	(00010)	(00020)
MAR								
12	1631	63.0	6.0	65.39	103	10	1.0	3.0
12	1633	61.0	18.0	65.39	103	10	1.0	3.0
12	1635	61.0	30.0	65.39	103	10	1.0	3.0
12	1637	61.0	42.0	65.39	103	10	1.0	3.0
12	1639	61.0	54.0	65.39	103	10	1.0	3.0

TEMPERATURE, WATER (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	OCTOBER			NO	VEMBER		DI	ECEMBER			JANUARY	
1 2 3 4 5	9.0 9.0 9.0 9.5 9.0	8.0 8.0 7.0 8.5 8.5		4.0 4.0 4.0 3.0 3.0	3.5 4.0 3.0 2.5 2.5		0.0 0.5 2.0 2.0	0.0 0.0 0.5 1.0	 	2.0 2.5 2.0 2.0 2.5	1.5 2.0 2.0 1.0	2.0 2.0 2.0 1.5 2.0
6 7 8 9 10	9.0 8.5 8.5 8.0 7.5	8.0 7.5 7.5 7.5 7.0		3.0 3.0 3.0 3.0	2.5 2.0 2.0 2.5 2.5		1.0 2.0 2.0 2.0 2.0	0.5 0.5 0.5 1.0	1.0 1.5 2.0	2.0 2.0 1.5 2.0	2.0 1.5 1.5 1.0	2.0 1.5 1.5 1.5
11 12 13 14 15	7.5 7.5 7.5 7.0 6.5	7.0 7.0 6.5 6.5		3.0 2.5 3.0 3.5 3.0	2.5 2.0 2.0 2.5 3.0		2.0 2.0 2.0 1.0 0.5	1.5 1.5 1.0 0.5	2.0 2.0 1.5 0.5	1.5 1.5 2.0 2.0	1.0 1.0 1.5 2.0	1.5 1.5 1.5 2.0 2.0
16 17 18 19 20	7.0 6.5 6.5 6.5	6.0 5.5 6.0 6.0	 	3.0 3.5 3.5 3.5 3.5	3.0 3.0 3.0 2.5 3.0		0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.5 2.0 2.0 2.0 1.5	1.0 1.5 2.0 1.5	1.5 2.0 2.0 2.0 1.5
21 22 23 24 25	6.0 6.0 6.0 5.0	6.0 5.5 5.5 5.0 4.0		3.5 3.5 3.5 2.5 1.5	3.0 3.0 2.5 2.0 1.5		0.5 2.0 2.0 2.0	0.0 0.5 1.0 1.5	0.5 1.0 1.0 1.5	1.0 1.0 1.0 0.5	0.5 0.0 0.0 0.0	1.0 0.5 0.5 0.0
26 27 28 29 30 31	4.5 4.5 4.5 4.0 4.0	4.0 4.0 4.0 3.0 3.5 3.0	 	2.0 2.5 1.5 0.5	1.5 2.0 0.5 0.0	 	2.0 2.0 2.0 2.0 2.0 2.0	1.5 1.5 1.0 1.5 1.5	1.5 2.0 1.5 2.0 1.5	0.0 0.5 1.5 2.0 2.0	0.0 0.0 0.5 1.5 1.0	0.0 0.0 1.0 1.5 1.5
MONTH	9.5	3.0		4.0	0.0		2.0	0.0		2.5	0.0	1.4

SOUTHEAST ALASKA

15129500 SITUK RIVER NEAR YAKUTAT—Continued

TEMPERATURE, WATER (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

				•								
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	1.5	1.0 1.0 1.0 0.5	1.5 1.5 1.0 0.5 1.0	2.0 1.0 2.0 1.0	1.0 0.0 1.0 0.0	2.0 0.0 1.5 0.5	2.5 2.5 2.5 3.0 3.5	0.0 0.0 0.0 0.0	1.0 1.0 1.0 1.0	5.5 7.5 6.0 7.0 7.5	3.5 2.0 2.5 2.5 2.0	4.5 4.5 4.0 4.5 4.5
6 7 8 9 10	1.0	1.0 0.0 0.5 0.5	1.5 0.5 0.5 1.0	0.5 0.5 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	4.0 4.0 4.0 4.0 4.5	0.0 0.5 0.0 0.0	2.0 2.0 2.0 2.0 2.5	6.5 7.5 7.0 5.5 5.5	2.5 3.0 3.0 4.0 3.5	4.5 5.5 5.5 4.5 4.5
11 12 13 14 15	1.5 1.0	0.0 0.5 0.0 0.0	0.5	1.0 1.0 1.5 1.5	0.0	0.5	4.5 6.0 6.0 5.0	2.0	3 0	5.5 7.5 6.5 5.5	3 5	4.5 5.5 5.0 4.5 4.5
16	1.0 1.5 1.5		1.0 1.0 0.5 1.0	0.5 0.5 0.0 0.5 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	6.0 6.0 5.0 4.0 3.5	1.5 2.0 3.5 3.5 1.5	4.0 4.0 4.0 4.0 3.0	7.0 9.5 10.0 10.5 11.0	3.5 3.5 4.0 4.0 5.5	5.0 6.0 6.5 7.0 8.0
22 23	0.0	0.0 0.0 0.0 0.0	0.5 0.0 0.0 0.0	1.5 2.0 2.5 2.5 3.0	0.0 0.0 0.0 0.0	0.5 1.0 1.0 2.5	4.5 6.0 7.0 6.0	2.0 1.5 2.5 2.0 1.5	3.0 3.5 4.5 4.0	11.0 8.5 8.0 9.0 12.5	6.0 6.5 7.0 6.5	8.5 7.0 7.0 8.0 9.5
26 27 28 29 30 31	1.0 2.0 2.0 	0.0 0.0 1.5 	0.5 1.0 2.0 	4.5 3.5 4.0 3.5 2.5 3.0	2.0 2.0 1.5 2.0 1.5 0.5	3.5 3.0 2.5 2.5 2.0 1.5	6.5 7.0 7.5 7.5 7.0	2.5 3.0 2.5 3.0 3.0	4.5 4.5 5.0 5.5 5.0	10.5 10.5 10.0 10.0 10.5 13.0	7.5 7.5 9.0 7.5 7.0	8.5 9.0 9.5 9.0 8.5 10.0
MONTH	2.0	0.0	0.8	4.5	0.0	0.9	7.5	0.0	3.2	13.0	2.0	6.4
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN		MIN SEPTEMBE	
DAY 1 2 3 4 5	11.0 9.0	JUNE		MAX 12.5 13.0 14.0 13.0 13.5	JULY			13.0 13.0 13.5 13.0	MEAN 15.0 15.0 15.5 15.0 14.5		11.0 10.5 10.5 10.5	
1 2 3 4	11.0 9.0 11.0 10.5 10.5	JUNE 9.0 7.5 7.5 9.0 8.5	9.5 8.5 9.5 9.5 9.5 10.0 11.5 11.0 9.5	12.5 13.0 14.0 13.5 13.5 17.0 18.0 16.0 13.5	JULY 12.0 11.5 11.5 12.0 11.0 11.5 11.5 11.5 11.5 11.5	12.0 12.5 13.0 12.0		13.0 13.0 13.5 13.0 13.5	15.0 15.0 15.5 15.0	12.5 12.5 13.5 12.5 12.5	11.0 10.5 10.5 10.5 9.5	12.0 11.5 11.5 11.0 11.0 10.0 10.5
1 2 3 4 5 6 7 8 9	11.0 9.0 11.0 10.5 10.5 11.0 14.5 12.0 10.5	JUNE 9.0 7.5 7.5 9.0 8.5 9.5 9.5 9.5 8.5	9.5 8.5 9.5 9.5 9.5 10.0 11.5 11.0 9.5	12.5 13.0 14.0 13.0 13.5 17.0 18.0 16.0 13.5	JULY 12.0 11.5 11.5 12.0 11.0 11.5 11.5 11.5 11.5	12.0 12.5 13.0 12.0 12.5 14.0 14.5 14.0 12.5	17.0 17.0 17.5 17.5 15.5	AUGUST 13.0 13.0 13.5 13.0 13.5 13.0 12.5 12.5 12.5	15.0 15.0 15.5 15.0 14.5 13.5 12.5 13.0 13.0 13.0	12.5 12.5 13.5 12.5 12.5 11.5 10.5 11.0	11.0 10.5 10.5 10.5 9.5	12.0 11.5 11.5 11.0 11.0 11.0 10.0 10.5 10.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	11.0 9.0 11.0 10.5 10.5 11.0 14.5 12.0 10.5 10.0	JUNE 9.0 7.5 9.0 8.5 9.5 9.5 9.5 9.5 9.5 10.0	9.5 8.5 9.5 9.5 9.5 11.0 11.0 10.0 9.5 9.5 10.5 12.0	12.5 13.0 14.0 13.5 13.5 17.0 18.0 16.0 13.5	JULY 12.0 11.5 11.5 12.0 11.0 11.5 11.5 11.5 11.5 11.5 11.5 1	12.0 12.5 13.0 12.0 12.5 14.0 14.5 14.0 12.5 13.0 13.5 14.0	17.0 17.0 17.5 17.5 15.5 14.0 13.0 14.0 13.0 14.0	AUGUST 13.0 13.5 13.0 13.5 13.0 12.5 12.5 12.5 12.5 12.5 12.5 12.5	15.0 15.0 15.5 15.0 14.5 13.5 12.5 13.0 13.0 13.0 13.0 13.0	12.5 12.5 13.5 12.5 12.5 11.5 10.5 11.0 11.0 11.0 11.0	SEPTEMBE 11.0 10.5 10.5 10.0 9.5 10.0 10.0 10.0 10.0 10.0 9.5 9.5	12.0 11.5 11.5 11.0 11.0 11.0 10.0 10.5 10.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	11.0 9.0 11.0 10.5 10.5 11.0 14.5 12.0 10.5 10.0 10.5 11.5 14.5 15.5 16.5	JUNE 9.0 7.5 9.0 8.5 9.5 9.5 9.5 9.5 10.0 11.0 12.0 11.5 11.5	9.5 8.5 9.5 9.5 9.5 10.0 11.5 11.0 9.5 12.0 12.5 13.0 12.5 12.5	12.5 13.0 14.0 13.5 13.5 17.0 18.0 16.0 13.5 14.0 15.5 15.0 14.5	JULY 12.0 11.5 11.5 12.0 11.0 11.5 11.5 11.5 11.5 12.0 11.5 12.0 12.0 12.5	12.0 12.5 13.0 12.0 12.5 14.0 14.5 14.0 12.5 13.5 14.0 13.5 13.5 13.5 13.0 13.5	17.0 17.0 17.5 17.5 15.5 14.0 13.0 14.0 13.5 14.5 15.0 14.5 15.0	AUGUST 13.0 13.5 13.0 13.5 13.0 12.0 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	15.0 15.0 15.5 15.0 14.5 13.5 12.5 13.0 13.0 13.0 13.0 12.5 13.0 14.0 13.5 14.0	12.5 12.5 13.5 12.5 12.5 11.5 10.5 11.0 11.0 11.0 11.0 11.0 11	SEPTEMBE 11.0 10.5 10.5 10.0 9.5 10.0 10.0 10.0 10.0 10.0 10.0 8.5 9.0 9.0 8.5 8.5 8.5	12.0 11.5 11.5 11.0 11.0 11.0 10.0 10.5 10.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	11.0 9.0 11.0 10.5 10.5 11.0 12.0 10.5 10.0 10.5 11.5 11.5 11.5 12.5 12.5 12.5 12.5 12	JUNE 9.0 7.5 9.0 8.5 9.5 9.5 9.5 9.5 10.0 11.0 12.0 11.5 11.0 10.5 10.5 12.0 12.0	9.5 8.5 9.5 9.5 9.5 10.0 11.5 11.0 9.5 12.0 12.5 13.5 12.5 12.0 12.5 12.5 12.0 12.5	12.5 13.0 14.0 13.5 17.0 18.0 16.0 13.5 14.0 15.5 15.0 14.5 15.0 14.0 15.5 15.0 14.0	JULY 12.0 11.5 11.5 12.0 11.0 11.5 11.5 11.5 11.5 12.0 11.0 12.5 12.0 12.0 12.5 12.0 12.0 12.0 12.0 12.0 12.0 12.0	12.0 12.5 13.0 12.5 12.5 14.0 12.5 14.0 12.5 13.5 14.0 13.5 13.5 13.5 13.5 13.5 13.5 13.5	17.0 17.0 17.5 17.5 15.5 14.0 13.0 14.0 13.5 14.5 15.0 14.5 15.0 14.5 14.5 14.5 15.0	AUGUST 13.0 13.5 13.0 13.5 13.0 12.0 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	15.0 15.0 15.5 15.0 14.5 13.5 12.5 13.0 13.0 13.0 13.0 13.5 14.0 14.0 13.5 14.0 12.5 12.5	12.5 12.5 13.5 12.5 12.5 11.5 10.5 11.0 11.0 11.0 11.0 11.0 10.5 10.0 10.0	SEPTEMBE 11.0 10.5 10.5 10.0 9.5 10.5 10.0 10.0 10.0 10.0 10.0 10.0 8.5 9.5 9.0 9.0 8.5 8.5 8.5 8.5 8.5 8.7	12.0 11.5 11.5 11.0 11.0 11.0 11.0 10.5 10.5

15129600 OPHIR CREEK NEAR YAKUTAT

LOCATION.--Lat $59^{\circ}31'26''$, long $139^{\circ}44'37''$, in $SW^{1}/_{4}$ $NE^{1}/_{4}$ sec. 1, T. 28 S., R. 33 E. (Yakutat C-5 SW quad), Hydrologic Unit 19010401, in Tongass National Forest, on right bank 0.8 mi upstream from Summit Lake and 2 mi south of Yakutat.

DRAINAGE AREA.-- 2.5 mi², approximately.

PERIOD OF RECORD. -- October 1991 to current year.

GAGE.--Water-stage recorder. Datum of gage is 9.05 ft above sea level, determined by levels survey.

REMARKS.--Records fair except for estimated daily discharges which are poor.

		DISCHA	RGE, CUB	IC FEET PE		WATER Y MEAN	YEAR OCTOBE	R 2001 T	O SEPTEM	BER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	20 19 17 16 14	25 28 29 30 26	e12 e11 11 10 11	11 10 9.3 8.7	10 9.6 8.8 8.8	6.4 12 13 11 9.5	2.5 2.5 2.4 2.3 2.3	4.8 5.4 5.3 5.2 5.0	6.5 7.0 8.0 7.8 7.3	3.9 3.7 3.5 3.5	4.0 3.8 3.5 3.2 3.1	23 20 18 17 16
6 7 8 9 10	14 15 13 18 23	24 22 22 20 31	9.6 9.1 8.5 8.0 7.3	20 27 26 30 36	7.6 7.0 6.5 6.1 8.1	8.4 7.6 7.0 6.5 6.1	2.2 2.1 2.1 2.0 1.9	5.0 5.2 5.5 5.8 6.5	6.8 6.4 6.0 6.6 7.2	3.0 2.9 2.7 2.6 2.6	3.1 5.5 5.5 5.1 4.7	15 25 28 26 23
11 12 13 14 15	25 27 25 21 19	31 29 26 23 24	6.9 6.6 6.4 6.0 5.9	40 35 30 26 29	11 19 17 16 14	5.8 5.5 5.2 4.9 4.6	1.9 1.9 1.9 1.8	7.0 7.4 7.4 7.8 9.1	7.4 7.1 6.6 6.2 5.8	2.5 2.5 2.4 2.2 2.2	6.9 30 25 21 18	20 18 18 18 23
16 17 18 19 20	18 20 28 30 30	24 23 32 30 26	5.5 5.1 5.0 5.1 6.5	29 25 27 25 22	13 12 12 11 9.7	e4.4 4.3 e4.1 e3.9 3.8	1.8 1.8 1.8 2.0 3.5	9.4 9.1 9.1 9.1 9.2	5.4 5.2 5.0 4.7 4.6	2.1 2.1 2.1 1.9 1.9	16 14 12 11	21 19 19 19 18
21 22 23 24 25	33 33 28 26 25	23 22 21 19 18	6.0 6.1 6.7 13	20 18 17 16 14	8.9 8.1 7.4 7.1 6.6	3.5 3.5 3.3 3.2 3.2	3.9 3.9 3.8 3.8 3.6	9.2 9.3 9.3 9.1 8.8	4.3 4.1 4.0 3.9 4.1	1.8 1.8 2.1 6.5 7.2	43 33 30 29 26	20 18 17 15 16
26 27 28 29 30 31	23 21 19 22 22 21	16 16 15 14 e13	16 17 17 15 13	14 12 12 12 12 12	7.6 6.6 6.5 	3.2 3.1 3.0 2.7 2.7 2.6	3.5 3.5 3.7 3.9 4.2	8.5 8.1 8.2 8.2 7.3 6.7	4.4 4.9 4.7 4.4 4.0	6.1 6.2 5.7 5.2 4.8 4.3	23 21 25 25 25 25	16 19 17 15 15
TOTAL MEAN MAX MIN AC-FT CFSM IN.	685 22.10 33 13 1360 8.84 10.19	702 23.40 32 13 1390 9.36 10.45	295.3 9.526 17 5.0 586 3.81 4.39	636.0 20.52 40 8.7 1260 8.21 9.46	274.2 9.793 19 6.1 544 3.92 4.08	168.0 5.419 13 2.6 333 2.17 2.50	80.3 2.677 4.2 1.8 159 1.07	231.0 7.452 9.4 4.8 458 2.98 3.44	170.4 5.680 8.0 3.9 338 2.27 2.54	105.2 3.394 7.2 1.8 209 1.36 1.57	514.4 16.59 43 3.1 1020 6.64 7.65	572 19.07 28 15 1130 7.63 8.51
STATIST	rics of M	ONTHLY MEA	AN DATA F	OR WATER Y	YEARS 1992	- 2002	, BY WATER Y	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	31.91 60.7 2000 20.5 1998	25.61 43.8 2000 12.6 1996	22.95 49.1 2000 8.96 1996	19.12 42.7 2001 5.13 1993	15.59 35.9 1997 3.31 1999	15.99 38.3 1992 4.13 1999	15.27 28.3 1998 2.68 2002	13.87 34.4 1999 6.17 1996	6.982 19.7 1999 2.01 1993	4.446 9.67 1998 0.66 1993	9.100 19.4 1998 1.32 1993	19.13 30.8 1998 5.90 1993
SUMMARY	Y STATIST	ICS	FOR	2001 CALE	NDAR YEAR		FOR 2002 WAT	TER YEAR		WATER YEAR	RS 1992 -	2002
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN HOGHEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS				6484.2 17.76 60 a1.2 1.3 12860 7.11 96.46 38 16 2.3	Feb 27 Aug 22 Aug 21		4433.8 12.15 43 b1.8 1.8 51 11.59 d1.6 8790 4.86 65.97 26 8.9 2.7	Aug 21 Apr 14 Apr 12 Aug 21 Aug 21 Apr 16		16.6' 23.3 10.9 e118 0.2' 0.39 c159 c12.5! f0.22 12080 6.6' 90.6(36 13 3.4	Dec 27 7 Jul 31 9 Jul 28 0ct 18 5 Oct 18 1 Jul 28	1993 1993 1999

Aug. 22-25
Apr. 14-18, and July 21-22
May have been exceeded during period of gage malfunction from Dec. 25 to 28, 1999
Apr. 16-18
Estimated

Minimum recorded, Jul. 28, Aug. 2, Aug. 7 to Aug. 10, 1993, but may have been less during period water was below intake Jul. 28, Aug. 2, and Aug. 8 to Aug. 10, 1993

15130000 RUSSELL LAKE NEAR YAKUTAT

LOCATION.--Lat 59°55'04", long 139°22'56", in SW¹/₄ SW¹/₄ sec. 14, T. 23 S., R. 35 E. (Yakutat D-4 quad.), Yakutat Borough, Hydrologic Unit 19010401, in Tongass National Forest, in Russell Fiord Wilderness Area, on the left shore of Russell Lake, 6 mi southeast of Hubbard Glacier terminal area near Osier Island, and 33 miles northeast of Yakutat.

DRAINAGE AREA. -- 700 mi², approximately.

PERIOD OF RECORD. -- June 1986 to October 1986 (intermittent prior to August 11) and June 2002 to August 2002.

GAGE.-- Water-stage recorder. Datum of gage is sea level (levels by U.S. Forest Service GPS Survey of Aug. 2002).

Prior to October 7, 1986, non-recording gage at site near south end of lake (USGS station 15129990) at same datum (revised).

REMARKS.--During May, 1986 and again in July, 2002, Russell Fiord was dammed by the advancing Hubbard Glacier. In each case the ice dam changed Russell Fiord from a tidal estuary to a closed lake, unofficially named "Russell Lake." Water inflow to the lake, predominantly runoff of melting snow and ice from surrounding glaciated mountains, raised the level of the lake to a high of 84.48 ft in October 1986 and 49.56 ft in August of 2002, when the ice dams failed. GOES satellite telemetry at station.

COOPERATION. -- Gage-height record was provided by personnel of U.S.D.A. Forest Service prior to August 11, 1986.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation 84.48 ft (revised), October 7, 1996, result of an ice dam formed by the advance of Hubbard Glacier.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 49.56 ft, August 14, result of an ice dam formed by the advance of Hubbard Glacier; minimum is tidally affected and not determined.

REVISIONS.--The daily elevations and maximum for calendar year 1986 have been revised to reflect sea level datum of 2002 as shown in the following table. They supersede figures published in Open File Report 86-545.

GAGE HEIGHT, FEET, CALENDAR YEAR JANUARY TO DECEMBER 1986 DAILY MEAN VALUES

					21111							
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1									70.0	81.1		
2									70.5	81.5		
3						3.0		46.6	70.9	82.0		
4						3.3			71.4	82.5		
5						3.6	22.7		71.8	83.3		
6								49.9	72.1	84.0		
7									72.5	84.30		
8									72.9	34.98		
9									73.3			
10									73.6			
11								56.5	74.0			
12						8.6	27.3	57.6	74.3			
13								59.2	74.7			
14								60.3	74.9			
15								60.9	75.3			
16								61.4	75.7			
17							31.9	62.0	76.0			
18								62.4	76.4			
19								62.9	76.7			
20								63.2	77.1			
21								63.8	77.9			
22								64.1	78.4			
23							38.6	64.4	79.3			
24						15.3		65.1	79.7			
25								65.5	80.1			
26						16.8		66.0	80.3			
27								66.7	80.5			
28								67.6	80.6			
29								68.0	80.8			
30								68.9	81.0			
31								69.4				
MEAN									75.76			
MAX									81.00			
MIN									70.00			
MED									75.50			
עמויו									/5.50			

15130000 RUSSELL LAKE NEAR YAKUTAT—Continued

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1										10.91	34.41	
2										11.55	35.22	
3										12.13	35.98	
4										12.74	36.79	
5										13.30	37.61	
5										13.30	37.01	
6										13.87	38.37	
7										14.47	39.27	
8										15.16	40.33	
9										15.10	41.40	
10										16.58	42.53	
10										10.56	42.55	
11										17.24	43.52	
12										17.87	45.86	
13										18.54	48.84	
14										19.23	44.27	
15										19.89	8.27	
15										19.09	0.2/	
16										20.57		
17										21.36		
18										22.23		
										22.23		
19												
20										23.81		
21										24.52		
										24.52		
22												
23										25.94		
24									6.57	27.00		
25									7.20	28.27		
0.6									E 01	00.25		
26									7.81	29.35		
27									8.39	30.42		
28									8.90	31.50		
29									9.51	32.28		
30									10.22	32.92		
31										33.62		
MEAN										21.34		
MAX										33.62		
MIN										10.91		
MED										20.57		

15200280 GULKANA RIVER AT SOURDOUGH

LOCATION.--Lat $62^{\circ}31'15''$, long $145^{\circ}31'51''$, in $SE^{1}_{/4}$ NE $^{1}_{/4}$ sec. 35, T. 9 N., R. 2 W. (Gulkana C-4 quad), Hydrologic Unit 19020102, near left bank on downstream side of pier of Alyeska Pipeline Service Company bridge, 0.3 mi downstream from Sourdough Creek and 0.8 mi southwest of Sourdough.

DRAINAGE AREA.--1,770 mi².

PERIOD OF RECORD.--October 1972 to September 1978, May to September 1982, October 1988 to September 1993, May 1997 to current year.

REVISED RECORDS.--WRD AK-75-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,845.96 ft above sea level (levels of Alyeska Engineering).

REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

			DISCH	ARGE, in C	FS, WATER	YEAR OCT		TO SEPTI	EMBER 2002	2		
DAY	OCT	NOV	7 DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1060	e580	e470	e400	e340	e320	e290	e280	4700	1390	816	2300
2	1050	e580	e460	e400	e340	e320	e290	e280	4090	1860	774	2210
3	1010	e580	e460	e390	e340	e320	e290	e280	3520	2750	757	2090
4	1010	e560	e460	e390	e340	e320	e290	e280	3010	2730	727	1940
5	998	e560		e390	e340	e320	e290	e280	2740	2770	686	1850
6	1010	e560	e460	e390	e340	e310	e280	e280	3030	2470	658	1820
7	1000	e560	e450	e390	e340	e310	e280	e290	3290	2160	683	2350
8	989	e560	e450	e390	e340	e310	e280	e300	2900	1890	815	2980
9	972	e540		e380	e340	e310	e280	e310	2550	1680	913	2840
10	966	e540		e380	e340	e310	e280	e320	2270	1520	1160	2610
11	958	e540	e440	e380	e330	e310	e280	e330	2090	1420	1390	2420
12	925	e540		e380	e330	e310	e280	e340	1970	1350	1750	2300
13	e800	e540		e380	e330	e310	e280	e350	1860	1340	3080	2190
14	e700	e540		e380	e330	e310	e280	e360	1760	1320	4090	2070
15	e700	e540		e380	e330	e310	e280	e370	1670	1250	3290	1960
15	e700	6340	0 6440	6360	6330	6310	6200	e370	1670	1250	3290	1960
16	e680	e520	e430	e370	e330	e300	e270	e380	1580	1170	2570	1870
17	e680	e520	e430	e370	e330	e300	e270	e400	1500	1100	2170	1800
18	e660	e520		e370	e330	e300	e270	e440	1430	1050	1920	1750
19	e660	e520		e370	e330	e300	e270	e480	1420	1010	1750	1720
20	e640	e500			e330	e300	e270	e540	1950	967	2140	1750
21	e640	e500	e420	e360	e320	e300	e270	e600	3080	e900	4960	1770
22	e620	e500			e320	e300	e270	e660	3140	e870	7070	1700
23	e620	e490		e360	e320	e300	e270	e740	2710	e830	6750	1650
24	e600	e490		e360	e320	e300	e270	e900	2280	e800	5840	1590
25	e600	e480	e410	e360	e320	e300	e270	e1200	2000	e840	5090	1720
26	e600	e480	e410	e350	e320	e290	e270	e1500	1800	905	4360	2310
27	e600	e480	e410	e350	e320	e290	e270	e1800	1640	991	3760	2560
28	e600	e480	e400	e350	e320	e290	e270	e2100	1500	1000	3250	2480
29	e600	e480	e400	e350		e290	e280	e2400	1400	982	2870	2350
30	e600	e470	e400	e350		e290	e280	2560	1320	943	2590	2190
31	e580			e350		e290		4570		876	2410	
TOTAL	24128	15750	13390	11550	9260	9440	8320	25920	70200	43134	81089	63140
MEAN	778.3	525.0		372.6	330.7	304.5	277.3	836.1	2340	1391	2616	2105
MAX	1060	580			340	320	290	4570	4700	2770	7070	2980
MIN	580	470			320	290	270	280	1320	800	658	1590
AC-FT	47860	31240		22910	18370	18720	16500	51410	139200	85560	160800	125200
CFSM	0.44	0.30		0.21	0.19	0.17	0.16	0.47	1.32	0.79	1.48	1.19
IN.	0.51	0.33	0.28	0.24	0.19	0.20	0.17	0.54	1.48	0.91	1.70	1.33
STATIST	rics of	MONTHLY	MEAN DATA	FOR WATER	YEARS 197	3 - 2002,	BY WATER	YEAR (W	Y)#			
MEAN	982.9	550.7	408.6	345.7	306.1	299.8	467.8	3112	2755	1509	1363	1451
MAX	1877	1020			478	420	1344	5630	4969	2696	2821	4253
(WY)	1991	1989			1989	1992	1993	1989	1977	1992	1992	1990
MIN	437	287		200	200	200	227	836	1150	637	714	505
(WY)	1975	1976		1974	1974	1974	2000	2002	1998	1976	1989	1974

See Period of Record, partial years used in monthly statistics Estimated

15200280 GULKANA RIVER AT SOURDOUGH—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEA	AR FOR 2002 WAT	TER YEAR	WATER YEARS	1973 - 2002#
ANNUAL TOTAL	388726	375321			
ANNUAL MEAN	1065	1028		1132	
HIGHEST ANNUAL MEAN				1564	1992
LOWEST ANNUAL MEAN				658	1998
HIGHEST DAILY MEAN	4930 May 2	25 7070	Aug 22	12100	Sep 12 1990
LOWEST DAILY MEAN	a300 Mar 1	.3 b270	Apr 16	c200	Dec 6 1973
ANNUAL SEVEN-DAY MINIMUM	300 Mar 1	.3 270	Apr 16	200	Dec 6 1973
MAXIMUM PEAK FLOW		7380	Aug 22	d12700	Sep 12 1990
MAXIMUM PEAK STAGE		9.41	Aug 22	11.26	Sep 12 1990
MAXIMUM PEAK STAGE				f16.03	May 07 1976
ANNUAL RUNOFF (AC-FT)	771000	744400		820000	
ANNUAL RUNOFF (CFSM)	0.60	0.58		0.64	
ANNUAL RUNOFF (INCHES)	8.17	7.89		8.69	
10 PERCENT EXCEEDS	2220	2470		2670	
50 PERCENT EXCEEDS	650	520		607	
90 PERCENT EXCEEDS	320	290		250	

[#] See Period of Record, partial years used in monthly statistics
a Mar. 13-27
b Apr. 16-28
Dec. 6, 1973 to Apr. 12, 1974
d From rating curve extended above 4,600 ft³/s
f Backwater from ice

15215990 NICOLET CREEK NEAR CORDOVA

LOCATION.--Lat $60^\circ 31'09''$, long $145^\circ 47'23''$, in $SW^1/_4$ $SW^1/_4$ $SE^1/_4$ sec. 32, T. 15 S., R. 3 W. (Cordova C-5 quad), Hydrologic Unit 19020201, on right bank 275 ft upstream from culvert for Whitshed Road, 475 ft upstream from mouth and 2.1 mi southwest of Cordova.

DRAINAGE AREA. -- 0.75 mi².

PERIOD OF RECORD.--Annual maximum, water years 1991-99. September 1999 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 40 ft above sea level, from topographic map.

REMARKS.--Records good except for discharges greater than 60 ${\rm ft}^3/{\rm s}$, which are fair; and estimated daily discharges, which are poor.

			DISCHA	RGE, in CE		YEAR OCTO		TO SEPTE	EMBER 2002	2		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	67 5.5 13 10 27	7.5 11 5.3 3.8 2.3	0.99 1.0 0.95 0.79	14 7.2 19 12 56	1.7 1.2 0.94 2.1 2.2	e3.0 e5.0 e3.0 e2.5 e2.0	2.2 2.4 2.7 3.1 3.9	9.6 6.0 6.3 5.7 4.4	3.8 7.8 14 11 7.2	0.98 0.89 0.83 1.6 0.98	0.85 0.72 0.62 0.55 0.50	2.4 1.4 0.87 0.67 0.58
6 7 8 9 10	10 5.0 2.9 40 35	2.7 3.5 2.2 1.3 8.5	0.81 0.72 0.63 0.61 0.57	63 78 12 70 9.2	1.3 1.0 0.90 0.84 1.0	e2.0 e2.0 e1.5 e1.5 e1.5	4.6 5.3 4.7 4.4 3.4	4.1 5.0 6.5 23	3.4 2.5 9.2 31 40	0.82 0.70 0.59 0.53 0.60	1.3 31 32 4.3	1.7 13 6.0 1.9 1.1
11 12 13 14 15	8.4 4.0 2.2 6.5 5.5	22 4.7 2.4 2.2 6.9	2.8 e5.5 4.6 2.0 1.8	5.0 3.3 3.1 35 35	e3.0 e7.0 3.4 7.0 2.3	1.6 1.4 1.3 1.2	3.3 2.5 2.3 2.3 2.6	8.0 8.0 8.1 7.5 20	43 9.0 3.3 2.3 1.5	1.2 1.1 0.81 0.65 0.54	48 36 7.0 1.9 1.1	5.3 51 51 7.2 3.9
16 17 18 19 20	2.2 9.3 6.2 16 11	3.1 32 34 4.6 11	1.7 1.8 2.1 1.9 e5.0	5.7 49 19 4.8 2.7	1.6 1.3 1.1 2.4 2.6	1.6 1.6 1.5 1.5	2.9 2.7 6.9 144 50	8.3 9.9 11 11	1.1 0.97 0.96 1.2 4.2	0.43 0.36 3.2 1.3 0.89	0.83 0.60 0.48 0.48	1.8 16 3.9 1.6 5.0
21 22 23 24 25	16 4.4 2.7 2.0 1.6	4.2 3.6 15 2.8 1.8	e6.5 e9.0 5.0 3.3	5.1 6.7 1.8 1.1 0.92	1.3 0.84 0.86 0.83	1.9 2.2 2.7 2.8 4.9	19 12 11 9.2 3.7	11 12 8.3 6.4 7.7	3.8 1.9 6.4 8.0 3.8	0.70 1.2 17 34 6.6	63 70 8.0 5.5 2.2	2.6 1.4 2.0 11 31
26 27 28 29 30 31	1.2 1.2 1.2 2.3 1.5	1.8 1.3 1.3 2.4 1.1	79 34 14 18 19 8.8	0.84 0.80 0.96 e8.0 e6.5 3.4	e1.5 e2.0 e2.5	9.3 8.4 5.1 3.8 2.6 2.1	2.3 3.3 5.6 7.6 8.3	8.6 8.2 6.8 7.5 5.8 4.0	31 22 3.3 1.7 1.2	30 38 3.9 2.1 1.4 1.0	1.4 0.97 0.78 0.61 14	37 18 5.6 1.9 41
TOTAL MEAN MAX MIN AC-FT CFSM IN.	322.0 10.39 67 1.2 639 13.8 15.97	206.3 6.877 34 1.1 409 9.17 10.23	311.60 10.05 79 0.57 618 13.4 15.46	539.12 17.39 78 0.80 1070 23.2 26.74		1.2 168	338.2 11.27 144 2.2 671 15.0 16.77	272.7 8.797 23 4.0 541 11.7 13.53	280.53 9.351 43 0.96 556 12.5 13.91	154.90 4.997 38 0.36 307 6.66 7.68	414.69 13.38 70 0.48 823 17.8 20.57	327.82 10.93 51 0.58 650 14.6 16.26

e Estimated

15215990 NICOLET CREEK NEAR CORDOVA—Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 2000 - 2002, BY WATER YEAR (WY)#

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN MAX (WY) MIN (WY)	16.70 20.2 2001 10.4 2002	10.33 16.3 2001 6.88 2002	16.80 20.4 2000 10.1 2002	18.32 26.6 2001 10.9 2000	6.377 11.2 2000 2.00 2002	7.116 10.2 2000 2.73 2002	10.52 11.3 2002 9.15 2001	11.93 16.1 2000 8.80 2002	6.520 9.35 2002 1.59 2001	5.790 6.79 2001 5.00 2002	7.798 13.4 2002 4.97 2001	9.622 10.9 2002 8.85 2001
SUMMAR	Y STATIST	ICS	FOR	2001 CALENI	DAR YEAR	F	OR 2002 W	ATER YEAR		WATER YEARS	3 2000	- 2002#
LOWEST	MEAN F ANNUAL ANNUAL M	EAN		3379.53 9.259			3308.57 9.06	55		10.70 11.7 9.06		2001 2002
LOWEST	DAILY M DAILY ME SEVEN-DA			80 a0.17 0.19	Jan 7 Jul 2 Jun 27		144 0.36 0.69	5 Jul 17		144 a0.17 0.19	Jul	9 2002 2 2001 7 2001
MAXIMUN INSTAN	M PEAK FL M PEAK ST FANEOUS L	AGE OW FLOW					b186 24.38 0.30	3 Apr 19		cd988 d19.60 0.16	Nov	3 1994 3 1994 2 2001
ANNUAL ANNUAL	RUNOFF (RUNOFF (RUNOFF (CFSM) INCHES)		6700 12.3 167.62			6560 12.1 164.1			7750 14.3 193.82		
50 PER	CENT EXCE CENT EXCE CENT EXCE	EDS		25 4.0 0.79			30 3.3 0.89			31 4.6 1.0		

[#] See Period of Record and Remarks
a Jul. 2 and 3
b From rating curve extended above 33 ft³/s on basis of step-backwater analysis
c From rating curve extended above 66 ft³/s on basis of slope-area measurement of peak flow
d Site and datum then in use

Solomon Gulch (A) profile and (B) schematic diagram of flows.

15225990 SOLOMON LAKE NEAR VALDEZ

LOCATION.--Lat $61^{\circ}04'25''$, long $146^{\circ}18'08''$, in $NE^{1}_{/4}$ SW $^{1}_{/4}$ sec. 21, T. 9 S.,R. 6 W. (Valdez A-7 SE quad), Hydrologic Unit 19020201, within Valdez Corporate boundary, at outlet of Solomon Lake, 0.7 mi upstream from mouth of Solomon Gulch, and 4.6 mi southeast of Valdez.

DRAINAGE AREA. -- 19.2 mi².

PERIOD OF RECORD.--October 1991 to current year. Additional unpublished records prior to period of record available from Copper Valley Electric Association and in station files of Geological Survey.

REMARKS.--Reservoir is formed by a rockfill dam at outlet of Solomon Lake. Reservoir is used for power; power-plant operation began January 6, 1982. Usable capacity is 31,500 acre-feet below spillway crest at 685 ft. Discharge released to the penstocks is accounted for at Solomon Gulch Tailrace (station 15225996). Releases through the dam to maintain minimum flows, spillway releases, and incremental flow are accounted for at the Solomon Gulch at top of falls gage (station 15225997).

COOPERATION. -- Reservoir contents furnished by Copper Valley Electric Association.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents 32,500 acre-ft, September 21, 1993, from crest-stage gage and rating extended above 31,500 acre-ft; minimum contents, 2,167 acre-ft, May 1, 1995.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 32,000 acre-ft August 23, elevation, 685.93 ft; minimum contents, 3,380 acre-ft, May 15, elevation, 622.50 ft.

MONTH END RESERVOIR ELEVATION, IN FEET, AND CONTENTS, IN ACRE FEET WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DATE	ELEVATION	CONTENTS	CHANGE IN CONTENTS
SEP 30	683.0	29,800	
OCT 31	677.8	26,400	-3,400
NOV 30	671.6	22,800	-3,600
DEC 31	664.8	19,400	-3,400
JAN 31	658.4	16,200	-3,200
FEB 28	651.4	13,200	-3,000
MAR 31	641.1	9,000	-4,200
APR 30	628.8	5,000	-4,000
MAY 31	645.8	11,000	+6,000
JUN 30	665.4	19,800	+8,800
JUL 31	670.8	22,400	+2,600
AUG 31	684.6	31,200	+8,800
SEP 30	685.0	31,500	+300
		CAT UP 0001	1 000
		CAL YR 2001	-1,000
		WTR YR 2002	+1,700

15225996 SOLOMON GULCH TAILRACE NEAR VALDEZ

LOCATION.--Lat $61^{\circ}05'01''$, long $146^{\circ}18'10''$, in $NE^{1}/_{4}$ $SE^{1}/_{4}$ $SW^{1}/_{4}$ sec. 16, T. 9 S., R. 6 W. (Valdez A-7 SE quad), Hydrologic Unit 19020201, within Valdez Corporate boundary, on left wingwall of tailrace pool of Copper Valley Electric Association powerhouse facility, 350 ft upstream from mouth at Solomon Gulch, and 3.8 mi southeast of Valdez.

DRAINAGE AREA. -- Indeterminate.

PERIOD OF RECORD. -- September 1986 to current year.

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Elevation of gage is 40 ft above sea level, from topographic map.

REMARKS.--Records good. Discharge shown herein is flow through the Solomon Gulch Power Plant turbines. Solomon Lake, 0.8 mi upstream, supplies water to the power-plant through two 48-in. diameter penstocks. Water for the fish hatchery, diverted upstream from the gage, is not included in these published daily values. Annual mean discharge for these diversions for 2002 water year was 13.2 ft³/s.

COOPERATION.--Records of daily discharge diverted to the fish hatchery are furnished by Valdez Fisheries Development Association. Copper Valley Electric Association provides tables of hourly power output through the turbines.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 293 ${\rm ft}^3/{\rm s}$, January 2 and 3, 1992, gage height, 3.04 ft; no flow at times most years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 269 ft³/s, August 27; Maximum gage height, 3.03 ft, July 16; no flow for periods on January 5, March 19, May 20, June 14, August 1 and August 19.

			DISCHARO	€E, in CF		YEAR OCT		TO SEPTE	MBER 2002	2		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	189	68	63	74	53	47	75	52	192	166	144	195
2	180	74	61	77	50	43	69	57	189	173	188	202
3	191	70	73	59	51	46	83	75	199	185	183	118
4	186	74	70	48	56	50	72	91	207	222	191	173
5	172	80	79	48	48	46	67	87	206	222	201	216
6	160	78	70	52	47	43	66	94	202	224	203	209
7	165	70	66	49	54	48	64	97	197	229	198	199
8	190	63	59	54	43	52	53	90	204	228	201	199
9	185	66	56	60	62	51	54	84	210	220	201	145
10	188	59	62	65	45	51	53	79	205	224	200	141
11	194	61	56	66	41	53	54	74	201	212	203	155
12	192	66	53	59	42	49	55	70	159	205	204	201
13	186	70	62	62	43	50	53	78	196	218	202	200
14	187	75	63	59	42	49	66	80	139	221	202	191
15	123	60	48	56	47	51	56	92	161	220	200	190
16	79	60	50	58	46	50	54	103	199	226	188	199
17	76	63	50	63	44	52	50	102	199	210	211	199
18	67	70	57	57	45	54	61	94	163	208	215	199
19	65	68	54	58	56	44	60	90	178	203	151	196
20	67	71	51	57	54	51	51	47	216	203	182	201
21	68	65	46	66	49	51	53	164	215	197	207	193
22	66	61	49	52	46	58	63	212	210	198	191	193
23	65	56	48	53	43	54	64	218	213	204	197	202
24	65	51	46	54	42	55	59	224	221	202	209	199
25	82	54	48	59	46	57	53	214	218	202	208	197
26	88	71	52	57	46	83	49	166	217	200	222	199
27	82	75	58	61	44	87	52	200	213	192	215	196
28	83	76	67	52	47	79	52	204	176	190	208	185
29	81	74	67	51		92	50	203	211	205	205	187
30	71	68	61	54		77	54	200	208	201	208	204
31	68		63	49		69		203		203	203	
TOTAL	3861	2017	1808	1789	1332	1742	1765	3844	5924	6413	6141	5683
MEAN	124.5	67.23	58.32	57.71	47.57	56.19	58.83	124.0	197.5	206.9	198.1	189.4
MAX	194	80	79	77	62	92	83	224	221	229	222	216
MIN	65	51	46	48	41	43	49	47	139	166	144	118
AC-FT	7660	4000	3590	3550	2640	3460	3500	7620	11750	12720	12180	11270

CAL YR 2001 TOTAL 43142.6 MEAN 118.2 MAX 209 MIN 1.0 AC-FT 85570 WTR YR 2002 TOTAL 42319 MEAN 115.9 MAX 229 MIN 41 AC-FT 83940

15225997 SOLOMON GULCH AT TOP OF FALLS NEAR VALDEZ

LOCATION.--Lat 61°04'45", long 146°18'11", in SE¹/₄ NE¹/₄ NW¹/₄ sec. 21, T. 9 S., R. 6 W. (Valdez A-7 SE quad), Hydrologic Unit 19020201, within Valdez Corporate boundary, on right bank, 72 ft above Alyeska Pipeline Service Company Bridge, 150 ft upstream from top of falls, 0.3 mi upstream from mouth, and 4.2 mi southeast of Valdez.

DRAINAGE AREA. -- Indeterminate.

PERIOD OF RECORD. -- September 1986 to current year.

REVISED RECORDS .-- WDR AK-00-1: 1999.

GAGE.--Water-stage recorder. Elevation of gage is 400 ft above sea level, from topographic map. Prior to October 1, 1991, discharge computed for site 150 ft downstream at datum 72.00 ft higher.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Discharge shown herein represents controlled releases from bypass valve and flow over the spillway of dam at Solomon Lake, 0.5 mi upstream, plus inflow between the spillway and the gage. Spillway crest elevation is 685 ft above sea level, from construction plans. Water for power generation is diverted from Solomon Lake (see records for station 15225996). Water is diverted for fish hatchery use 1,150 ft downstream from gage. Reservoir spilled August 21-26, September 13-16, September 26-28, and September 30, 2002.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,280 ft³/s, October 11, 1986, by computation of peak flow by several indirect measurement methods; gage height, 82.20 ft from water surface profiles for 1986 flood at top of falls and at datum 72.00 ft lower (12.90 ft from profile at present site and datum); minimum daily discharge, about 0.20 ft³/s, January 23 to April 6, 1989.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,280 ft³/s, August 22, gage height, 8.25 ft; minimum daily discharge, 2.3 ft³/s, March 20, 22.

			DISCHAR	GE, in CF		YEAR OCT		TO SEPTE	MBER 2002			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	11	3.6	4.0	3.6	3.5	3.1	3.3	8.0	7.5	4.1	4.6	5.9
2	9.3	3.4	4.2	3.5	3.4	3.1	3.3	7.0	7.2	4.0	4.5	5.0
3	7.0	3.3	3.7	3.6	3.4	3.2	3.1	5.6	7.1	3.9	4.4	4.7
4	7.8	3.4	3.1	3.6	3.4	3.2	3.1	5.3	6.4	4.0	4.4	4.5
5	11	3.3	3.2	3.9	3.5	3.3	3.1	4.7	6.6	3.8	4.4	4.5
6	8.9	3.2	3.2	5.5	3.5	3.2	3.1	4.0	8.0	3.8	4.4	4.9
7	7.4	3.3	3.2	6.1	3.5	3.0	3.1	4.0	6.3	3.7	4.6	4.9
8	5.9	3.3	e3.2	5.2	3.4	2.9	3.2	4.7	5.6	3.6	8.1	4.9
9	6.0	3.2	e3.3	9.6	3.3	2.9	3.3	5.8	6.7	3.6	17	4.6
10	8.8	3.1	e3.3	7.0	3.3	2.9	3.3	7.1	5.6	3.6	9.3	4.6
11	9.0	3.2	e3.4	5.1	3.3	2.8	3.3	7.7	5.2	3.8	17	7.6
12	6.7	3.1	e3.4	4.8	3.3	2.7	3.3	8.2	4.5	3.9	14	9.2
13	5.7	3.0	e3.5	4.5	3.3	2.7	3.2	9.8	4.0	3.8	14	376
14	5.1	3.0	3.0	4.4	3.4	2.7	3.1	11	4.1	3.8	8.2	411
15	4.9	3.0	2.7	4.5	3.3	2.6	3.1	15	4.2	3.9	6.7	145
16	4.7	3.0	2.7	4.3	3.3	2.5	3.2	9.7	4.2	4.0	6.1	20
17	4.6	3.7	2.7	4.2	3.2	2.4	3.1	22	4.3	4.1	5.9	5.8
18	4.4	5.8	2.9	4.1	3.2	2.4	3.0	28	4.0	4.8	5.8	5.6
19	4.4	4.1	3.1	4.0	3.1	2.4	3.0	24	3.9	4.4	6.2	5.4
20	4.3	3.5	3.1	4.0	3.2	2.3	3.1	21	3.8	4.4	13	6.5
21	4.3	3.4	3.2	3.9	3.1	2.4	2.9	20	3.9	4.3	390	6.0
22	4.4	3.4	3.6	e3.8	3.1	2.3	2.8	16	3.9	4.2	1110	5.7
23	4.1	3.5	3.6	3.8	2.8	2.4	2.7	15	3.9	4.2	516	5.8
24	4.0	3.4	3.5	e3.7	2.7	2.5	2.6	15	3.9	5.6	236	8.3
25	3.8	3.3	3.5	e3.7	2.7	2.5	2.4	14	3.9	5.5	79	12
26	3.7	3.2	4.5	3.6	2.9	2.8	2.4	13	3.9	6.6	14	259
27	3.8	3.0	4.3	3.6	3.2	3.1	2.6	12	3.9	9.1	5.2	464
28	3.7	4.2	4.1	3.6	3.2	3.1	3.0	9.7	3.9	6.3	4.7	210
29	3.8	4.3	3.8	3.6		3.0	5.0	9.6	3.8	5.5	4.5	35
30	3.8	4.2	3.7	3.6		3.1	6.6	10	3.9	5.1	4.5	7.1
31	3.9		3.6	3.6		3.2		9.0		4.8	5.4	
TOTAL	180.2	104.4	106.3	136.0	90.5	86.7	96.3	355.9	148.1	140.2	2531.9	2053.5
MEAN	5.813	3.480	3.429	4.387	3.232	2.797	3.210	11.48	4.937	4.523	81.67	68.45
MAX	11	5.8	4.5	9.6	3.5	3.3	6.6	28	8.0	9.1	1110	464
MIN	3.7	3.0	2.7	3.5	2.7	2.3	2.4	4.0	3.8	3.6	4.4	4.5
AC-FT	357	207	211	270	180	172	191	706	294	278	5020	4070

CAL YR 2001 TOTAL 12156.5 MEAN 33.31 MAX 722 MIN 2.7 AC-FT 24110 WTR YR 2002 TOTAL 6030.0 MEAN 16.52 MAX 1110 MIN 2.3 AC-FT 11960

e Estimated

15226000 SOLOMON GULCH NEAR VALDEZ

LOCATION.--Lat $61^{\circ}05'02''$, long $146^{\circ}18'13''$, in $NE^{1}/_{4}$ $SE^{1}/_{4}$ $SW^{1}/_{4}$ sec. 16, T. 9 S., R. 6 W. (Valdez A-7 SE quad), Hydrologic Unit 19020201, at bridge crossing at mouth and 3.8 mi southeast across Port Valdez from Valdez.

PERIOD OF RECORD.--July to December 1948, October 1949 to September 1956, and September 1986 to current year.

GAGE.--Nonrecording gage. Elevation of gage is at sea level. July 9, 1948 to May 21, 1950, nonrecording gage, and May 22, 1950 to September 30, 1956, water-stage recorder at about present site and datum.

REMARKS.-- Records fair. Discharge data represent the flow at mouth which includes Solomon Gulch at top of falls (station 15225997), power plant tailrace (station 15225996), and all fish hatchery diversions. Water for power generation is diverted by a dam at Solomon Lake, 0.8 mi upstream. Water is diverted for the fish hatchery by a 24-in. penstock aeration system, and a 24-in. penstock line from the tailrace weir pool. An unaerated penstock and an 8-in. pipe for warm water supply are upstream. Additional water is diverted to the fish hatchery from Solomon Gulch bypass channel about 750 ft above gage, by means of a 12-in. diameter pipe. The fish hatchery discharges water directly into Port Valdez. Average daily diversion to fish hatchery for 2002 water year was 13.2 ft³/s. Power generation began January 6, 1982.

COOPERATION.--Records of daily discharge diverted to the fish hatchery are furnished by Valdez Fisheries Development Association. Copper Valley Electric Association provides tables of hourly power output through the turbines and monthly storage values for Solomon Lake.

	DISCHARGE, in CFS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MA	Y JU	N JU	L AU	G SEP
1 2 3 4 5	228 216 226 222 210	101 108 103 107 113	77 75 86 81 89	86 89 71 59	66 61 62 67 59	59 54 57 61 57	79 93 82	6! 82 98	5 19 2 20 3 21	7 17 6 19 3 22	8 21 0 21 7 22	7 233 3 149 1 203
6 7 8 9 10	196 199 224 219 224	111 103 96 99 92	80 76 e69 e66 e72	66 63 67 77 80	58 65 55 74 56	55 59 62 62	75 64 66	102 90 91	2 20 5 20 L 21	3 23 9 23 7 22	3 22 3 23 5 24	8 230 4 229 3 176
11 12 13 14 15	231 227 220 220 156	94 99 103 108 92	e67 e64 e72 73 57	80 72 75 71 68	53 53 54 55 59	64 60 60 60 62	64 63 76	8) 9) 91	16 20 3 14	3 21 0 22 3 22	0 24 4 24 6 23	3 236 1 602 6 629
16 17 18 19 20	112 108 99 98 100	94 97 106 103 104	59 61 67 64 61	70 75 69 70 69	58 55 56 67 65	61 62 64 54 60	60 70 69	120 121 111	5 20 3 16 5 18	3 23 7 23 2 22	6 24 5 24 9 18	2 232 5 232 3 229
21 22 23 24 25	101 98 97 97 114	96 92 88 82 76	56 59 58 56 59	77 e64 65 e66 e70	60 57 54 53 57	61 68 65 65 68	71 73 67	225 234 240	9 21 1 21 0 22	6 22 9 23 7 23	5 133 1 74 0 47	0 225 0 234 2 234
26 27 28 29 30 31	120 114 115 113 102 100	82 87 90 88 81	64 70 78 78 72 74	68 73 64 62 65 60	57 55 59 	94 98 90 103 90 78	61 62 62	21: 21: 21: 21:	3 21 5 18 3 21 L 21	9 22 2 22 6 23 4 23	4 24 0 23 4 23 0 23	8 688 8 423 5 249 7 239
TOTAL MEAN MAX MIN AC-FT	4906 158.3 231 97 9730	2895 96.50 113 76 5740	2140 69.03 89 56 4240	2171 70.03 89 59 4310	1650 58.93 74 53 3270	2075 66.94 103 54 4120	93 59	136.9 240 63	9 202. 0 22 1 14	8 691 9 223. 7 23 3 17	4 946 0 305. 6 133 1 17	4 284.5 0 688 3 149
				ADJUSTEI) FOR CHA	NGE IN ST	ORAGE IN	SOLOMON	LAKE			
MEAN AC-FT CFSM IN	103 6330 5.23 6.03	36.0 2140 1.83 2.04	13.7 840 0.69 0.80	18.1 1110 0.92 1.06	e3.4 e190 e0.17 e0.18	e0.0 e0.0 e0.0	1.3 80 0.07 0.08	234 14420 11.90 13.74	351 20880 17.81 19.90	265 16310 13.46 15.54	27580 22.77	290 17230 14.70 16.42

Estimated

15226000 SOLOMON GULCH NEAR VALDEZ—Continued

STATISTICS OF MONTHLY ME	AN DATA FOR WATER YEARS	1986 - 2002,	, BY WATER	YEAR (WY)	#			
MEAN 181.8 101.4 MAX 310 140 (WY) 1987 1989 MIN 97.2 77.1 (WY) 1997 1993	94.91 95.86 91.2 116 138 13 1987 1995 198 69.7 69.5 64. 2002 2002 199	10 120 17 1987 3 5.08	106 1998	152.0 213 1993 103 1992	183.6 229 1990 145 1988	410 2001	298.5 462 1993 152 1996	339.7 501 1989 152 1996
SUMMARY STATISTICS	FOR 2001 CALENDAR Y	EAR I	FOR 2002 W.	ATER YEAR		WATER YEARS	1986 -	2002#
ANNUAL TOTAL ANNUAL MEAN ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN	60598.6 166.0 *164.0 944 Sep 9.6 May) 5	53143 145.6 *147.0			164.8 *165.0 197 125 2270	Sep 24 Apr 12	
ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW ANNUAL RUNOFF (AC-FT)		7 8	55 105400 *107110 *7.4 *102.0 234 98 60	Feb 11		2.3 2270 119400 *119500 *7.46 *113.74 287 122 69	Mar 24 Sep 24	1991

PRIOR TO CONSTRUCTION OF SOLOMON GULCH HYDROELECTRIC PROJECT

		STATIST	TICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS	1948 - 19	56, BY	WATER YEAR	(WY)#	
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	124	58.9	18.3	13.3	10.4	8.82	10.9	102	370	385	322	260
MAX (WY)	304 1953	131 1953	35.6 1950	20.9 1956	12.2 1954	11.1 1953	18.3 1953	224 1953	544 1953	514 1955	442 1956	574 1951
MIN (WY)	48.0 1951	21.7 1951	4.00 1949	1.40 1951	3.57 1951	7.19 1951	6.57 1950	36.5 1955	261 1951	277 1950	254 1950	126 1955

SUMMARY STATISTICS		WATER YEARS 1948 - 1956#
ANNUAL MEAN	143	
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN		1953 1950
HIGHEST DAILY MEAN LOWEST DAILY MEAN	1530 .50	Sep 4 1951 Dec 31 1950
ANNUAL SEVEN-DAY MINIMUM	1.0	Jan 10 1951
MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW	b6.50	Sep 4 1951 Sep 4 1951 Feb 20 1954
ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES)	7.28	
	396 49 8.0	

See Period of Record and Remarks. Values shown on this page are unadjusted for change in storage in Solomon Lake, unless otherwise noted
 Adjusted for change in storage in Solomon Lake
 From rating curve extended above 620 ft³/s
 Site and datum then in use
 No flow sometime during period Feb. 20 to Mar. 3, 1954, caused by temporary storage upstream

15236900 WOLVERINE CREEK NEAR LAWING

LOCATION.--Lat $60^{\circ}22'14''$, long $148^{\circ}53'48''$, in NE^{1}_{4} NE^{1}_{4} sec. 10, T.3 N., R.3 E. (Seward B-6 quad), Kenai Peninsula Borough, Hydrologic Unit 19020202, on the left bank, about 0.1 mi downstream from terminus of Wolverine Glacier, 2.0 mi upstream from mouth, 16 mi east of Lawing, Alaska.

DRAINAGE AREA. -- 9.51 mi².

Date

Time

PERIOD OF RECORD. -- October 1966 to September 1978, October 1980 to September 1981, May 1997 to September 1997, October 2000 to present.

GAGE.--Water-stage recorder. Elevation of gage is 1,200 ft above sea level from topographic map.

REMARKS.--Records are poor. Large fluctuations from ice melt and alternate damming and storage releases during the melt season. Stream flow modified by Wolverine Glacier, which covers 6.8 mi², more than 70% of the drainage basin. Rain gage and air temperature recorder at station, daily values of precipitation and air temperature available from computer files of the Alaska District. GOES satellite telemetry at station. A recording of air temperature, wind speed, and precipitation gage at 3,250 ft elevation. Plus three snow and ice balance measurement sites are located in the basin. Combined snow, ice, and water balances of the basin are published in other reports of the Geological Survey.

Gage

Height

(ft)

Discharge

 (ft^3/s)

Time

Date

EXTREMES FOR CURRENT YEAR.--Peak discharge greater than base discharge of 550 ft³/s and maximum (*)

Gage

Height

(ft)

Discharge

 (ft^3/s)

					(20)						(20)	
	Jun 26	104	45	638	3.03		Sep	14 (0100	701	2.97	
	Jul 24	163	30	1170*	3.55*							
			DISCH	ARGE, in C				TO SEPT	EMBER 200:	2		
					DAI	LY MEAN V	/ALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
-	F.1	. 5 . 5		- 2 0	- 0 - 0 0	- 0 00	- 0 00	. 0 . 5	105	100	200	0.01
1 2	51 34	e5.5 e4.5	e1.1 e1.0	e3.0 e2.5	e0.00 e0.00	e0.00 e0.00	e0.00 e0.00	e2.5 e3.0	105 110	199 211	322 320	201 249
3	68	e4.5	e1.0	e2.5	e0.00	e0.00	e0.00	e3.0	115	207	342	249
4	202	e3.0	e1.0	e2.0	e0.00	e0.00	e0.00	e3.5	122	237	360	182
5	267	e2.5	e1.0	e2.5	e0.00	e0.00	e0.00	e4.0	103	205	278	179
,	207	62.5	C1.0	62.5	60.00	60.00	60.10	C4.0	103	203	270	175
6	116	e2.5	e1.0	e3.0	e0.00	e0.00	e0.50	e4.5	90	184	293	184
7	70	e2.0	e1.0	e4.0	e0.00	e0.00	e0.50	e5.0	95	206	301	142
8	56	e2.0	e1.0	e2.5	e0.00	e0.00	e0.50	e5.0	87	212	282	120
9	87	e1.9	e1.0	e3.0	e0.00	e0.00	e0.50	e7.0	111	206	262	130
10	57	e1.8	e1.0	e4.0	e0.00	e0.00	e0.50	e8.0	83	237	227	121
11	39	e1.8	e0.50	e4.5	e0.00	e0.00	e0.50	e9.0	73	221	255	91
12	e22	e1.8	e0.50	e1.5	e0.00	e0.00	e0.50	e11	75	218	322	92
13	e20	e1.7	e0.50	e1.0	e0.00	e0.00	e0.50	e14	78	239	326	223
14	e16	e1.7	e0.50	e1.0	e0.00	e0.00	e0.50	e19	146	230	273	507
15	e16	e1.6	e0.10	e1.1	e0.00	e0.00	e1.0	e25	208	244	246	319
1.0	-16	-1 -	-0.00	-1 0	-0.00	-0.00	-1 0	-20	196	252	280	209
16 17	e16 e18	e1.5 e2.4	e0.00 e0.00	e1.0 e1.1	e0.00 e0.00	e0.00 e0.00	e1.0 e1.0	e30 e40	220	287	284	249
18	e15	e2.4 e2.1	e0.00	e1.5	e0.00	e0.00	e1.0	e50	235	299	244	179
19	e15	e1.8	e0.00	e1.1	e0.00	e0.00	e1.0	e60	239	279	204	142
20	e14	e1.6	e0.00	e1.0	e0.00	e0.00	e1.0	e65	229	287	264	80
20	011	01.0	00.00	01.0	00.00	00.00	01.0	005	223	20,	201	00
21	e13	e1.5	e0.00	e1.0	e0.00	e0.00	e1.0	e75	207	343	277	75
22	e11	e1.4	e0.00	e0.50	e0.00	e0.00	e1.0	82	218	373	260	84
23	e11	e1.4	e0.00	e0.50	e0.00	e0.00	e1.0	94	209	502	232	118
24	e10	e1.3	e0.10	e0.10	e0.00	e0.00	e1.0	107	267	679	247	201
25	e9.0	e1.3	e1.0	e0.00	e0.00	e0.00	e1.1	107	297	457	232	250
26	e8.0	e1.2	e5.0	e0.00	e0.00	e0.00	e1.1	107	386	347	201	261
27	e8.0	e1.2	e10	e0.00	e0.00	e0.00	e1.5	138	282	286	198	185
28	e8.0	e1.2	e6.0	e0.00	e0.00	e0.00	e1.5	137	250	278	215	139
29 30	e7.0 e7.0	e1.1 e1.1	e3.0 e3.5	e0.00 e0.00		e0.00 e0.00	e1.5 e2.0	143 154	263 228	312 323	184 220	116 115
31	e6.0		e5.5	e0.00		e0.00		125		338	189	
31	60.0		65.5	60.00		60.00		123		330	109	
TOTAL	1297.0	60.4	46.30	45.40	0.00	0.00	23.30	1637.5	5327	8898	8140	5365
MEAN	41.84	2.013	1.494	1.465	0.000	0.000	0.777	52.82	177.6	287.0	262.6	178.8
MAX	267	5.5	10	4.5	0.00	0.00	2.0	154	386	679	360	507
MIN	6.0	1.1	0.00	0.00	0.00	0.00	0.00	2.5	73	184	184	75
AC-FT	2570	120	92	90	0.00	0.00	46	3250	10570	17650	16150	10640
CFSM	4.40	0.21	0.16	0.15	0.00	0.00	0.08	5.55	18.7	30.2	27.6	18.8
IN.	5.07	0.24	0.18	0.18	0.00	0.00	0.09	6.41	20.84	34.81	31.84	20.99
STATIS	TICS OF MC	ONTHLY ME	EAN DATA	FOR WATER	YEARS 196	7 - 2002,	BY WATER	R YEAR (W	Y)#			
MEAN	26 57	7 226	2 522	1 400	1 100	0.004	1 174	22.00	127 0	202.0	220 0	100 0
MEAN MAX	36.57 114	7.226 27.4	2.533 5.48	1.496 2.71	1.109	0.894	1.174	22.06 89.3	137.8	292.8 375	339.9 494	196.6 351
(WY)	1970	1971	1970	1970	1970	1970	1981	1967	262 1967	1967	1981	1974
MIN	13.1	2.01	0.51	0.39	0.000	0.000	0.000	0.61	31.1	146	176	80.0
(WY)	1975	2002	2001	2001	2001	2001	2001	1971	1971	1997	1997	1970
(** ± /	10,0	2002	2001	2001	2001	2001	2001	17,1	10,1	1001	1001	10,0

See Period of Record; partial years used in monthly statistics

15236900 WOLVERINE CREEK NEAR LAWING—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1967 - 2002#
ANNUAL TOTAL	37684.44	30839.90	
ANNUAL MEAN	103.2	84.49	88.84
HIGHEST ANNUAL MEAN			123 1967
LOWEST ANNUAL MEAN			66.6 1970
HIGHEST DAILY MEAN	1930 Aug 28	679 Jul 24	1930 Aug 28 2001
LOWEST DAILY MEAN	a0.00 Jan 4	a0.00 Dec 16	a0.00 Dec 2 2000
ANNUAL SEVEN-DAY MINIMUM	0.00 Jan 22	0.00 Dec 16	0.00 Dec 2 2000
MAXIMUM PEAK FLOW		1170 Jul 24	b4160 Aug 28 2001
MAXIMUM PEAK STAGE		3.55 Jul 24	6.28 Aug 21 1981
MAXIMUM PEAK STAGE			c14.70 Jun 9 1971
ANNUAL RUNOFF (AC-FT)	74750	61170	64360
ANNUAL RUNOFF (CFSM)	10.9	8.88	9.34
ANNUAL RUNOFF (INCHES)	147.41	120.64	126.93
10 PERCENT EXCEEDS	304	265	310
50 PERCENT EXCEEDS	2.5	5.0	5.0
90 PERCENT EXCEEDS	0.00	0.00	0.60

[#] See Period of Record; partial years used in monthly statistics
a No flow most days during winter
b From rating curve extended above 1,290 ft³/s
c From floodmarks, date approximate: flow over dense snow

15237730 GROUSE CREEK AT GROUSE LAKE OUTLET NEAR SEWARD

LOCATION.--Lat $60^{\circ}11'54''$, long $149^{\circ}22'24''$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec. 12, T. 1 N., R. 1 W. (Seward A-7 NE quad), Kenai Peninsula Borough, Hydrologic Unit 19020202, on right bank, 200 ft downstream from Grouse Lake outlet, 0.2 mi upstream from Seward Highway, 7 mi north of Seward.

DRAINAGE AREA. -- 6.22 mi².

PERIOD OF RECORD. -- June 1997 to present.

GAGE.--Water stage recorder and crest-stage gage. Elevation of gage is 250 ft above sea level from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are poor. Rain gage recorder at station. GOES satellite telemetry and phone modem at station.

sace	iiite te.	remetry ar	ia phone i	nodem at s	station.							
		DISCHA	ARGE, CUBI	C FEET PE		WATER Y MEAN	YEAR OCTOBI VALUES	ER 2001 TO	O SEPTEMI	BER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	30 26 21 28 49	8.5 8.5 8.7 8.2 7.8	5.7 5.6 5.9 5.6 5.6	35 31 25 21 23	e8.5 e8.0 e8.0 e9.0 e9.0	e5.0 e4.5 e4.5 e4.0 e4.0	e4.0 e4.0 e4.0 e4.0 e4.0	15 15 14 15 16	52 49 47 45 43	10 9.8 9.7 9.6 9.2	6.2 6.0 5.9 5.7 5.6	5.5 5.3 5.0 4.9 4.9
6 7 8 9 10	46 39 32 32 28	7.6 6.9 6.5 7.4 7.5	5.7 5.5 5.1 5.4 5.6	32 33 28 44 39	e8.5 e8.0 e7.5 e7.5 e7.0	e4.0 e4.0 e4.0 e4.0 e4.0	e4.0 e4.5 e4.5 e4.5	17 18 21 28 32	41 39 38 36 35	9.0 8.7 8.5 8.3 8.2	5.6 5.7 7.1 7.4 6.7	5.4 5.8 5.4 e5.2 e5.0
11 12 13 14 15	27 21 18 17 16	7.2 7.0 6.8 6.4 6.6	5.8 5.9 5.7 5.4 5.5	30 21 18 17 19	e7.0 e6.5 e6.5 e6.5 e7.5	e4.0 e4.0 e4.0 e4.0 e4.0	e4.5 e4.5 e4.5 e5.0 e5.0	34 35 39 45 49	35 32 31 29 32	7.9 7.7 7.7 7.4 7.3	7.2 8.3 7.8 6.8 6.4	e5.0 e8.0 e24 e34 e26
16 17 18 19 20	15 14 13 12 12	6.5 7.1 9.1 8.2 8.4	5.7 5.5 5.4 5.4 5.9	19 22 27 21 18	e7.5 e6.5 e6.0 e5.5 e5.0	e4.0 e4.0 e4.0 e3.5 e3.5	5.0 5.0 5.4 6.0 6.4	50 56 71 88 95	31 28 24 20 18	7.2 7.0 7.6 7.6 7.2	6.1 5.8 5.6 5.4 6.0	e16 e18 e14 e12 e11
21 22 23 24 25	13 12 11 10 9.8	7.9 7.7 7.7 7.6 7.1	6.6 6.7 6.6 6.1 8.2	14 13 14 12 11	e5.0 e5.5 e5.5 e5.0 e5.0	e3.5 e3.5 e3.5 e3.5 e3.5	6.5 6.3 6.4 6.4	92 89 82 77 78	16 15 14 13	6.8 6.7 6.6 7.2 7.2	6.2 7.4 7.5 7.5 6.8	e10 e10 e12 18 28
26 27 28 29 30 31	9.2 8.6 9.0 8.7 8.4 8.2	6.3 7.3 6.7 6.8 6.4	58 90 47 35 33	10 e10 e10 e10 e9.5 e9.5	e5.0 e5.0 e5.0	e3.5 e3.5 e3.3 e3.5 e3.5	6.8 7.6 9.2 12 14	75 71 63 61 57 55	13 12 11 11 11	7.3 8.5 7.8 7.1 6.7	6.2 5.9 5.7 5.5 5.5	21 20 18 16 17
TOTAL MEAN MAX MIN AC-FT CFSM IN.	603.9 19.5 49 8.2 1200 3.13 3.61	222.4 7.41 9.1 6.3 441 1.19 1.33	439.1 14.2 90 5.1 871 2.28 2.63	646.0 20.8 44 9.5 1280 3.35 3.86	186.5 6.66 9.0 5.0 370 1.07	119.3 3.85 5.0 3.3 237 .62	174.3 5.81 14 4.0 346 .93 1.04	1553 50.1 95 14 3080 8.05 9.29	834 27.8 52 11 1650 4.47 4.99	243.9 7.87 10 6.4 484 1.26 1.46	197.2 6.36 8.3 5.4 391 1.02 1.18	390.4 13.0 34 4.9 774 2.09 2.33
STATIST	rics of M	ONTHLY ME	AN DATA F	OR WATER Y	YEARS 1997	- 2002	, BY WATER	YEAR (WY)	#			
MEAN MAX (WY) MIN (WY)	19.4 25.7 2000 11.8 1998	21.4 38.0 2001 7.41 2002	16.4 25.7 2001 8.89 1999	20.3 58.0 2001 5.23 1998	8.27 12.0 2001 3.34 1999	8.43 15.6 1998 2.69 1999	17.6 38.6 1998 5.81 2002	52.8 67.9 1998 43.5 2001	43.1 70.7 1998 12.6 1997	11.9 19.2 1998 6.11 1997	8.12 14.3 2001 6.04 1999	19.5 35.3 1997 6.66 2000
SUMMAR	Y STATIST	rics	FOR	2001 CALE	NDAR YEAR		FOR 2002 W	ATER YEAR		WATER Y	EARS 199	7 - 2002#
ANNUAL ANNUAL ANNUAL 10 PERO 50 PERO	MEAN I ANNUAL M I DAILY M DAILY ME SEVEN-DA I PEAK FL I PEAK ST I	AC-FT) CFSM) INCHES) EDS EDS		205 5.1 5.5 17410 3.87 52.45 54 14 7.1	7 9		5610.0 15.4 95 3.3 3.5 114 6.36 11130 2.47 33.55 35 7.8 4.5	7		21.0 27.3 15.4 205 a2.1 2.2 269 7.33 b1.5 15210 3.34 45.8° 53 11 5.1	Jan Mar Mar Jan Jan Apr	2001 2002 19 2001 9 1999 4 1999 19 2001 19 2001 7 1999

See Period of Record, partial year used in monthly statistics Mar. 9 and 10, 1999
From temporary blockage of channel upstream from gage

Estimated

15238600 SPRUCE CREEK NEAR SEWARD

 $\texttt{LOCATION.--Lat } \ 60^{\circ}04'10'', \ \texttt{long } \ 149^{\circ}27'08'', \ \texttt{in } \ \texttt{SW}^{1}/_{4} \ \texttt{Sec. } \ 21, \ \texttt{T. 1 S., R. 1 W. (Seward A-7 quad), Kenai Peninsula B. (Seward A-7 qu$ Borough, Hydrologic Unit 19020202, on left bank 0.7 mi upstream from mouth at Resurrection Bay and 2.4 mi south of Seward.

DRAINAGE AREA. -- 9.26 mi².

PERIOD OF RECORD.--September 1967 to September 1979, annual maximum, water years 1980-90. October 1990 to current

REVISED RECORDS.--WDR AK-76-1: 1966-67(M), 1970(M), 1972(M). WDR AK-77-1: 1969(M).

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 75 ft above sea level, from topographic map.

REMARKS.--Records fair, except estimated daily discharges and discharges below 7.0 ${\rm ft}^3/{\rm s}$, which are poor. Precipitation gage at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of August 21, 1966, reached a stage of 10.1 ft, from floodmarks; discharge, 3,090 $\mbox{ft}^3/\mbox{s},$ by slope-area measurement.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,000 ft^3/s , and maximum (*):

	Date	Time		scharge Et ³ /s)	Gage Height (ft)		Dat	е	Time	Discharge (ft ³ /s)	Gage Height (ft)	
	Sep. 13	1415	2	1030*	6.93*		Sep.	24	2015	1530	6.61	
		DISCHAR	GE, CUB	IC FEET	PER SECOND, DAII	, WATER LY MEAN		BER 2001	. TO SEPTE	EMBER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	92 73 76 162 244	14 13 13 12 12	9.5 8.8 8.3 8.0 7.7	34 26 21 20 26	6.2 5.8 5.6 7.7 6.6	2.6 2.2 1.9 2.1 e1.5	0.00 0.00 0.00 0.00 0.00	27 23 22 24 25	151 156 162	170 152 155 146 141	91 89 90 86 72	88 93 88 69 78
6 7 8 9 10	145 96 74 85 73	11 11 10 9.8 9.6	7.3 6.9 6.7 6.4 6.2	38 31 26 45 39	6.1 5.8 5.9 5.1 4.7	1.1 1.4 0.65 0.35 0.20	0.00 0.00 0.00 0.00 0.00	23 22 24 27 29	150 160 202	132 140 134 124 137	67 71 88 76 111	182 160 131 113 100
11 12 13 14 15	62 51 46 44 39	9.5 9.3 9.0 8.6 8.3	6.0 5.7 e5.5 e5.0 e5.0	24 18 16 19 21	4.6 e4.5 e4.0 e4.5 e3.5	e0.10 e0.10 e0.10 e0.10 e0.10	0.00 0.00 0.00 0.00	32 34 44 51 53	164 145 195	152 127 119 115 103	152 139 101 80 63	95 191 954 811 294
16 17 18 19 20	35 33 31 27 27	8.4 9.2 11 12	4.6 4.3 4.0 3.7 3.7	19 22 23 19 16	e3.5 e3.0 e3.0 e3.0 e2.5	e0.10 0.00 0.00 0.00 0.00	0.00 0.00 e0.50 1.1 2.6	57 79 118 155 158	234 228 209	110 143 178 149 151	62 66 60 54 88	174 146 119 93 75
21 22 23 24 25	27 24 20 20 18	13 15 17 16 14	3.7 3.5 3.1 4.7 8.7	14 13 12 e11 e10	e2.5 e2.0 e2.0 1.6 1.7	0.00 0.00 0.00 0.00	2.2 2.1 2.5 3.0 3.3	160 154 155 158 161	135 131 131	128 125 128 160 142	129 254 195 135 89	64 56 123 735 548
26 27 28 29 30 31	17 16 16 15 14 14	13 12 12 11 10	73 67 29 22 25 24	e9.5 9.0 8.0 7.5 7.0 6.5	2.4 2.1 2.9 	0.00 0.00 0.00 0.00 0.00	4.1 5.9 11 23 32	162 170 152 165 169 165	141 133 166 201	226 167 107 117 103 97	72 73 73 79 95 116	339 220 140 104 104
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1716 55.4 244 14 3400 5.98 6.89	345.7 11.5 17 8.3 686 1.24 1.39	387.0 12.5 73 3.1 768 1.35 1.55	610.5 19.7 45 6.5 1210 2.13 2.45	112.8 4.03 7.7 1.6 224 0.44 0.45	14.60 0.47 2.6 0.00 29 0.05 0.06	93.30 3.11 32 0.00 185 0.34 0.37	2798 90.3 170 22 5550 9.75 11.24	178 369 131 10570 19.2	4278 138 226 97 8490 14.9 17.19	3016 97.3 254 54 5980 10.5 12.12	6487 216 954 56 12870 23.4 26.06
					YEARS 196							
MEAN MAX (WY) MIN (WY)	84.9 333 1970 17.0 1997	36.3 129 1977 9.40 1974	16.1 51.1 1970 3.52 1997	11.0 46.1 2001 0.65 1974	9.52 46.6 1994 0.000 1972	3.92 15.3 1970 0.000 1971	12.3 35.6 1969 0.12 1972	73.0 135 1993 30.6 1971	318 2001 116	191 371 1977 104 1997	148 323 1977 56.9 1969	171 372 1995 48.8 2000

See Period of Record, partial year used in monthly statistics

Estimated

15238600 SPRUCE CREEK NEAR SEWARD—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1967 - 2002#
ANNUAL TOTAL	34411.0	25187.90	
ANNUAL MEAN	94.3	69.0	79.6
HIGHEST ANNUAL MEAN			123 1977
LOWEST ANNUAL MEAN			50.6 1996
HIGHEST DAILY MEAN	655 Jul 20	954 Sep 13	1650 Oct 11 1969
LOWEST DAILY MEAN	2.8 Apr 2	a0.00 Mar 17	b0.00 Mar 1 1969
ANNUAL SEVEN-DAY MINIMUM	3.4 Mar 27	0.00 Mar 17	0.00 Mar 1 1969
MAXIMUM PEAK FLOW		2030 Jun 19	c13600 Oct 11 1986
MAXIMUM PEAK STAGE		6.93 Sep 13	d13.96 Oct 11 1986
INSTANTANEOUS LOW FLOW			0.00 Mar 1 1969
ANNUAL RUNOFF (AC-FT)	68250	49960	57630
ANNUAL RUNOFF (CFSM)	10.2	7.45	8.59
ANNUAL RUNOFF (INCHES)	138.24	101.19	116.73
10 PERCENT EXCEEDS	275	162	206
50 PERCENT EXCEEDS	24	24	33
90 PERCENT EXCEEDS	5.5	0.10	1.4

[#] See Period of Record, partial year used in monthly statistics

No flow Mar. 17 to Apr. 17

No flow many days in water years 1969, 1971-76, 1992, 1996, 1999, and 2002

Slope-area measurement of the release of water temporarily stored behind a debris-avalanche dam. Inflow into the ponded area was 5,420 ft³/s, from a slope-area measurement made about 0.3 mi upstream at a site with a drainage area of 8.98 mi²

d From floodmarks

Location of the Bradley Lake Hydroelectric Project area.

15238648 UPPER NUKA RIVER NEAR PARK BOUNDARY NEAR HOMER

LOCATION.--Lat 59°41'04", long 150°42'12" (Seldovia C-2 quad), Kenai Peninsula Borough, Hydrologic Unit 19020202, on left bank, 0.4 mi downstream from terminus of Nuka Glacier, 4.9 mi southeast of Bradley Lake, and 29 mi east of Homer, Alaska.

DRAINAGE AREA.--Indeterminate. Prior to July 29, 1990, drainage area was about 3 mi^2 and varied according to position of glacier terminus.

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1980-81, prior to shift in glacier terminus; September 1984 to current year. Records prior to July 29, 1990, are not equivalent. Published as "Upper Nuka River near Homer" prior to October 1989. Low-flow records not equivalent prior to November 1987 because most lowflow measurements were made at site 0.5 mi downstream.

REVISED RECORDS.--WDR AK-89-1: 1985 (M), 1986-88.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 1,300 ft above sea level, from topographic map.

REMARKS.--Records fair except estimated daily discharges, which are poor. Water is diverted, 300 ft upstream from gage, into Bradley River drainage since July 29, 1990. Precipitation gage and air temperature recorder at station; daily values of precipitation and air temperature are available from the computer files of the Alaska District. GOES satellite telemetry at station.

		DISCHAR	GE, CUI	BIC FEET E	PER SECOND,	WATER Y MEAN		ER 2001	TO SEPTEM	BER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4.4	e1.2	e.60	e.30	e.00	e.00	.00	e.00	e2.8	e80	38	23
2	3.6	e1.1	e.50	e.20	e.00	e.00	.00	e.00	e3.6	e70	36	28
3	4.8	e1.1	e.50	e.10	e.00	e.00	.00	e.00	e4.5	e70	43	25
4	6.7	e1.1	e.40	e.00	e.00	e.00	.00	e.00	e6.0	e70	34	23
5	6.1	e1.0	e.40	e.00	e.00	e.00	.00	e.00	e8.0	e70	31	25
6	5.2	e1.0	e.30	e.00	e.00	e.00	.00	e.00	e11	e70	32	26
7	4.1	e1.0	e.30	e.00	e.00	e.00	.00	e.00	e15	e70	36	23
8	3.4	e1.0	e.20	e.00	e.00	e.00	.00	e.00	e20	e70	36	21
9	e4.0	e.90	e.20	e.00	e.00	e.00	.00	e.00	e50	e80	29	20
10	e3.6	e.90	e.20	e.00	e.00	e.00	.00	e.00	e40	e80	27	18
11	2.8	e.90	e.10	e.00	e.00	.00	.00	e.00	e30	e70	32	15
12	e2.7	e.80	e.10	e.00	e.00	.00	.00	e.00	e25	e70	36	24
13	2.7	e.80	e.00	e.00	e.00	.00	.00	e.10	e20	e70	37	134
14	2.5	e.80	e.00	e.00	e.00	.00	.00	e.10	e30	e70	33	117
15	2.3	e.80	e.00	e.00	e.00	.00	.00	e.10	e60	e70	25	61
16	4.2	e.80	e.00	e.00	e.00	.00	.00	e.20	e70	e70	27	49
17	3.0	e1.0	e.00	e.00	e.00	.00	.00	e.20	e70	e70	30	33
18	2.3	e2.5	e.00	e.00	e.00	.00	.00	e.20	e70	77	30	24
19	e2.1	e3.0	e.00	e.00	e.00	.00	.00	e.20	e60	84	26	22
20	e2.0	e2.4	e.00	e.00	e.00	.00	.00	e.30	e60	88	29	19
21	e1.8	e2.0	e.00	e.00	e.00	.00	.00	e.30	e60	87	37	15
22	e1.7	e1.6	e.00	e.00	e.00	.00	.00	e.30	e60	73	47	15
23	e1.6	e1.4	e.00	e.00	e.00	.00	.00	e.40	e60	61	39	31
24	e1.5	e1.2	e.00	e.00	e.00	.00	.00	e.50	e60	62	29	87
25	e1.3	e1.1	e.00	e.00	e.00	.00	.00	e.60	e60	48	25	105
26	e1.2	e.90	e.20	e.00	e.00	.00	.00	e.70	e70	61	22	93
27	e1.1	e.80	e.20	e.00	e.00	.00	.00	e.90	e90	58	22	55
28	e1.1	e.70	e.10	e.00	e.00	.00	.00	e1.1	e70	43	22	41
29	e1.2	e.70	e.10	e.00		.00	.00	e1.3	e70	43	22	34
30	e1.2	e.60	e.30	e.00		.00	.00	e1.7	e70	49	24	28
31	e1.2		e.40	e.00		.00		e2.2		46	23	
TOTAL	87.4	35.10	5.10	0.60	0.00	0.00	0.00	11.40	1325.9	2100	959	1234
MEAN	2.82	1.17	.16	.019	.000	.000	.000	.37	44.2	67.7	30.9	41.1
MAX	6.7	3.0	.60	.30	.00	.00	.00	2.2	90	88	47	134
MIN	1.1	.60	.00	.00	.00	.00	.00	.00	2.8	43	22	15
AC-FT	173	70	10	1.2	.00	.00	.00	23	2630	4170	1900	2450
STATIS'	TICS OF	MONTHLY MEAN	DATA	FOR WATER	YEARS 1991	- 2002	, BY WATER	YEAR (W	Y)#			
MEAN	2.97	1.57	.13	.033	.13	.000	.003	.66	28.9	39.8	18.7	13.0
MAX	5.86	6.45	.83	.16	1.56	.000	.015	2.73	209	272	53.1	41.1
(WY)	2001	1998	2000	1995	1994	1991	1991	1996	1999	1999	1998	2002
MIN	.000	.000	.000	.000	.000	.000	.000	.000	1.06	2.96	.97	1.72
(WY)	1992	1992	1991	1991	1991	1991	1992	1998	1992	1991	1991	1991

[#] See Period of Record and Remarks. Not adjusted to account for changes in drainage area

e Estimated

1988

15238648 UPPER NUKA RIVER NEAR PARK BOUNDARY NEAR HOMER—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1991 - 2002#
ANNUAL TOTAL	935.90	5758.50	
ANNUAL MEAN	2.56	15.8	8.87
HIGHEST ANNUAL MEAN			a45.6 1999
LOWEST ANNUAL MEAN			1.09 1991
HIGHEST DAILY MEAN	200 Jul 19	134 Sep 13	335 Jul 4 1999
LOWEST DAILY MEAN	b.00 Jan 3	c.00 Dec 13	d.00 Nov 3 1990
ANNUAL SEVEN-DAY MINIMUM	.00 Jan 3	.00 Dec 13	.00 Nov 3 1990
MAXIMUM PEAK FLOW		219 Sep 24	451 Jul 4 1999
MAXIMUM PEAK STAGE		3.58 Sep 24	4.30 Jul 4 1999
ANNUAL RUNOFF (AC-FT)	1860	11420	6420
10 PERCENT EXCEEDS	6.3	61	13
50 PERCENT EXCEEDS	.20	.80	.15
90 PERCENT EXCEEDS	.00	.00	.00

PRIOR TO REGULATION AND DIVERSION OF NUKA RIVER

		STATIST	CICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS	1985 -	1989, BY	WATER YEAR	(WY)#	
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	47.6	7.01	2.83	1.48	.49	.21	.22	23.8	34.7	141	180	131
MAX (WY)	72.0 1987	24.9 1987	9.00 1987	5.79 1985	2.24 1985	.87 1985	.72 1985	117 1986	81.2 1989	307 1989	432 1989	321 1989
MIN	3.84	.024	.000	.000	.000	.000	.000	.016	.76	6.41	12.1	7.08

1988

WATER YEARS 1985 - 1989# SUMMARY STATISTICS

1988

1987

1987

1988

1986

ANNUAL MEAN	47.9			
HIGHEST ANNUAL MEAN	96.2			1989
LOWEST ANNUAL MEAN	8.60			1988
HIGHEST DAILY MEAN	1240	Aug	25	1989
LOWEST DAILY MEAN	f.00	May	6	1987
ANNUAL SEVEN-DAY MINIMUM	.00	May	6	1987
INSTANTANEOUS PEAK FLOW	g1630	Aug	25	1989
INSTANTANEOUS PEAK STAGE	5.47	Aug	25	1989
ANNUAL RUNOFF (AC-FT)	34700			

10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS 183 1.1

1989

1988

1989

1989

(WY)

1989

See Period of Record and Remarks. Not adjusted to account for changes in drainage area Diversion dam failed Jun. 17, 1999; repaired Sep. 25, 1999
From Jan. 3 - 13, Jan. 23 to June 2 and Dec. 13 - 25
From Dec. 13 - 25 and Jan. 4 to May 12
No flow most days during winter
No flow many days each year since 1987 during winter through Jun.
See Period of Record for remark on low-flow records

From rating curve extended above 380 ft^3/s

15238978 BATTLE CREEK DIVERSION ABOVE BRADLEY LAKE NEAR HOMER

LOCATION.--Lat $59^{\circ}44'45''$, long $150^{\circ}50'22''$, in SW^{1}_{4} NE $^{1}_{4}$ sec. 17, T. 5 S., R. 9 W. (Seldovia C-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on right bank 0.6 mi upstream from Bradley Lake and 25 mi east of Homer.

Date

PERIOD OF RECORD. -- August 1992 to current year.

Time

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 1,350 ft above sea level, from topographic

REMARKS.--Records good except for estimated daily discharges, which are poor. The entire flow of Battle Creek at the station has been diverted into Bradley Lake since October 1991.

Date

Gage

height

Discharge

(f+3/e)

Time

EXTREMES FOR CURRENT YEAR.-- Peak discharges greater than base discharge of 50 ft³/s and maximums (*).

Gage

Height

Discharge

(f+3/e)

	Date	111110		(ft³/s)	(ft)		Date	C	TIME	(ft^3/s)	(ft)	
	Sept. 13	0845	5	73	6.48		Sept.	24	1430	90*	6.74*	
		DISCHA	RGE, CU	BIC FEET	PER SECOND	, WATER LY MEAN		BER 2001	TO SEPTE	MBER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.7 2.4 5.7 15	0.0 0.0 0.0 0.0	e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	e0.10 e0.10 e0.10 e0.10 e0.10	11 9.3 8.0 8.1 8.1	18 16 12 14 12	4.8 5.1 5.0 4.9 4.9	2.6 2.1 1.9 1.6 2.7
6 7 8 9 10	7.6 4.9 3.6 5.8 4.7	0.0 0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.10 0.28	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.16 0.17 0.24 0.37 0.33	6.5 6.8 9.1 24 16	19 21 13 11	6.7 5.7 4.4 4.6 5.2	3.2 2.7 2.2 1.6 1.4
11 12 13 14 15	2.7 2.2 1.9 1.8	0.0 0.0 0.0 0.0	e0.0 e0.0 e0.0 e0.0	0.14 0.03 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.27 0.30 0.37 0.48 0.61	11 8.4 6.9 8.4 14	9.2 11 15 12 10	5.7 6.2 5.9 4.6 3.4	1.1 1.7 52 28 11
16 17 18 19 20	1.3 0.95 e0.80 e0.60 e0.40	0.0 0.0 0.0 0.13 0.32	e0.0 e0.0 e0.0 e0.0	0.0 0.07 0.25 0.15 0.07	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.71 0.92 1.5 2.2 2.8	17 16 15 14 10	8.6 8.6 13 12	3.1 3.0 2.9 2.8 6.9	6.0 14 5.8 3.8 2.7
21 22 23 24 25	e0.30 e0.20 e0.15 e0.10 e0.08	0.57 0.51 0.37 0.15 0.03	e0.0 e0.0 e0.0 e0.0	0.01 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	3.4 4.7 8.3 13 9.6	9.5 8.7 10 14 12	15 22 18 14 8.9	5.6 3.8 3.4 2.6 2.3	2.0 1.7 4.6 43
26 27 28 29 30 31	e0.06 e0.04 e0.02 e0.02 0.0	0.0 0.0 0.0 0.0 0.0	e0.0 e0.0 e0.0 e0.0 e0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 e0.10 e0.10	8.5 11 12 11 12 13	12 16 12 11 15	9.7 7.3 5.5 4.9 4.6 5.2	2.1 1.7 1.5 1.6 2.4 2.5	9.4 5.8 3.8 3.2 2.9
TOTAL MEAN MAX MIN AC-FT CFSM IN.	81.62 2.633 15 0.00 162 2.77 3.20	2.08 0.069 0.57 0.00 4.1 0.07 0.08	0.0 0.000 0.00 0.00 0.00 0.00	1.10 0.035 0.28 0.00 2.2 0.04 0.04	0.0 0.000 0.00 0.00 0.00 0.00	0.0 0.000 0.00 0.00 0.00 0.00	0.20 0.007 0.10 0.00 0.4 0.01	118.43 3.820 13 0.10 235 4.02 4.64	347.8 11.59 24 6.5 690 12.2 13.62	372.5 12.02 22 4.6 739 12.6 14.59	125.3 4.042 6.9 1.5 249 4.25 4.91	244.5 8.150 52 1.1 485 8.58 9.57
STATIST	rics of Mo	NTHLY MEA	N DATA	FOR WATER	R YEARS 199	2 - 2002	, BY WATER	R YEAR (#(YW			
MEAN MAX (WY) MIN (WY)	2.573 5.84 1994 0.21 1997	0.958 2.83 1998 0.009 2000	0.169 1.22 2000 0.000 1996	0.040 0.19 1995 0.000 1996	0.113 0.48 1994 0.000 1996	0.002 0.015 1998 0.000 1994	0.127 0.67 1997 0.000 1999	2.651 7.67 1993 0.21 1999	13.97 23.5 1998 5.55 1996	11.58 20.1 2001 1.83 1996	5.886 14.5 2001 0.094 1996	7.139 16.9 1995 0.91 1992

See Period of Record and Remarks, partial years used in monthly statistics ${\tt Estimated}$

15238978 BATTLE CREEK DIVERSION ABOVE BRADLEY LAKE NEAR HOMER—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1992 - 2002#
ANNUAL TOTAL	1912.39	1293.53	
ANNUAL MEAN	5.239	3.544	3.828
HIGHEST ANNUAL MEAN			5.34 1998
LOWEST ANNUAL MEAN			1.23 1996
HIGHEST DAILY MEAN	57 Jul 19	52 Sep 13	104 Sep 20 1995
LOWEST DAILY MEAN	a0.00 Jan 3	a0.00 Oct 30	b0.00 Jun 3 1992
ANNUAL SEVEN-DAY MINIMUM	0.00 Jan 23	0.00 Oct 30	0.00 Jan 11 1993
MAXIMUM PEAK FLOW		90 Sep 24	134 Sep 20 1995
MAXIMUM PEAK STAGE		6.74 Sep 24	7.32 Sep 20 1995
MAXIMUM PEAK STAGE			c8.09 May 20 1999
ANNUAL RUNOFF (AC-FT)	3790	2570	2770
ANNUAL RUNOFF (CFSM)	5.52	3.73	4.03
ANNUAL RUNOFF (INCHES)	74.89	50.65	54.74
10 PERCENT EXCEEDS	18	12	13
50 PERCENT EXCEEDS	0.03	0.10	0.30
90 PERCENT EXCEEDS	0.00	0.00	0.00

[#] See Period of Record and Remarks, partial years used in monthly statistics
a No flow many days during the winter
b No flow many days most winters, and Jun. 3, 1992 (observation), Aug. 4, Aug. 5,
Aug. 9, and Aug. 14 to Sept. 11, 1996
c Backwater from ice jam

15238990 UPPER BRADLEY RIVER NEAR NUKA GLACIER NEAR HOMER

LOCATION.--Lat 59°42'02", long 150°42'09", (Seldovia C-2 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on left bank 1.0 mi downstream from Nuka Glacier terminus, 2.7 mi upstream from confluence with Kachemak Creek, 3.7 mi southeast of Bradley Lake, and 29 mi east of Homer. Prior to July 22, 1991 at site 0.2 mi downstream.

DRAINAGE AREA.--Indeterminate. Prior to July 29, 1990, drainage area was about 10 mi^2 and varied according to position of glacier terminus.

PERIOD OF RECORD.--October 1979 to current year. Prior to October 1989, published as Upper Bradley River near Homer.

REVISED RECORDS.--WDR AK-86-1: 1980-85, WRD AK-96-1: 1991-95.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 1,250 ft above sea level, from topographic map. Prior to July 22, 1991 at site 0.2 mi downstream at different datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Flow diverted from Upper Nuka River into Upper Bradley River drainage since July 29, 1990. Air temperature recorder at station, daily values of air temperature available from the computer files of the Alaska District. GOES satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	119	e13	e2.6	e1.8	e.20	e.00	e.00	e.20	e65	300	432	334
2	75	e12	e2.5	e1.6	e.20	e.00	e.00	e.20	e80	284	458	444
3	211	e11	e2.3	e1.4	e.00	e.00	e.00	e.40	e95	273	446	361
4	500	e10	e2.1	e1.2	e.00	e.00	e.00	e.40	e110	309	419	310
5	467	e9.5	e2.0	e1.0	e.00	e.00	e.00	e.40	e140	322	376	399
6	271	e9.0	e1.8	e1.0	e.00	e.00	e.00	e.40	161	322	426	392
7	183	e8.5	e1.4	e.80	e.00	e.00	e.00	e.60	170	328	422	353
8	142	e8.0	e1.2	e.80	e.00	e.00	e.00	e.60	201	301	383	282
9	147	e7.5	e1.0	e.60	e.00	e.00	e.00	e.80	262	284	393	257
10	99	e7.0	e1.0	e.60	e.00	e.00	e.00	e1.0	207	289	416	223
11	72	e6.5	e.80	e.40	e.00	e.00	e.00	e1.0	178	314	486	174
12	61	e6.5	e.60	e.20	e.00	e.00	e.00	e1.5	146	306	533	446
13	48	e6.0	e.60	e.20	e.00	e.00	e.00	e1.5	132	290	536	1320
14	42	e5.5	e.40	e.20	e.00	e.00	e.00	e2.0	187	271	429	902
15	37	e5.5	e.40	e.20	e.00	e.00	e.00	e2.0	253	291	382	564
16	34	e5.0	e.20	e.20	e.00	e.00	e.00	e2.5	283	294	406	352
17	32	e4.8	e.20	e.20	e.00	e.00	e.00	e3.0	278	333	391	388
18	29	e5.0	e.00	e1.0	e.00	e.00	e.00	e4.0	290	355	357	241
19	27	e5.5	e.00	e.80	e.00	e.00	e.00	e5.0	278	357	327	199
20	e25	e6.0	e.00	e.60	e.00	e.00	e.00	e6.5	233	380	473	142
21	e23	e7.0	e.00	e.60	e.00	e.00	e.00	e8.0	227	411	565	112
22	e21	e7.0	e.00	e.40	e.00	e.00	e.00	e10	233	521	656	145
23	e20	e6.0	e.00	e.40	e.00	e.00	e.00	e12	236	581	534	417
24	e19	e5.5	e.00	e.20	e.00	e.00	e.00	e14	250	610	423	1100
25	e18	e4.8	e1.0	e.20	e.00	e.00	e.00	e17	265	504	361	832
26	e19	e4.4	e3.0	e.20	e.00	e.00	e.00	e21	276	523	303	643
27	e20	e4.0	e2.8	e.20	e.00	e.00	e.00	e26	361	494	278	431
28	e20	e3.5	e2.6	e.20	e.00	e.00	e.20	e32	293	431	304	338
29	e18	e3.2	e2.3	e.20		e.00	e.20	e38	286	499	294	270
30	e16	e2.9	e2.1	e.20		e.00	e.20	e46	319	468	339	216
31	e15		e2.0	e.20		e.00		e55		447	319	
TOTAL	2830	200.1	36.90	17.80	0.40	0.00	0.60	313.00	6495	11692	12867	12587
MEAN	91.3	6.67	1.19	.57	.014	.000	.020	10.1	216	377	415	420
MAX	500	13	3.0	1.8	.20	.00	.20	55	361	610	656	1320
MIN	15	2.9	.00	.20	.00	.00	.00	.20	65	271	278	112
AC-FT	5610	397	73	35	.8	.00	1.2	621	12880	23190	25520	24970
STATIST	TICS OF M	MONTHLY ME	EAN DATA	FOR WATER	YEARS 1991	1 - 2002,	BY WATER	R YEAR (WY	() #			
MEAN	73.7	14.8	2.65	.56	.39	.000	.073	19.9	220	404	442	362
MAX	213	38.4	19.4	4.75	4.35	.000	.55	93.6	363	763	597	851
(WY)	1994	1998	2000	2001	1994	1991	1993	1993	2001	2001	1993	1995
MIN	12.9	2.39	.000	.000	.000	.000	.000	.008	94.4	106	293	117
(WY)	1997	2000	1995	1991	1991	1991	1992	1998	1999	1999	1998	1992

[#] See Period of Record and Remarks. Not adjusted to account for changes in drainage area

e Estimated

15238990 UPPER BRADLEY RIVER NEAR NUKA GLACIER NEAR HOMER—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1991 - 2002#
ANNUAL TOTAL	66068.30	47039.80	
ANNUAL MEAN	181	129	129
HIGHEST ANNUAL MEAN			181 2001
LOWEST ANNUAL MEAN			91.1 1998
HIGHEST DAILY MEAN	1330 Jul 19	1320 Sep 13	a3600 Sep 21 1995
LOWEST DAILY MEAN	b.00 Feb 9	c.00 Dec 18	d.00 Dec 5 1990
ANNUAL SEVEN-DAY MINIMUM	.00 Feb 9	.00 Dec 18	.00 Dec 5 1990
MAXIMUM PEAK FLOW		1970 Sep 24	f4100 Sep 20 1995
MAXIMUM PEAK STAGE		13.78 Sep 24	g15.10 Sep 20 1995
ANNUAL RUNOFF (AC-FT)	131000	93300	93500
10 PERCENT EXCEEDS	672	418	420
50 PERCENT EXCEEDS	6.5	5.5	5.2
90 PERCENT EXCEEDS	.00	.00	.00

PRIOR TO DIVERSION FROM UPPER NUKA RIVER

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1980 - 1989, BY WATER YEAR (WY)#

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	106	22.8	10.2	4.67	1.74	1.35	1.29	38.3	161	290	349	292
MAX	279	75.7	54.6	15.1	4.82	6.50	4.67	92.0	270	458	595	673
(WY)	1980	1980	1987	1981	1981	1984	1981	1986	1988	1981	1986	1982
MIN	26.3	2.60	.50	.000	.000	.000	.000	.33	102	149	133	63.1
(WY)	1986	1988	1989	1989	1989	1989	1986	1987	1985	1985	1985	1983

SUMMARY STATISTICS	WATER YEARS 1980 - 1989 #
ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE	107 154 1986 49.6 1985 1890 Aug 27 1986 d.00 Dec 25 1979 .00 Dec 25 1979 h2530 Oct 10 1986 i9.86 Oct 10 1986
ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	77650 338 15 .50

See Period of Record and Remarks. Not adjusted to account for changes in drainage area Estimated discharge, but may have been higher during period of no gage-height record, Sep. 21 to Sep. 22, 1995 From Feb. 9 to May 14 and Dec. 18 - 24 and Feb. 3 to Apr. 27
No flow in winter most years

c d

From rating curve extended above 400 ${\rm ft^3/s}$ on basis of slope-area measurement of peak flow From floodmarks

h From rating curve extended above 440 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow i Site and datum then in use

15239000 BRADLEY RIVER NEAR HOMER

- LOCATION.--Lat $59^{\circ}45'30''$, long $150^{\circ}51'02''$, in SW^{1}_{4} SE^{1}_{4} NW^{1}_{4} sec. 8, T. 5 S., R. 9 W. (Seldovia D-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, about 1,300 ft downstream from Bradley Lake dam, 3.3 mi upstream from confluence with Middle Fork Bradley River, and 26 mi northeast of Homer.
- DRAINAGE AREA.--About 65 mi² since July and August 1990, when additional water was diverted into the basin. Prior drainage area was about 54 mi².
- PERIOD OF RECORD.--July to August 1955, October 1957 to September 1990 (discharge). October 1991 to current year (beginning month reservoir contents and monthly discharges).
- REVISED RECORDS.--WSP 2136: 1960(M), 1965. WDR AK-77-1: 1958, 1961, 1963(M), 1966, 1967, 1970, 1972, 1974, 1976.
- GAGE.--Nonrecording gage. Datum of gage is 1,054.16 ft above sea level (levels of dam-site survey for Alaska Power Authority). Totalizing flow meters on penstocks to two turbines in Bradley powerhouse. Lake-level sensor. July 13-22, 1955, non-recording lake gage at site 1 mi upstream and July 23 to August 5, 1955, at site 3 mi upstream at different datum. Prior to November 4, 1980, and April 29 to October 5, 1986, water-stage recorder at site 500 ft upstream at different datum and November 4, 1980 to April 28, 1986, water-stage recorder 1,300 ft upstream at different datum. April 29, 1986 to September 30, 1989, water-stage recorder at present site and datum.
- REMARKS.--Reservoir is formed by an earthen dam with impermeable core and concrete face at the outlet of Bradley Lake. Construction began November 1986 and was completed in April 1991. Total and usable capacities below the spillway crest of 1,180 ft are 547,500 and 284,200 acre-ft, respectively. Reservoir is used for power. Discharge released through turbines is computed using totalizing flow meters; release flow enters Kachemak Bay and is not returned to stream. Spill, dam seepage, and fish-water bypass are measured at Bradley River below Dam (15239001) gage. Reservoir capacity table furnished by the Alaska Energy Authority.
- COOPERATION.--Reservoir elevations and power generation discharge provided by the Homer Electric Association, for the Alaska Energy Authority.
- AVERAGE DISCHARGE.--43 years (water years 1958 to 1989, and 1992 to current year), 454 ft³/s, 328,900 acre-ft/yr. The inflow diversions from Middle Fork Bradley River and Battle Creek into the reservoir are excluded. Flow diverted from Upper Nuka River into Upper Bradley since July 29, 1990 was not measurable and is included in the following tabulations.
- EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 549,400 acre-ft, October 1, 1991, elevation 1180.5 ft; minimum contents observed, 246,600 acre-ft, April 23, 1997, elevation 1069.3 ft. Maximum computed discharge, 8,800 ft³/s, October 10, 1986, gage height, 10.90 ft from floodmarks, site and datum then in use. Maximum discharge, September 21-22, 1995 was probably higher, as indicated by extremes for period of record on these dates for other sites in the Bradley River basin; minimum daily, about 9.0 ft³/s, December 7, 1986, result of power tunnel construction at dam site.
- EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 529,400 acre-ft, October 1, elevation 1175.4 ft; minimum contents observed, 333,900 acre-ft, May 21 and May 22, elevation 1113.7 ft.

BEGINNING OF MONTH RESERVOIR ELEVATION, IN FEET ABOVE SEA LEVEL, AND CONTENTS, IN ACRE FEET WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DATE	ELEVATION	CONTENTS	CHANGE IN CONTENTS
Oct 1	1,175.4	529,400	
Nov 1	1,169.5	508,300	-21,100
Dec 1	1,164.5	490,500	-17,800
Jan 1	1,157.8	466,700	-23,800
Feb 1	1,151.9	445,800	-20,900
Mar 1	1,142.5	415,900	-29,900
Apr 1	1,132.7	385,700	-30,200
May 1	1,120.5	350,800	-34,900
Jun 1	1,117.0	342,000	-8,800
Jul 1	1,126.5	366,600	24,600
Aug 1	1,142.3	415,300	48,700
Sep 1	1,152.0	446,100	30,800
Oct 1	1,164.3	489,800	43,700
		CAL YR 2001	+97,000
		WTR YR 2002	-39,600

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MEAN VALUES

MONTH	CHANGE IN CONTENTS	POWER GENERATION	BRADLEY RIVER BELOW DAM 15239001	MIDDLE FORK BRADLEY RIVER 15239050	BATTLE CREEK DIVERSION 15238978	BRADLEY RIVER 15239000
OCT	-343	758	26.4	38.6	2.63	400
NOV	-299	388	31.4	8.47	0.069	112
DEC	-387	496	40.4	6.11	0.000	143
JAN	-340	424	40.4	5.47	0.035	119
FEB	-538	596	44.0	3.70	0.000	97.9
MAR	-491	485	42.9	3.34	0.000	33.1
APR	-586	555	39.2	2.91	0.007	20.0e
MAY	-143	681	11.3	25.0	3.82	505
JUN	+413	751	3.10	104	11.6	1,050
JUL	+792	649	17.2	177	12.0	1,270
AUG	+501	598	55.8	116	4.04	1,040
SEP	+734	575	55.4	100	8.15	1,260
CAL YR 2001	+130	477	27.1	61.1	5.24	569
WTR YR 2002	-57	580	33.9	49.6	3.54	504

15239001 BRADLEY RIVER BELOW DAM NEAR HOMER

LOCATION.--Lat $59^{\circ}45'30''$, long $150^{\circ}51'02''$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec. 8, T. 5 S., R. 9 W. (Seldovia D-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on right bank about 1,300 ft downstream from Bradley Lake Dam, 3.3 mi upstream from Middle Fork Bradley River, and 26 mi northeast of Homer.

DRAINAGE AREA.--About 66 \min^2 since October 1991, when additional water was diverted into the basin. Prior drainage area was about 54 \min^2 .

PERIOD OF RECORD.--October 1989 to current year. Prior to 1990 water year, records are equivalent to "Bradley River near Homer" (station no. 15239000).

GAGE.--Water-stage recorder. Datum of gage is 1,054.16 ft above sea level (levels of dam-site survey for Alaska Power Authority).

REMARKS.--No estimated daily discharges. Records fair. Nuka River and Middle Fork Bradley River were diverted into Bradley Lake, upstream from dam, beginning July 29 and August 7, 1990, respectively. Reservoir began filling April 26, 1991. Water has been diverted out of the basin through the turbines since hydro-power generation began on June 28, 1991. Battle Creek was diverted into reservoir in October 1991. Rain gage and air temperature recorder at station, daily values of precipitation and air temperature available from the computer files of the Alaska District.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,450 $\rm ft^3/s$ September 21, 1990, gage height, 7.11 ft; minimum, 0.00 $\rm ft^3/s$, from rating curve extended below 0.18 $\rm ft^3/s$, most likely ponded water, but no measurable flow, June 9 and June 10, 1997.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 95 ft³/s, August 24, gage height, 3.09 ft; minimum, 0.02 ft³/s, July 8., gage-height 1.62 ft.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUE

1 5.3 29 38 42 43 43 42 9.9 4.0 0.32 39 79 2 5.3 27 40 40 43 43 42 4.5 3.9 0.32 40 81 3 5.9 27 40 40 43 42 41 9.2 3.6 0.11 40 81 4 5.9 27 40 40 43 42 41 18 3.6 0.09 40 81 5 5.6 27 40 40 43 42 41 26 3.5 0.08 46 81 6 5.5 27 40 40 42 42 41 27 3.4 0.06 48 81 7 5.5 27 40 40 42 42 41 27 3.4 0.06 48 81 7 5.5 27 <th>DAY</th> <th>OCT</th> <th>NOV</th> <th>DEC</th> <th>JAN</th> <th>FEB</th> <th>MAR</th> <th>APR</th> <th>MAY</th> <th>JUN</th> <th>JUL</th> <th>AUG</th> <th>SEP</th>	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
3	1	5.3	29	38	42	43	43	42	9.9	4.0	0.32	39	79
4 5.9 27 40 40 43 42 41 18 3.6 0.09 40 81 5 5.6 27 40 40 43 42 41 26 3.5 0.08 46 81 6 5.5 27 40 40 42 42 41 27 3.4 0.06 48 81 7 5.5 27 40 40 42 42 41 23 3.6 0.05 48 81 8 8.0 31 40 42 43 42 39 27 3.8 0.04 51 81 10 19 33 40 41 42 43 40 23 4.1 16 50 81 10 19 33 40 41 42 45 40 19 3.5 21 51 81 11 47 33 40 40 44 45 41 27 3.3 15 50 81	2	5.3	27	40	40	43	43	42	4.5	3.9	0.32	40	81
4 5.9 27 40 40 43 42 41 18 3.6 0.09 40 81 5 5.6 27 40 40 43 42 41 26 3.5 0.08 46 81 6 5.5 27 40 40 42 42 41 27 3.4 0.06 48 81 7 5.5 27 40 40 42 42 41 23 3.6 0.05 48 81 8 8.0 31 40 42 43 42 39 27 3.8 0.04 51 81 10 19 33 40 41 42 43 40 23 4.1 16 50 81 10 19 33 40 41 42 45 40 19 3.5 21 51 81 11 47 33 40 40 44 45 41 27 3.3 15 50 81	3	5.9	27	40	40	43	42	41	9.2	3.6	0.11	40	81
5 5.6 27 40 40 43 42 41 26 3.5 0.08 46 81 6 5.5 27 40 41 42 42 41 27 3.4 0.06 48 81 7 5.5 27 40 40 42 42 41 23 3.6 0.05 48 81 9 6.0 34 40 41 42 43 40 23 4.1 16 50 81 10 19 33 40 41 42 45 40 19 3.5 21 51 81 11 47 33 40 40 44 45 41 27 3.3 15 50 81 11 47 33 40 40 42 45 41 27 3.3 15 50 83 12 41 33 <	4	5.9	27	40	40	43	42	41	18	3.6	0.09	40	81
7		5.6	27	40	40	43	42	41	26	3.5	0.08	46	81
8 8.0 31 40 42 43 42 39 27 3.8 0.04 51 81 9 6.0 34 40 41 42 43 40 23 4.1 16 50 81 10 19 33 40 41 42 45 40 19 3.5 21 51 81 11 47 33 40 40 44 45 41 27 3.3 15 50 81 12 41 33 40 40 42 45 41 28 3.2 13 50 83 13 34 33 40 40 50 45 41 28 3.2 13 50 83 14 29 33 43 40 46 44 41 8.7 3.3 16 49 46 15 22 33 40 40 46 44 41 5.0 3.4 23 51 56 <td>6</td> <td>5.5</td> <td>27</td> <td>40</td> <td>41</td> <td>42</td> <td>42</td> <td>41</td> <td>27</td> <td>3.4</td> <td>0.06</td> <td>48</td> <td>81</td>	6	5.5	27	40	41	42	42	41	27	3.4	0.06	48	81
9 6.0 34 40 41 42 43 40 19 3.5 21 51 81 11 47 33 40 40 40 44 45 41 27 3.3 15 50 81 12 41 33 40 40 40 42 45 41 28 3.2 13 50 83 13 34 33 40 40 40 50 45 41 28 3.2 13 50 83 14 29 33 43 40 40 46 44 41 8.7 3.3 16 49 46 15 22 33 40 40 40 46 44 41 5.0 3.4 23 49 58 16 27 33 40 40 40 46 44 41 5.0 3.4 23 51 56 17 29 33 40 40 40 45 43 41 5.0 3.4 23 51 56 18 29 34 40 40 44 43 41 5.0 3.3 20 52 24 19 29 33 41 40 40 44 43 41 5.0 3.2 17 52 29 20 29 33 41 40 40 44 43 41 5.0 3.2 17 52 29 21 28 33 31 41 40 44 43 39 4.7 7.5 22 47 33 22 33 33 41 40 44 43 39 4.7 7.5 22 47 33 23 42 32 40 40 44 44 43 38 4.8 2.9 14 52 32 24 46 32 40 40 44 43 38 4.8 2.9 14 52 23 24 46 32 40 40 44 43 38 4.8 2.9 14 52 23 24 46 32 40 40 44 43 38 4.8 2.9 14 52 22 24 46 32 40 40 44 43 38 4.8 2.9 14 52 23 24 46 32 40 40 44 43 38 4.8 2.9 14 52 23 24 46 32 40 40 44 43 38 4.8 2.9 14 52 23 24 46 32 40 40 44 43 38 4.8 2.9 14 52 23 24 46 32 40 40 44 43 38 4.8 2.9 14 52 23 24 46 32 40 40 44 44 33 38 4.8 2.9 14 52 22 24 46 32 40 40 44 43 38 4.8 2.9 14 52 22 24 46 32 40 40 44 43 38 4.8 2.9 14 52 22 24 46 32 40 40 44 44 33 38 4.8 2.9 14 52 22 24 46 32 40 40 44 43 38 4.8 2.9 14 52 22 24 46 32 40 40 44 43 38 4.8 2.9 14 52 22 24 46 32 40 40 44 43 38 4.8 2.9 14 52 22 24 46 32 40 40 44 43 38 4.8 2.9 14 52 22 24 46 32 40 40 44 43 38 4.8 2.9 14 52 22 24 46 32 40 40 44 43 38 4.8 2.9 14 52 22 24 46 32 40 40 44 43 38 4.8 2.9 14 52 22 25 27 44 32 42 40 45 42 38 4.6 2.9 14 64 9.1 26 45 32 43 40 44 42 38 4.6 2.9 14 64 9.1 26 45 32 42 43 40 44 42 38 4.8 2.9 14 69 57 27 44 32 42 42 40 45 42 38 4.0 0.16 41 80 57 28 44 43 32 41 40 46 42 38 4.0 0.16 41 80 57 28 44 43 32 41 40 40 46 42 38 4.0 0.16 41 80 57 28 44 43 32 41 40 40 46 42 38 4.0 0.16 41 80 57 28 44 43 32 41 40 40 46 42 38 4.0 0.16 41 80 57 28 44 44 00 0.16 41 80 57	7	5.5	27	40	40	42	42	41	23	3.6	0.05	48	
10 19 33 40 41 42 45 40 19 3.5 21 51 81 11 47 33 40 40 44 45 41 27 3.3 15 50 81 12 41 33 40 40 42 45 41 28 3.2 13 50 83 13 34 33 40 40 50 45 41 23 3.1 13 49 60 14 29 33 43 40 46 44 41 8.7 3.3 16 49 46 15 22 33 40 40 46 44 41 4.7 3.4 23 51 56 17 29 33 40 40 46 44 41 5.0 3.4 23 51 56 17 29 33 40 40 45 43 41 5.0 3.4 23 51 56 17 29 33 40 40 44 43 41 5.0 3.3 24 52 33 18	8	8.0	31	40	42	43	42	39	27	3.8	0.04	51	81
11	9	6.0	34	40	41	42	43	40	23	4.1	16	50	81
12 41 33 40 40 42 45 41 28 3.2 13 50 83 13 34 33 40 40 50 45 41 23 3.1 13 49 60 14 29 33 43 40 46 44 41 8.7 3.3 16 49 46 15 22 33 40 40 46 44 41 8.7 3.3 16 49 46 16 27 33 40 40 46 44 41 5.0 3.4 23 51 56 17 29 33 40 40 45 43 41 5.2 3.3 24 52 33 18 29 34 40 40 44 43 41 5.0 3.3 20 52 24 19 29 33 40 40 44 43 41 5.0 3.2 17 52 29 </td <td>10</td> <td>19</td> <td>33</td> <td>40</td> <td>41</td> <td>42</td> <td>45</td> <td>40</td> <td>19</td> <td>3.5</td> <td>21</td> <td>51</td> <td>81</td>	10	19	33	40	41	42	45	40	19	3.5	21	51	81
13 34 33 40 40 50 45 41 23 3.1 13 49 60 14 29 33 43 40 46 44 41 8.7 3.3 16 49 46 15 22 33 40 40 46 44 41 4.7 3.4 23 49 58 16 27 33 40 40 46 44 41 5.0 3.4 23 51 56 17 29 33 40 40 45 43 41 5.2 3.3 24 52 33 18 29 34 40 40 45 43 41 5.0 3.3 20 52 24 19 29 33 40 40 44 43 41 5.0 3.2 17 52 29 20 29 33 41 40 44 43 41 5.0 3.2 17 52 29 <	11	47	33	40	40	44	45	41	27	3.3	15	50	81
14 29 33 43 40 46 44 41 8.7 3.3 16 49 46 15 22 33 40 40 46 44 41 4.7 3.4 23 49 58 16 27 33 40 40 46 44 41 5.0 3.4 23 51 56 17 29 33 40 40 45 43 41 5.2 3.3 24 52 33 18 29 34 40 40 44 43 41 5.0 3.2 20 52 24 19 29 33 40 40 44 43 41 5.0 3.2 17 52 29 20 29 33 41 40 44 43 41 5.0 3.2 17 52 29 20 29 33 41 40 44 43 39 4.7 7.5 22 47 33		41	33	40	40	42	45	41		3.2		50	
15 22 33 40 40 46 44 41 4.7 3.4 23 49 58 16 27 33 40 40 46 44 41 5.0 3.4 23 51 56 17 29 33 40 40 45 43 41 5.2 3.3 24 52 33 18 29 34 40 40 44 43 41 5.0 3.3 20 52 24 19 29 33 40 40 44 43 41 5.0 3.2 17 52 29 20 29 33 41 40 44 43 41 5.0 3.2 17 52 29 20 29 33 41 40 44 43 39 4.7 7.5 22 47 33 22 23 33 34 40 44 43 39 4.7 7.5 22 47 33	13	34	33	40	40	50	45	41	23	3.1	13	49	60
16 27 33 40 40 46 44 41 5.0 3.4 23 51 56 17 29 33 40 40 45 43 41 5.2 3.3 24 52 33 18 29 34 40 40 44 43 41 5.0 3.3 20 52 24 19 29 33 40 40 44 43 41 5.0 3.2 17 52 29 20 29 33 41 40 44 43 40 4.8 3.4 22 52 32 21 28 33 41 40 44 43 39 4.7 7.5 22 47 33 22 33 33 41 40 44 43 38 5.0 3.0 17 52 32 21 28 33 341 40 44 43 38 5.0 3.0 17 52 33	14	29	33	43	40	46	44	41	8.7	3.3	16	49	46
17 29 33 40 40 45 43 41 5.2 3.3 24 52 33 18 29 34 40 40 44 43 41 5.0 3.3 20 52 24 19 29 33 40 40 44 43 41 5.0 3.2 17 52 29 20 29 33 41 40 44 43 40 4.8 3.4 22 52 32 21 28 33 41 40 44 43 39 4.7 7.5 22 47 33 22 33 33 41 40 44 43 38 5.0 3.0 17 52 33 23 42 32 40 40 44 43 38 5.0 3.0 17 52 23 24 46 32 40 40 44 43 38 4.6 2.9 14 64 9.1	15	22	33	40	40	46	44	41	4.7	3.4	23	49	58
18 29 34 40 40 44 43 41 5.0 3.3 20 52 24 19 29 33 40 40 44 43 41 5.0 3.2 17 52 29 20 29 33 41 40 44 43 40 4.8 3.4 22 52 32 21 28 33 41 40 44 43 39 4.7 7.5 22 47 33 22 33 33 41 40 45 43 38 5.0 3.0 17 52 33 23 42 32 40 40 44 43 38 4.8 2.9 14 52 22 24 46 32 40 40 44 43 38 4.6 2.9 14 64 9.1 25 45 32 41 40 44 42 38 4.5 2.9 21 75 1.1 26 45 32 43 40 44 42 37 4.4 4.7 26 80 27 27	16	27	33	40	40	46	44	41	5.0	3.4	23	51	56
19 29 33 40 40 44 43 41 5.0 3.2 17 52 29 20 29 33 41 40 44 43 40 4.8 3.4 22 52 32 21 28 33 41 40 44 43 39 4.7 7.5 22 47 33 22 33 33 41 40 45 43 38 5.0 3.0 17 52 33 23 42 32 40 40 44 43 38 4.8 2.9 14 52 22 24 46 32 40 40 44 43 38 4.6 2.9 14 64 9.1 25 45 32 41 40 44 42 38 4.5 2.9 21 75 1.1 26 45 32 43 40 44 42 37 4.4 4.7 26 80 27 27 44 32 42 40 45 42 38 4.3 0.21 31 80 57 2	17	29	33	40	40	45	43	41	5.2	3.3	24	52	33
20 29 33 41 40 44 43 40 4.8 3.4 22 52 32 21 28 33 41 40 44 43 39 4.7 7.5 22 47 33 22 33 33 41 40 45 43 38 5.0 3.0 17 52 33 23 42 32 40 40 44 43 38 4.8 2.9 14 52 22 24 46 32 40 40 44 43 38 4.6 2.9 14 64 9.1 25 45 32 41 40 44 42 38 4.5 2.9 21 75 1.1 26 45 32 43 40 44 42 37 4.4 4.7 26 80 27 27 44 32 42 40 45 42 38 4.3 0.21 31 80 57 28 44 32 41 40 46 42 38 4.0 0.16 41 80 57	18	29	34	40	40	44	43	41	5.0	3.3	20	52	24
20 29 33 41 40 44 43 40 4.8 3.4 22 52 32 21 28 33 41 40 44 43 39 4.7 7.5 22 47 33 22 33 33 41 40 45 43 38 5.0 3.0 17 52 33 23 42 32 40 40 44 43 38 4.8 2.9 14 52 22 24 46 32 40 40 44 43 38 4.6 2.9 14 64 9.1 25 45 32 41 40 44 42 38 4.5 2.9 21 75 1.1 26 45 32 43 40 44 42 37 4.4 4.7 26 80 27 27 44 32 42 40 45 42 38 4.3 0.21 31 80 57 28 44 32 41 40 46 42 38 4.0 0.16 41 80 57	19	29	33	40	40	44	43	41	5.0	3.2	17	52	29
22 33 33 41 40 45 43 38 5.0 3.0 17 52 33 23 42 32 40 40 44 43 38 4.8 2.9 14 52 22 24 46 32 40 40 44 43 38 4.6 2.9 14 64 9.1 25 45 32 41 40 44 42 38 4.5 2.9 21 75 1.1 26 45 32 43 40 44 42 37 4.4 4.7 26 80 27 27 44 32 42 40 45 42 38 4.3 0.21 31 80 57 28 44 32 41 40 46 42 38 4.0 0.16 41 80 57 29 37 32 41 40 42 34 4.0 0.15 42 81 57	20	29	33	41	40	44	43	40	4.8	3.4		52	
23 42 32 40 40 44 43 38 4.8 2.9 14 52 22 24 46 32 40 40 44 43 38 4.6 2.9 14 64 9.1 25 45 32 41 40 44 42 38 4.5 2.9 21 75 1.1 26 45 32 43 40 44 42 37 4.4 4.7 26 80 27 27 44 32 42 40 45 42 38 4.3 0.21 31 80 57 28 44 32 41 40 46 42 38 4.0 0.16 41 80 57 29 37 32 41 40 42 34 4.0 0.15 42 81 57	21	28	33	41	40	44	43	39	4.7	7.5	22	47	33
24 46 32 40 40 44 43 38 4.6 2.9 14 64 9.1 25 45 32 41 40 44 42 38 4.5 2.9 21 75 1.1 26 45 32 43 40 44 42 37 4.4 4.7 26 80 27 27 44 32 42 40 45 42 38 4.3 0.21 31 80 57 28 44 32 41 40 46 42 38 4.0 0.16 41 80 57 29 37 32 41 40 42 34 4.0 0.15 42 81 57	22	33	33	41	40	45	43	38	5.0	3.0	17	52	33
24 46 32 40 40 44 43 38 4.6 2.9 14 64 9.1 25 45 32 41 40 44 42 38 4.5 2.9 21 75 1.1 26 45 32 43 40 44 42 37 4.4 4.7 26 80 27 27 44 32 42 40 45 42 38 4.3 0.21 31 80 57 28 44 32 41 40 46 42 38 4.0 0.16 41 80 57 29 37 32 41 40 42 34 4.0 0.15 42 81 57	23	42	32	40	40	44	43	38	4.8	2.9	14	52	22
25 45 32 41 40 44 42 38 4.5 2.9 21 75 1.1 26 45 32 43 40 44 42 37 4.4 4.7 26 80 27 27 44 32 42 40 45 42 38 4.3 0.21 31 80 57 28 44 32 41 40 46 42 38 4.0 0.16 41 80 57 29 37 32 41 40 42 34 4.0 0.15 42 81 57	24	46	32	40	40	44	43	38	4.6	2.9	14	64	
27 44 32 42 40 45 42 38 4.3 0.21 31 80 57 28 44 32 41 40 46 42 38 4.0 0.16 41 80 57 29 37 32 41 40 42 34 4.0 0.15 42 81 57													
28 44 32 41 40 46 42 38 4.0 0.16 41 80 57 29 37 32 41 40 42 34 4.0 0.15 42 81 57	26	45	32	43	40	44	42	37	4.4	4.7	26	80	27
29 37 32 41 40 42 34 4.0 0.15 42 81 57	27	44	32	42	40	45	42	38	4.3	0.21	31	80	57
29 37 32 41 40 42 34 4.0 0.15 42 81 57	28	44	32	41	40	46	42	38	4.0	0.16	41	80	57
	29	37	32	41	40			34	4.0	0.15		81	57
30 34 32 41 41 42 21 4.2 0.16 40 81 57			32	41	41							81	
31 34 41 43 42 4.1 40 80													
TOTAL 820.0 942 1254 1251 1233 1331 1176 351.6 94.48 532.07 1731 1663.2	TOTAL	820.0	942	1254	1251	1233	1331	1176	351.6	94.48	532.07	1731	1663.2
MEAN 26.45 31.40 40.45 40.35 44.04 42.94 39.20 11.34 3.149 17.16 55.84 55.44	MEAN	26.45										55.84	
MAX 47 34 43 43 50 45 42 28 7.5 42 81 83													
MIN 5.3 27 38 40 42 42 21 4.0 0.15 0.04 39 1.1													
AC-FT 1630 1870 2490 2480 2450 2640 2330 697 187 1060 3430 3300													

CAL YR 2001 TOTAL 9895.19 MEAN 27.11 MAX 81 MIN 0.10 AC-FT 19630 WTR YR 2002 TOTAL 12379.35 MEAN 33.92 MAX 83 MIN 0.04 AC-FT 24550

15239050 MIDDLE FORK BRADLEY RIVER NEAR HOMER

LOCATION.--Lat $59^{\circ}46'42''$, long $150^{\circ}45'15''$, in NW_{4}^{1} NE_{4}^{1} sec.2, T.5 S., R.9 W. (Seldovia D-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on left bank 6.0 mi upstream from mouth and 27 mi east of Homer.

PERIOD OF RECORD. --October 1979 to current year. Published as Bradley River tributary near Homer prior to October

REVISED RECORDS.-- WDR AK-86-1: 1980(P), 1981-82(M), 1984(M). WRD AK-2000-1: 1995-1997.

GAGE.--Water-stage recorder. Elevation of gage is 2,300 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are poor. Precipitation gage and air temperature recorder at station; daily values of air temperature and precipitation are available from the computer files of the Alaska District.

Gage

Discharge

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 300 $\mathrm{ft^3}/\mathrm{s}$ and maximums (*)

Gage

Discharge

	Date	Time		charge ³ /s)	Height (ft)		Date	e T		ischarge (ft³/s)	height (ft)	
	Jul 22	2000) 3	334	8.25		Sept 2	24 1	730	373*	8.33*	
		DISCHAI	RGE, CUBI	C FEET P		, WATER LY MEAN	YEAR OCTOB	ER 2000 1	TO SEPTEM	IBER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	43 38 46 84	e12 e12 e11 e11	e6.5 e6.5 e6.5 e6.0	e6.0 e6.0 e6.0 e6.0	e4.0 e3.8 e3.8 e3.8	e3.6 e3.6 e3.4 e3.4	e3.2 e3.2 e3.2 e3.2	e3.2 e3.2 e3.4 e3.4	60 59 62 69	171 172 163 166	134 138 142 147	81 95 86 82
5	126	e11	e5.5	6.0	e3.8	e3.4	e3.2	e3.6	68	167	141	122
6 7 8 9 10	99 75 62 58 51	e10 e10 e9.5 e9.5 e9.0	e5.5 e5.5 e5.5 e5.5	7.5 5.8 e6.0 e6.0	e3.8 e3.8 e3.8 e3.8	e3.4 e3.4 e3.4 e3.4	e3.2 e3.0 e3.0 e3.0 e3.0	e3.6 e3.8 e4.0 e4.4 e4.8	64 65 76 88 80	171 197 179 155 156	146 151 127 114 113	117 103 79 65 54
11 12 13 14 15	49 49 46 34 30	e9.0 e8.5 e8.5 e8.0 e8.0	e5.5 e5.5 e5.5 e5.5 e5.0	e6.0 e6.0 e6.0 e6.0	e3.8 e3.8 e3.6 e3.6	e3.4 e3.4 e3.4 e3.4 e3.4	e3.0 e3.0 e3.0 e3.0 e3.0	e5.4 6.0 7.1 8.9 9.2	72 65 60 71 118	158 163 172 162 155	120 145 150 122 107	48 59 219 185 124
16 17 18 19 20	e30 31 26 e23 e22	e8.0 e7.5 e7.5 e7.5 e7.5	e5.0 e5.0 e5.0 e5.0 e8.0	5.9 5.7 e7.0 e6.0 e5.5	e3.6 e3.6 e3.6 e3.6	e3.4 e3.4 e3.4 e3.4 e3.2	e3.0 e3.0 e3.0 e3.0 e2.5	9.5 13 18 26 36	148 157 171 161 132	152 159 190 200 195	101 105 102 99 158	99 100 76 62 51
21 22 23 24 25	e20 e19 e18 e17 e16	e7.0 e7.0 e7.0 e7.0 e7.0	e8.0 e6.0 e5.5 e5.5 e8.0	e5.5 e5.0 e4.6 e4.6 e4.4	e3.6 e3.6 e3.6 e3.6	e3.2 e3.2 e3.2 e3.2 e3.2	e2.5 e2.5 e2.5 e2.5 e2.5	40 53 71 52 50	115 106 111 131 137	220 295 286 257 197	157 128 110 100 87	44 44 85 206 206
26 27 28 29 30 31	e16 e15 e14 e14 e13 e13	e7.0 e7.0 e7.0 e6.5 e6.5	e10 e8.0 e7.0 e6.0 e6.0 e6.0	e4.2 e4.0 e4.0 e4.0 e4.0	e3.6 e3.6 e3.6 	e3.2 e3.2 e3.2 e3.2 e3.2	e2.5 e2.5 e3.0 e3.0 e3.2	53 55 53 53 58 62	135 142 124 130 153	173 149 121 125 132 139	72 66 67 71 81 78	160 112 93 86 72
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1197 38.61 126 13 2370 4.17 4.81	254.0 8.467 12 6.5 504 0.92 1.02	189.5 6.113 10 5.0 376 0.66 0.76	169.5 5.468 7.5 4.0 336 0.59 0.68	103.6 3.700 4.0 3.6 205 0.40	103.4 3.335 3.6 3.2 205 0.36 0.42	87.4 2.913 3.2 2.5 173 0.31 0.35	776.5 25.05 71 3.2 1540 2.71 3.12	3130 104.3 171 59 6210 11.3 12.59	5497 177.3 295 121 10900 19.2 22.11	3579 115.5 158 66 7100 12.5 14.39	3015 100.5 219 44 5980 10.9 12.13

e Estimated

15239050 MIDDLE FORK BRADLEY RIVER NEAR HOMER—Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1980 - 2002, BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN MAX (WY) MIN (WY)	43.58 144 1987 15.6 1997	16.73 34.5 1980 5.29 1985	8.438 33.4 1987 4.45 1985	5.747 17.0 1981 3.82 1991	4.646 9.32 1981 2.86 1991	3.620 7.17 1981 1.30 1986	3.296 4.42 2001 2.38 1999	16.72 44.5 1990 5.45 1987	95.62 162 1998 44.7 1985	161.4 221 2001 111 1996	143.6 204 2001 86.9 1996	104.2 220 1995 38.7 1992
SUMMAR	Y STATIST	ICS	FOR	2001 CALEN	DAR YEAR	F	OR 2002 W	ATER YEAR		WATER YEARS	1980 -	2002
LOWEST HIGHEST LOWEST ANNUAL MAXIMUN MAXIMUN	MEAN F ANNUAL ANNUAL M F DAILY M DAILY ME	EAN EAN AN Y MINIMUM OW 'AGE		22320.1 61.15 460 a3.8 3.9	Jul 20 May 8 May 5		18101.9 49.59 295 b2.5 2.5 373 8.33 f9.58	Jul 22 Apr 20 Apr 20 Sep 24 Sep 24		50.94 63.8 34.6 966 c1.1 1.1 1470 d8.86 q16.16	Sep 20 Mar 28 Mar 28 Sep 20 Sep 20 May 12	1986 1986 1995 1995
ANNUAL ANNUAL ANNUAL 10 PERO 50 PERO	RUNOFF (RUNOFF (RUNOFF (CENT EXCE CENT EXCE CENT EXCE	AC-FT) CFSM) INCHES) EDS EDS		44270 6.61 89.76 197 8.9 4.5			35910 5.36 72.80 152 8.9 3.2	5		36900 5.51 74.82 153 11 3.2		

a May 8-11
b Apr. 20-27
c From Mar. 28 to Apr. 10, 1986
d From recorded range in stage
f Backwater from snow bridge collapse
g Backwater from ice

15239060 MIDDLE FORK BRADLEY RIVER BELOW NORTH FORK BRADLEY RIVER NEAR HOMER

LOCATION.--Lat $59^{\circ}47'54''$, long $150^{\circ}51'48''$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ $SW^{1}/_{4}$ sec. 29, T. 4 S., R. 9 W. (Seldovia D-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on left bank 100 ft upstream from confluence with the main stem Bradley River, 0.2 mi below the mouth of the North Fork Bradley River, 5.5 mi downstream from the Middle Fork Bradley River diversion dam, and 25 mi east of Homer.

DRAINAGE AREA. -- 24.8 mi2

PERIOD OF RECORD. -- August 1996 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 200 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Water from upper Middle Fork Bradley River (15239050) is diverted into Bradley Lake at Middle Fork Bradley River diversion dam, located 5.5 mi upstream. Air temperature recorder at station, daily values of air temperature are available from the computer files of the Alaska District.

	DISCHARGE	E, CUBIC	FEET PER			YEAR OCTOBER VALUES	2001 TO	SEPTEMB	ER 2002		
DAY OCT	NOV	DEC	JAN	FEB	MAR		MAY	JUN	JUL	AUG	SEP
1 75 2 63 3 65 4 91 5 101	e19 e e19 e 19 e	19 18 17 16 15	36	13 13 12 14 14	9.3 8.4 e8.0 e7.5 e7.0	5.5 5.5 5.5 5.5	126 104 78 60 54	189 169 156 154 152	170 158 139 135 125	63 64 65 62 57	36 33 34 30 31
6 90 7 78 8 70 9 86 10 79	17 e 17 e 16 e	15 14 13 13	37 36 32 78 64	13 12 11 12 11	e7.0 e6.5 e6.5 e6.0	5.8 5.8 5.7	56 56 62 83 85	134 138 177 248 202	131 129 111 95 99	54 53 49 46 47	38 35 32 30 28
11 69 12 62 13 58 14 54 15 49	16 15 14 14	12 12 11 11	37 30 31 31	12 12 15 13	e5.5 e5.5 5.5 6.0 6.8	5.4	78 83 96 116 115	158 140 126 152 250	103 109 109 93 86	46 51 52 47 42	26 28 91 92 68
16 43 17 42 18 45 19 39 20 36	13 17 34 32 34	9.6 9.0 8.8 8.5 8.1	28 36 34 29 25	12 11 10 9.4 e9.0	6.7 6.6 6.5 6.4 6.4	5.3 5.2 5.7 6.8 7.2	122 157 198 233 250	253 228 211 189 147	86 89 101 94 86	39 39 38 38 49	54 74 61 51 44
21 35 22 32 23 e30 24 29 25 e26	36 35 30	9.6 22	e24 e22 e21 e20 e19	e8.5 8.3 8.1 8.1 8.8	6.3 6.2 6.2 6.1	6.8 6.8 7.1 7.7 8.4	241 261 272 258 249	128 115 113 119 131	88 116 104 95 85	51 41 38 35 32	40 37 46 136 163
26 e23 27 e23 28 e24 29 e24 30 23 31 21	e24 e e22 e21 e20	32 55 89 62 55	e18 e17 e16 16 15	10 9.8 10 	6.0 6.0 5.8 5.7 5.7	6.8 7.1 7.7 8.4 8.8 11 20 55 97 	238 219 200 196 227 227	130 131 125 132 154	82 73 60 60 62 67	30 28 27 27 29 32	110 90 78 71 67
TOTAL 1585 MEAN 51.13 MAX 101 MIN 21 AC-FT 3140 CFSM 2.06 IN. 2.38	21.97 2: 36 13 1310 0.89	1.36	1031 33.26 82 14 2040 1.34 1.55	311.0 11.11 15 8.1 617 0.45 0.47	200.0 6.452 9.3 5.5 397 0.26 0.30	5.2		4851 161.7 253 113 9620 6.52 7.28	101.3 170 60	1371 44.23 65 27 2720 1.78 2.06	1754 58.47 163 26 3480 2.36 2.63
STATISTICS OF MO	NTHLY MEAN	DATA FOR	WATER YE	ARS 1996	- 2002	, BY WATER Y	EAR (WY)‡	ŧ			
MEAN 48.35 MAX 75.4 (WY) 2000 MIN 23.2 (WY) 1997	96.3	53.5 2001	21.68 75.3 2001 2.68 1999	11.32 16.7 1998 2.00 1999	9.365 20.7 1998 2.74 1999		117.3 155 2002 97.0 2000	194.4 277 2001 103 1997	111.6 193 2001 45.7 1997	50.54 120 2001 12.5 1996	75.53 116 1997 27.6 2000
SUMMARY STATISTI	CS	FOR 20	01 CALEND	AR YEAR		FOR 2002 WAT	ER YEAR	W	ATER YEAR	S 1996 -	2002#
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL ME. HUGHEST DAILY ME. LOWEST DAILY ME. LOWEST DAILY ME. ANNUAL SEVEN-DAY MAXIMUM PEAK FLOM MAXIMUM PEAK STA ANNUAL RUNOFF (C. ANNUAL RUNOFF (C. ANNUAL RUNOFF (I. 10 PERCENT EXCEE. 50 PERCENT EXCEE.	AN AN N MINIMUM W GGE C-FT) FSM) NCHES) DS DS			Jun 29 Apr 1 Mar 27		20706.5 56.73 272 5.2 5.4 c308 10.88 41070 2.29 31.06 139 34 6.4	May 23 Apr 17 Apr 11 May 23 May 23		61.92 90.8 44.0 626 b1.0 1.0 c875 13.64 44860 2.50 33.92 158 32 5.8		2001 1997 1997 1999 1999 1997 1997

See Period of Record; partial years used in monthly statistics

Apr. 1-2 Feb. 5-12, 1999

From rating curve extended above 50 ft³/s on basis of comparison of instantaneous discharge of Bradley River below Dam (15239001) and instantaneous discharge of Bradley River near Tidewater (15239070) C

15239070 BRADLEY RIVER NEAR TIDEWATER NEAR HOMER

LOCATION.--Lat $59^{\circ}48'06''$, long $150^{\circ}52'58''$, in $SE^{1}/_{4}$ NE $^{1}/_{4}$ sec. 30, T. 4 S., R. 9 W. (Seldovia D-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on right bank 0.7 mi upstream from mouth, 0.8 mi downstream from Middle Fork Bradley River, 4.3 mi downstream from Bradley Lake outlet and dam site, and 25 mi east of Homer.

DRAINAGE AREA. -- Indeterminate.

PERIOD OF RECORD. -- May 1983 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 25 ft above sea level, from topographic map.

REMARKS.--Records good, except for estimated daily discharges, which are poor. Flow occasionally affected by high tides. Intermittent regulation during construction at the Bradley River dam site began in November 1986. Flow has been regulated since the reservoir began filling April 26, 1991. (See station 15239001.) Upper Nuka River was diverted into Upper Bradley River on July 29, 1990; flow from about 10 mi2 of Middle Fork Bradley River was diverted into upper Bradley River on July 29, 1990; flow from about 10 mil of Middle Fork Bradley River upstream drainage has been seasonally diverted into the Bradley Lake reservoir since August 7, 1990. Battle Creek was diverted into the reservoir in October 1990. Water has been diverted out of the basin through the turbines since hydropower generation began June 28, 1991. Rain gage and air temperature recorder at station; daily values of precipitation and air temperature available from the computer files of the Alaska District. GOES satellite telemetry at station.

			DISCHA	RGE, in C		YEAR OCT LY MEAN V		TO SEPTE	MBER 2002	2		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	80	55	e60	168	e65	53	e46	187	217	185	107	123
2	69	50	e60	132	64	51	46	133	199	174	108	122
3	71	48	e60	105	60	e50	46	100	183	150	109	122
4	98	48	e60	92	64	e50	e45	91	180	145	106	118
5	112	46	e60	91	62	e50	e45	93	178	133	105	120
6	100	46	e60	99	60	e50	45	103	158	139	106	127
7	86	e46	e60	98	59	e50	45	96	161	138	105	124
8	78	e44	e55	91	58	e50	44	104	203	117	104	121
9	95	e44	e55	187	e55	e50	45	127	278	110	101	120
10	96	e48	e55	162	e55	e50	45	118	231	127	102	118
11	124	e50	e55	114	e55	e50	46	116	183	125	100	115
12	112	e50	e55	123	e55	e50	e47	125	163	129	106	118
13	94	e50	e55	94	e60	e50	e47	134	145	128	108	172
14	91	e48	e60	92	e60	e50	46	147	170	113	102	148
15	72	e48	e55	95	59	e50	46	147	275	113	96	136
16	72	e46	e55	88	57	e50	46	155	289	114	95	121
17	74	e50	e55	111	55	49	47	195	260	116	97	119
18	79	e70	e50	103	e55	48	48	243	238	128	97	89
19	72	e70	e50	88	55	47	50	278	216	114	98	84
20	69	e70	e50	84	e55	47	51	297	171	113	109	80
21	67	e75	e55	e80	e55	47	48	283	153	114	107	78
22	67	e75	e55	e75	e55	50	47	307	131	139	102	75
23	71	e75	e55	e75	e55	e50	47	321	129	122	99	78
24	78	e70	e60	e75	51	47	49	298	134	113	104	171
25	73	e65	e65	e70	54	47	49	282	148	106	109	190
26	73	e60	e80	e65	58	47	51	265	148	111	114	134
27	73	e60	e110	e65	55	46	53	245	145	104	111	152
28	73	e60	e150	e60	56	46	70	229	137	108	111	139
29	66	e55	140	e60		46	136	227	144	109	112	130
30	59	e55	122	e60		e46	177	255	167	107	115	126
31	58		123	e65		e46		255		113	119	
TOTAL	2502	1677	2140	2967	1607	1513	1653	5956	5534	3857	3264	3670
MEAN	80.71	55.90	69.03	95.71	57.39	48.81	55.10	192.1	184.5	124.4	105.3	122.3
MAX	124	75	150	187	65	53	177	321	289	185	119	190
MIN	58	44	50	60	51	46	44	91	129	104	95	75
AC-FT	4960	3330	4240	5890	3190	3000	3280	11810	10980	7650	6470	7280
STATIS	TICS OF	MONTHLY ME	EAN DATA	FOR WATER	YEARS 199	92 - 2002,	BY WATER	R YEAR (WY	7)#			
MEAN	93.20	88.30	64.98	63.81	63.00	52.73	69.35	160.9	190.3	144.5	133.1	137.2
MAX	145	143	114	137	112	70.5	93.8	205	263	185	178	224
(WY)	1992	1998	2001	2001	1994	1998	1993	1992	1998	2001	1995	1995
MIN	64.0	51.2	47.1	41.6	42.2	43.9	50.5	120	114	115	105	104
(WY)	1998	2000	1998	1999	1999	1999	1999	1996	1997	1997	2002	1993

See Period of Record and Remarks Estimated

15239070 BRADLEY RIVER NEAR TIDEWATER NEAR HOMER—Continued

SUMMARY STATISTICS	FOR 2001 CALENI	DAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1992 - 2002#
ANNUAL TOTAL	41983		36340			
ANNUAL MEAN	115.0		99.56		105.3	
HIGHEST ANNUAL MEAN					127	2001
LOWEST ANNUAL MEAN					83.8	1996
HIGHEST DAILY MEAN	477	Jan 15	321	May 23	954	Sep 21 1995
LOWEST DAILY MEAN	a44	Nov 8	b44	Nov 8	c40	Dec 15 1992
ANNUAL SEVEN-DAY MINIMUM	46	Nov 3	45	Apr 4	40	Jan 28 1999
MAXIMUM PEAK FLOW			368	Sep 24	11000	Oct 11 1986
MAXIMUM PEAK STAGE			5.93	Sep 24	13.73	Oct 11 1986
MAXIMUM PEAK STAGE			d7.68	Oct 17	f8.80	Dec 22 1999
INSTANTANEOUS LOW FLOW					17	Mar 28 1989
ANNUAL RUNOFF (AC-FT)	83270		72080		76260	
10 PERCENT EXCEEDS	220		171		177	
50 PERCENT EXCEEDS	90		88		88	
90 PERCENT EXCEEDS	49		48		48	

PRIOR TO REGULATION AND DIVERSION OF BRADLEY DAM

		STATIST	TICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS	1983 -	1989, BY	WATER YEAR	(WY)#	
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	808	224	198	145	82.1	74.0	72.8	462	1032	1390	1318	966
MAX (WY)	1908 1987	480 1984	503 1987	223 1985	114 1985	163 1984	101 1989	676 1987		1577 1988	1781 1988	1746 1989
MIN (WY)	363 1984	86.1 1986	78.9 1988	72.5 1989	37.4 1989	27.4 1989	42.5 1985	282 1985		1153 1983	907 1983	470 1983
		SUMMARY STATISTICS						WATE	.983 - 1989#			
	A MATTER TO MET A AT					E02						

SUMMARY STATISTICS	WATER YEARS 1983 - 1989
ANNUAL MEAN	583
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	722 1987 475 1985
HIGHEST DAILY MEAN LOWEST DAILY MEAN	10000 Oct 11 1986 19 Dec 7 1986
ANNUAL SEVEN-DAY MINIMUM	22 Mar 26 1989
	11000 Oct 11 1986 h13.73 Oct 11 1986 i17 Mar 28 1989
,	22700 7.11 96.67
50 PERCENT EXCEEDS	1470 388 52

See Period of Record and Remarks
Nov. 8 and 9
Nov. 8, 9, and Apr. 8
Dec. 15 to Dec. 18, 1992; Apr. 20 to Apr. 21, 1995; Jan. 9 and Apr. 22, 1997; Mar. 5, 1998; Jan. 16 to Jan. 20, and Jan. 28 to Feb. 12, 1999
Backwater from high tide
Backwater from ice and high tide
From rating curve extended above 2,400 ft³/s on basis of runoff comparisons with nearby stations
From floodmarks
Minimum recorded, but may have been less during period of ice effect, Mar. 28 to Mar. 31, 1989 a b c

15241600 NINILCHIK RIVER AT NINILCHIK

LOCATION.--Lat $60^{\circ}02'56''$, long $151^{\circ}39'48''$, in $\mathrm{NE}^{1}/_{4}$ sec. 34, T. 1 S., R. 14 W. (Kenai A-5 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on right bank 60 ft downstream from bridge, 0.9 mi upstream from mouth, at Ninilchik. DRAINAGE AREA.--135 mi².

WATER-DISCHARGE RECORDS

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April 1963 to September 1985, October 1998 to current year.

REVISED RECORDS.--WDR AK-01-1: Drainage area.

GAGE.--Water-stage-recorder. Datum of gage is 8.37 ft above NGVD of 1988. Prior to October 1, 1965, at site 0.2 mi upstream at different datum.

REMARKS.--Records good, except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

		DISCHA	RGE, CUB	IC FEET F			YEAR OCTOB	ER 2001 T	O SEPTEM	MBER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	84	e85	e75	e70	e60	e55	e45	e480	90	51	53	110
2	84	e85	e70	e70	e60	e50	e45	e460	87	50	50	108
3	85	e80	e70	e70	e60	e50	e45	e420	104	49	48	99
4	111	e80	e70	e70	e60	e50	e45	366	109	50	47	87
5	116	e80	e70	e70	e60	e50	e45	315	118	49	48	75
6	124	e80	e65	e70	e60	e50	e45	327	104	48	51	75
7	110	e80	e65	e70	e60	e50	e45	361	92		53	75
8 9	97 92	e80	e65	e70	e60	e50	e45	321	85		55	73
10	100	e80 e80	e65 e65	e70 e70	e60 e60	e50 e50	e45 e45	292 279	81 85	51 59	56 53	90 87
11	101	e80	e65	e65	e60	e50	e45	249	98	55	72	77
12 13	93 86	e80 e80	e60 e60	e65 e65	e60 e55	e50 e50	e45 e45	220 206	117 116	48 47	93 95	73 75
14	84	e75	e55	e65	e55	e50	e45	204	105	49	72	85
15	86	e75	e55	e65	e55	e50	e45	206	91	50	62	84
16	85	e75	e50	e65	e55	e50	e50	218	80	49	61	79
17	87	e75	e50	e65	e55	e50	e50	230	74	46	57	102
18	e90	e80	e50	e65	e55	e50	e55	252	70	52	53	161
19	e85	e85	e55	e65	e55	e50	e60	279	66	84	51	137
20	e80	e85	e55	e60	e55	e50	e65	282	64	88	60	114
21	e80	e80	e55	e60	e55	e50	e80	240	65	73	88	95
22	e80	e80	e55	e55	e55	e45	e100	188	64	64	106	87
23	e85	e80	e50	e55	e55	e45	e130	155	63	70	107	87
24	e85	e80	e50	e55	e55	e45	e150	121	64	105	108	150
25	e85	e80	e50	e55	e55	e45	e180	107	65	115	110	437
26	e85	e80	e60	e60	e55	e45 e45 e45	e250	100	61	87 98 89 72 63	100	381
27	e85	e80	e75	e60 e60 e60	e55	e45	e400	95	59	98	87	304
28	e85	e75	e75	e60	e55	e45	e450	91	59	89	74	235
29 30	e85 e85	e75 e75	e75 e75	e60		e45 e45	e500 e500	90	57	7.2 63	67 84	173 143
31	e85		e75	e60		e45		95		57	105	
moma r	0005	0205	1000	1005	1.000	1505	2605	E240	0446	1051	0006	2050
TOTAL MEAN	2805 90.48	2385 79.50	1930 62.26	1985 64.03	1600 57.14	1505 48.55	3695 123.2	7342 236.8	2446 81.53	1971 63.58	2226 71.81	3958 131.9
MAX	124	85	75	70	60	55		480	118		110	437
MIN	80	75	50	55	55	45	45	90	53	46	47	73
AC-FT	5560	4730	3830	3940	3170	2990	7330	14560	4850	3910	4420 0.53	7850
CFSM	0.67	0.59	0.46	0.47	0.42	0.36	0.91	1.75	0.60	0.47	0.53	0.98
IN.	0.77	0.66	0.53	0.55	0.44	0.41	1.02	2.02	0.67	0.54	0.61	1.09
STATIST	rics of M	ONTHLY MEA	AN DATA F	OR WATER	YEARS 1963	- 2002	2, BY WATER	YEAR (WY) #			
MEAN	129.2	96.72	63.98	56.02	57.06	64.02	158.4	233.0	117.7	86.94	88.33	116.7
MAX	221	314	98.5	86.0	93.9	108		488	238	151	155	204
(WY)	1981	1980	1980	1980	1982	1970	1974	1977	1964	1980	1981	1982
MIN (WY)	78.2 1969	41.1 1964	42.0 1966	36.8 1974	36.0 1974	36.9 1974	41.4 1985	81.7 1969	62.2 1969	57.6 1983	47.8 1969	54.6 1969
, ,												
	/ STATIST	ICS	FOR		ENDAR YEAR		FOR 2002 W.	ATER YEAR		WATER YEAR	RS 1963	- 2002#
ANNUAL				41684			33848					
ANNUAL	MEAN CANNUAL 1	MEAN		114.2	2		92.7	3		106.0 151		1980
	ANNUAL M									55.4		1969
	DAILY M			689	Apr 26		ae500	Apr 29		1220		
LOWEST	DAILY ME	AN		b50	Dec 16		c45	Apr 29 Mar 22 Mar 22		1220 30	Jūl 2	0 1966
		Y MINIMUM		53	Dec 14		45	Mar 22		32 1240	Jan !	9 1983
	1 PEAK FL						d	0 0 05		1240	Apr 2	1 1974
	1 PEAK ST. 1 PEAK ST.						f6.3	9 Sep 25 3 Apr 29		30 32 1240 6.0- f8.69	4 Apr 24 9 Apr 14	± 17/4 1 1969
	RUNOFF (82680			67140	J 11D1 Z3		76830	- 17P1 T.	1 1000
	RUNOFF (0.8	35		0.6	9		0.7	9	
	RUNOFF (11.4	9		9.3	3		10.6	7	
	CENT EXCE			213			150			197		
	CENT EXCE			80 58			70 50			76 49		
JU FERO	LUNI DACE.	טענו		50			50			4.3		

See Period of Record, partial years used in monthly statistics

See Period of Record, partial years used in monthly statistics
Apr. 29, 30
From Dec.16 to 18, and Dec. 23 to 25
From Mar. 22 to Apr, 15
Not determined, occurred during period of backwater from ice and snow, see highest daily mean Estimated
Backwater from ice

15241600 NINILCHIK RIVER AT NINILCHIK—Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD.--Water years 1952-53, 1955-58, 1963-65, 1967-68, 1975, 1978-79, and 1998 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: May to September 1963, October 1964 to July 1965, and October 1998 to current year.
SEDIMENT: October 1963 to July 1965.

INSTRUMENTATION.--Electronic water temperature recorder set for 15-minute recording interval, October 1 to May 21, and one-hour recording interval, May 21 to September 30.

REMARKS.--Records represent water temperature at sensor within 0.5° C. Temperature at the sensor was compared with the average for the river by cross sections on June 12. No variation was found within the cross sections. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 20.5°C, July 4, 1999; minimum, 0.0°C on many days during fall and winter periods.

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURE: Maximum, 19.0°C, June 30, July 5, 11, and 17; minimum, 0.0°C on many days during fall and winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	STREAM WIDTH (FT) (00004)	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)
JUN									
12	1055	47.5	2.0	4.33	123	10	8010	9.0	11.0
12	1056	47.5	10.0	4.33	123	10	8010	9.0	11.0
12	1057	47.5	18.0	4.33	123	10	8010	9.0	11.0
12	1058	47.5	26.0	4.33	123	10	8010	9.0	11.0
12	1059	47.5	34.0	4.33	123	10	8010	9.0	11.0
12	1100	47.5	42.0	4.33	123	10	8010	9.0	11.0

WATER TEMPERATURE, (DEGREES CELSIUS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN		
		OCTOBER		NC	NOVEMBER			CEMBER			JANUARY			
1 2 3 4 5	7.5 6.5 5.5 6.5 7.5	5.0 4.0 4.5 5.0 6.0	6.0 5.5 5.0 6.0 6.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0		
6 7 8 9 10	7.0 7.0 4.5 5.0	5.5 4.5 2.5 3.5 3.5	6.0 5.5 3.5 4.0 4.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0		
11 12 13 14 15	3.5 2.0 0.5 2.0 3.0	1.5 0.5 0.0 0.0	2.5 1.0 0.0 1.0 2.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0		
16 17 18 19 20	1.5 1.0 1.5 2.0	0.0 0.0 0.5 0.5	0.5 0.5 1.0 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0		
21 22 23 24 25	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0		
26 27 28 29 30 31	0.0 0.0 0.0 0.0 1.5	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0								
MONTH	7.5	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		

181

SOUTHCENTRAL ALASKA

15241600 NINILCHIK RIVER AT NINILCHIK—Continued

WATER TEMPERATURE, (DEGREES CELSIUS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 1.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	3.5 3.0 4.0 4.5 4.5	0.0 0.5 1.0 1.5 2.5	1.5 1.5 2.5 3.0 3.5
6 7 8 9 10	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.5 0.0 0.0 1.5 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.5 1.0 1.5 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	5.0 4.5 4.0 6.5 7.0	2.5 2.5 2.5 2.5 3.5	3.5 3.5 3.5 4.5 5.5
11 12 13 14 15	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 1.0 1.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 1.5 1.0 0.5 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	8.0 8.5 9.0 7.5 6.0	3.5 4.5 4.5 5.0	5.5 6.5 7.0 6.5 5.5
16 17 18 19 20	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 1.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.0 0.0 0.0 0.0 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	8.5 9.5 10.0 10.5 11.5	3.5 5.5 6.0 6.0	6.0 7.5 8.0 8.5 9.0
21 22 23 24 25	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 1.5 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.0 1.0 1.5 1.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	12.0 11.0 11.5 13.0 13.5	7.5 8.5 7.0 7.0 8.0	10.0 9.5 9.0 10.0
26 27 28 29 30 31	0.0 0.0 0.0 	0.0 0.0 0.0 	0.0 0.0 0.0 	1.0 0.0 1.0 1.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.5 1.0 1.0 0.5 2.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	13.5 12.5 11.5 13.5 13.0 14.0	8.5 9.0 8.0 9.5 10.0 8.5	11.0 11.0 10.0 11.5 11.5
MONTH	0.0	0.0	0.0	1.5	0.0	0.0	2.0	0.0	0.0	14.0	0.0	7.0
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBE	MEAN ER
DAY 1 2 3 4 5	MAX 12.0 10.5 11.0 11.5 12.5		MEAN 10.5 9.5 9.5 10.0 10.5	MAX 18.0 18.5 17.5 18.0 19.0		MEAN 16.0 15.5 15.0 15.0 15.5			MEAN 15.0 15.0 15.5 15.0 14.5	12.5 12.5	SEPTEMBE	
1 2 3 4	12.0 10.5 11.0 11.5	JUNE 9.5 8.0 8.0 8.5 9.0 9.5 8.5 9.0	10.5 9.5 9.5 10.0	18.0 18.5 17.5 18.0	JULY 13.5 13.0 12.5 12.0	16.0 15.5 15.0 15.0	18.0 18.0 18.5 18.0	12.0 12.0 12.5 12.5	15.0 15.0 15.5 15.0	12.5 12.5 12.0 11.0	9.5 9.0 8.0 9.0	11.0 11.0 10.0 10.0
1 2 3 4 5 6 7 8 9	12.0 10.5 11.0 11.5 12.5 13.5 14.5 12.5 9.5	JUNE 9.5 8.0 8.0 8.5 9.0 9.5 8.5 9.0	10.5 9.5 9.5 10.0 10.5 11.0 11.5 10.0 9.0	18.0 18.5 17.5 18.0 19.0 16.0 14.5	JULY 13.5 13.0 12.5 12.0 12.0 13.0 12.0 13.0 12.5 12.5	16.0 15.5 15.0 15.0 15.5 14.0 13.0 14.0 13.5	18.0 18.0 18.5 18.0 16.0 17.0 15.5 16.0 16.5	12.0 12.0 12.5 12.0 13.5 13.0 13.0 12.5 11.0	15.0 15.0 15.5 15.0 14.5 14.5 14.0 14.0	12.5 12.5 12.0 11.0 11.0 11.0 10.0 11.0	9.5 9.0 8.0 9.0 10.0 9.5 8.0 7.5 8.0	11.0 11.0 10.0 10.0 10.5 10.0 9.0 9.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	12.0 10.5 11.0 11.5 12.5 13.5 14.5 9.5 10.0 11.0 11.0 12.5	JUNE 9.5 8.0 8.5 9.0 9.5 8.5 9.0 8.5 9.0 8.5 8.0	10.5 9.5 9.5 10.0 10.5 11.0 11.5 10.0 9.0 9.0	18.0 18.5 17.5 18.0 19.0 16.0 14.5 16.5 14.5 17.0	JULY 13.5 13.0 12.5 12.0 12.0 13.0 12.0 11.5 12.5 11.0 12.0 13.0 13.0 13.0 13.0 13.0	16.0 15.5 15.0 15.0 15.5 14.0 13.0 14.0 13.5 14.0 15.5 14.0	18.0 18.5 18.0 16.0 17.0 15.5 16.0 16.5 14.0 12.0 13.0 15.0 14.0	12.0 12.0 12.5 12.0 13.5 13.0 13.0 12.5 11.0 11.5	15.0 15.0 15.5 15.0 14.5 14.0 14.0 12.0	12.5 12.5 12.0 11.0 11.0 11.0 12.0 10.0 10.0 10.0	9.5 9.0 8.0 9.0 10.0 9.5 8.0 7.5 8.0 6.5	11.0 11.0 10.0 10.0 10.5 10.0 10.5 7.5 8.5 7.5 8.0 8.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	12.0 10.5 11.0 11.5 12.5 13.5 14.5 9.5 10.0 11.0 11.0 11.0 12.5 15.5 17.0 17.0 17.0 18.0 15.5	JUNE 9.5 8.0 8.5 9.0 9.5 8.5 9.0 8.0 8.5 9.0 10.5	10.5 9.5 9.5 10.0 10.5 11.0 9.0 9.0 10.0 10.0 10.0 11.5 14.0	18.0 18.5 17.5 18.0 19.0 16.0 14.5 14.5 17.0 19.0 18.0 15.5 13.5 15.5	JULY 13.5 13.0 12.5 12.0 12.0 13.0 12.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5	16.0 15.5 15.0 15.0 15.5 14.0 13.5 14.0 15.5 14.0 15.5 14.0 12.5 13.0	18.0 18.5 18.0 16.0 17.0 15.5 16.0 16.5 14.0 13.0 14.0 13.0 14.5 15.5 16.0	12.0 12.0 12.5 12.0 13.5 13.0 13.0 12.5 11.0 11.5 11.0 10.5 10.0 10.0 10.0 10	15.0 15.0 15.5 15.0 14.5 14.5 14.0 14.0 12.0 11.5 11.5 12.0 12.0 12.0 13.0 13.5 12.5	12.5 12.5 12.0 11.0 11.0 11.0 12.0 10.0 10.0 10.0	9.5 9.0 8.0 9.0 10.0 9.5 8.0 7.5 8.0 6.5 7.0 7.5 7.5 7.5 8.0 6.5 6.5	11.0 11.0 10.0 10.0 10.5 10.0 10.5 10.0 9.5 8.5 7.5 7.5 8.0 8.5 8.5 7.5 7.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	12.0 10.5 11.0 11.5 12.5 13.5 14.5 9.5 10.0 11.0 11.0 12.5 15.5 17.0 17.0 18.0 17.0 18.0 14.0	JUNE 9.5 8.0 8.5 9.0 9.5 8.5 9.0 8.0 8.5 9.0 10.5 11.5 12.0 12.0 11.5 10.5 9.5 10.0 11.0	10.5 9.5 9.5 10.0 10.5 11.0 9.0 9.0 10.0 10.0 11.5 14.0 14.5 14.5 15.0 13.5 13.0 12.5 12.5 12.0	18.0 18.5 17.5 18.0 19.0 16.0 14.5 17.0 19.0 15.5 13.5 15.5 17.5 19.0 17.0 14.5 14.0 14.0 14.0 14.0	JULY 13.5 13.0 12.5 12.0 12.0 13.0 12.5 11.5 11.5 11.5 11.5 12.5 11.5 11.5	16.0 15.5 15.0 15.0 15.5 14.0 13.5 14.0 15.5 14.0 15.5 14.0 12.5 13.0 12.5 14.0 12.5	18.0 18.0 18.5 18.0 16.0 17.0 15.5 16.0 13.0 13.0 14.0 13.0 14.5 15.5 16.0 13.0 14.0 13.0	AUGUST 12.0 12.5 12.0 13.5 13.0 13.5 13.0 11.5 11.0 10.5 10.0 10.0 11.0 9.0 10.0 11.5 11.5 11.0 10.5 11.5 11.0	15.0 15.0 15.5 15.0 14.5 14.0 14.0 14.0 12.0 11.5 12.0 12.0 12.0 12.0 12.0 13.5 12.5 12.0	12.5 12.5 12.0 11.0 11.0 11.0 12.0 10.0 10.0 10.0	9.5 9.0 8.0 9.0 10.0 9.5 8.0 7.5 8.0 6.5 7.5 7.5 7.5 7.5 7.5 8.0 6.5 6.5 7.5 7.5	11.0 11.0 10.0 10.0 10.5 10.0 10.0 9.5 8.5 7.5 8.0 8.5 7.5 8.5 7.5 6.5 7.5 6.5 7.5

15243900 SNOW RIVER NEAR SEWARD

 $\texttt{LOCATION.--Lat } \ 60^{\circ}17'42'', \ \texttt{long } \ 149^{\circ}20'38'', \ \texttt{in } \ \texttt{NE}^{1}\!\!/_{\!\!4} \ \texttt{SW}^{1}\!\!/_{\!\!4} \ \texttt{sec. } \ \texttt{6, T. 2 N., R. 1 E. (Seward B-7 quad), Kenai Peninsula B-7 quad)} \ \texttt{NE} \ \texttt{NE$ Borough, Hydrologic Unit 19020302, on left bank, 0.5 mi below the Alaska Railroad bridge, 3.0 mi upstream from the mouth at Kenai Lake, and 13.5 mi north of Seward.

DRAINAGE AREA. -- 128 mi² (revision pending).

PERIOD OF RECORD.--August to September of 1970, 1974, 1977 and April 1997 to current year.

GAGE.--Water stage recorder. Elevation of gage is 470 ft above sea level, from topographic map. Prior to April 9, 1998 at site 0.5 mi upstream at different datum.

REMARKS.--Record poor. Rain gage at station. GOES satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Glacier-dammed lake outburst flood about August 31, 1967, 55,000 ft³/s from rating curve extended above 27,000 $\mathrm{ft^3/s}$, gage-height 42.60 ft from floodmarks, site and datum then in use.

		DISCHA	RGE, C	UBIC FEET	PER SECOND,			BER 2001	TO SEPTEM	IBER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR MAR	VALUES APR	MAY	JUN	JUL	AUG	SEP
1	1080	e220	e130	e1050	e160	e90	e65	e280	2570	3010	3320	2090
2	817	e220	e130		e150	e90	e65	e260	2410	2740	3300	2110
3	769	e220	e130		e150	e85	e65	e340	2430	2740	3520	1850
4	1660	e200	e140		e150	e85	e65	e340	2480	2610	3810	e1500
5	3340	e200	e150	e340	e140	e80	e65	e360	2430	2580	3480	1580
6	2200	e200	e140	e450	e140	e80	e65	e380	2340	2500	3300	2100
7	1410	e180	e140		e130	e75	e65	e360	2210	2550	3410	e1700
8	951	e180	e130		e130	e75	e65	e420	2310	2640	3320	e1500
9	877	e180	e130		e130	e75	e65	e460	2360	2490	3030	e1300
10	689	e160	e120		e130	e75	e65	e500	2310	2400	2650	e1200
11	527	e160	e110	e600	e120	e70	e65	e550	2150	2540	2860	e1100
12	390	e160	e110		e120	e70	e65	e600	2000	2570	3310	e1400
13	e380	e140	e120		e120	e70	e65	e750	2030	2540	3430	3360
14	e380	e130	e120		e120	e70	e65	e900	2050	2460	2910	5590
15	e360	e130	e120		e110	e70	e65	970	2690	2370	2410	4970
16	-260	-120	-100	e360	-110	e65	e65	987	2020	2450	2200	2520
17	e360 e340	e130 e140	e120 e110		e110 e110	e65	e65 e70	1110	2920 3020	2450 2800	2200 2480	3520 3320
18	e340	e140 e150	e110		e110	e65	e70	1440	3350	3120	2460	2760
19	e320	e160	e100		e110	e65	e75	1770	3300	3030	2200	2050
20	e300	e170	e120		e100	e65	e75	1990	2920	2870	2590	e1500
21	e300	e170	e130		e100	e65	e80	2170	2690	3250	3210	e1100
22	e280	e150	e150		e100	e65	e80	2390	2480	4000	3230	e1000
23 24	e280 e260	e150 e150	e170 e150		e100 e100	e65 e65	e90 e90	2630 2590	2470 2770	4640 5990	2980 2800	e1300 2390
25	e260	e150	e1800		e100	e65	e100	2590	3090	5550	2470	3640
26	e260	e150	e6800		e95 e95	e65	e110	2600	4310	4640	1870	3730
27	e240	e140	e3000	e180	e95	e65	e120	2780	3950	4100	1530	3350
28		e140	e2800	e170	e95	e65	e150	2700	3280	3490	1520	2590
29		e140	2650		 	e65	e170 e230	2850	3030 3060	3370	1640	1730 e1500
30 31	e240 e240	e130	e1000 e800			e65 e65	e230 	2870 2850	3060	3300 3340	2130 2190	e1500
31	6240		6000	6100		665		2050		3340	2190	
TOTAL	20330	4890	21920	12200	3325	2200	2550	43787	81410	98680	85560	68830
MEAN	656	163	707		119	71.0	85.0	1412	2714	3183	2760	2294
MAX	3340	220	6800	1050	160	90		2870	4310	5990	3810	5590
MIN	240	130	100	160	95	65	65	260	2000	2370	1520	1000
AC-FT	40320	9700	43480	24200	6600	4360	5060	86850	161500	195700	169700	136500
STATIST	TICS OF MO	ONTHLY MEA	AN DATA	FOR WATE	R YEARS 1970	- 2002	2, BY WATE	R YEAR (W	Y)#			
MEAN	918	290	304		118	101	163	829	2309	3166	2984	3234
MAX	2506	514	707		188	220		1412	2714	3281	5598	6294
(WY)	1999	1998	2002		1998	1998	1998	2002	2002	1998	1977	1974
MIN	279	163 2002	87.3	57.0	42.0	39.2	81.8	491	1780	2866	1764	1157
(WY)	1998	2002	1999	1999	1999	1999	1999	2001	1999	1999	1998	2000
SUMMAR	Y STATIST	ICS	FO	R 2001 CA	LENDAR YEAR		FOR 2002	WATER YEA	R	WATER Y	ZEARS 197	0 - 2002#
ANNUAL	TOTAL			524241			445682					
ANNUAL				1436			1221			1135		
HIGHES'	T ANNUAL N	1EAN								1412		2001
	ANNUAL ME	EAN								965		2000
HIGHES	T DAILY ME	EAN		ab13500 100	Sep 20		6800	Dec 2	5	b23800	Sep	20 1974
LOWEST	DAILY MEA	AN		100 109	Mar 29		6800 65 65	Mar 1	5	1412 965 b23800 c36 37 b26400	Mar	3 1999
ANNUAL	SEVEN-DAY	MINIMUM		109	Mar 23		65	Mar 1	Б	37	Feb	26 1999
MAATMOI	M PEAK FLO M PEAK STA	JW					u		_	D264UU	Sep	20 1974
TMCTAM	TANDOTIC TO	W ETOM					ттт.	20 Dec 20	J.	g40.7 36		3 1999
ANNIAI.	RINOFF (I	AC-FT)		1040000			884000			822600	rial	3 1333
10 PER	CENT EXCER	EDS		3430			3240			3400		
50 PER	CENT EXCE	EDS		1040000 3430 356 116			380			620		
90 PER	CENT EXCE	EDS		116			70			71		

See Period of Record, partial years used in monthly summary statistics Sept. 20 and Sept. 21
Result of release of stored water from glacier-dammed lake
Mar. 3 and Mar. 4, 1999
Not determined, see highest daily mean
Estimated

From ice debris floodmarks, backwater from ice, date approximate Site and datum then in use

15258000 KENAI RIVER AT COOPER LANDING

LOCATION.--Lat 60°29'34", long 149°48'28", in SE¹/₄ sec. 28, T. 5 N., R. 3 W. (Seward B-8 quad), Kenai Peninsula Borough, Hydrologic Unit 19020302, Chugach National Forest, on right bank 10 ft downstream from bridge on Sterling Highway, 0.9 mi upstream from Bean Creek, 0.9 mi east of Cooper Landing, and at Kenai Lake outlet.

DRAINAGE AREA. -- 634 mi².

PERIOD OF RECORD.--May 1947 to current year.

REVISED RECORDS. -- WSP 2136: 1964 (M).

GAGE.--Water-stage recorder. Datum of gage is 419.92 ft above sea level (levels by Alaska Department of Transportation). See WSP 2136 for history of changes prior to August 28, 1965. August 28, 1965 to January 21, 1974, at site 10 ft upstream at present datum. January 22, 1974 to September 30, 1981, non-recording gage at site 40 ft upstream at present datum.

REMARKS.--Records good except for estimated daily discharge, which is fair. Diversion from Cooper Lake to Kenai Lake above gage through Cooper Lake power plant began May 1961. No diversions occurred during November. Rain gage at station. GOES satellite telemetry and telephone modem at station.

COOPERATION. -- Records of diversion provided by Chugach Electric Association.

			DISCHA	ARGE, in C		YEAR OCTO		TO SEPTI	EMBER 200:	2		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6220	1360	786	1540	1140	782	531	645	7040	7310	6380	4280
2	5640	1330	764	1600	1110	765	525	695	6990	7180	6220	4210
3	5160	1310	743	1660	1110	753	527	750	6890	7120	6100	4210
4	4790	1280	722	1690	1110	748	528	806	6780	6990	6140	4130
5	4960	1250	711	1700	1080	745	527	860	6680	6940	6220	4020
6	5360	1210	697	1700	1050	734	526	921	6600	6850	6150	3970
7	5330	1160	683	1690	1010	732	527	975	6530	6730	6110	3990
8	5170	1120	676	1710	990	716	521	1040	6500	6740	6120	3960
9	4920	1080	661	1800	936	702	515	1100	6370	6690	6140	3840
10	4610	1050	656	1870	907	686	508	1160	6270	6540	6020	3710
11	4340	1040	657	1850	898	670	501	1230	6170	6430	5870	3570
12	4040	1010	639	1830	868	665	490	1300	6030	6360	5800	3510
13	3780	984	626	1810	874	657	481	1380	5890	6280	5900	3600
14	3530	958	617	1790	879	645	480	1500	5730	6220	5910	4230
15	3230	946	609	1720	877	635	479	1620	5790	6110	5890	4820
16	3030	931	611	1710	879	629	478	1760	6070	6030	5690	5100
17	2870	934	e600	1680	868	619	487	1910	6340	6040	5520	5150
18	2680	952	594	1620	863	617	496	2120	6750	6220	5440	5100
19	2540	929	602	1580	851	613	495	2420	7170	6380	5300	4890
20	2430	937	622	1530	842	611	494	2800	7360	6420	5210	4620
21	2290	924	660	1490	840	603	486	3280	7340	6430	5220	4320
22	2190	921	672	1440	844	598	484	3820	7180	6550	5340	4030
23	2080	916	667	1390	835	593	487	4320	7010	6780	5440	3770
24	1970	904	668	1340	824	588	490	4840	6890	7270	5470	3660
25	1860	894	711	1310	821	576	490	5340	6880	7850	5320	3830
26 27 28 29 30 31	1760 1660 1580 1520 1460 1420	878 861 834 823 804	832 1010 1190 1310 1390 1460	1280 1270 1260 1240 1190 1160	821 815 796 	568 565 561 551 543 536	494 502 521 554 604	5790 6170 6480 6660 6850 7020	7060 7410 7480 7400 7350	8010 7840 7510 7130 6820 6570	5060 4810 4570 4440 4350 4310	4060 4280 4360 4280 4150
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	104420 3368 6220 1420 3030 207100 5.31 6.13	30530 1018 1360 804 949 60560 1.61 1.79	23846 769.2 1460 594 672 47300 1.21 1.40	48450 1563 1870 1160 1620 96100 2.47 2.84	25738 919.2 1140 796 876 51050 1.45	20006 645.4 782 536 629 39680 1.02 1.17	15228 507.6 604 478 499 30200 0.80 0.89	87562 2825 7020 645 1760 173700 4.46 5.14	201950 6732 7480 5730 6830 400600 10.6 11.85	210340 6785 8010 6030 6730 417200 10.7 12.34	172460 5563 6380 4310 5690 342100 8.77 10.12	125650 4188 5150 3510 4140 249200 6.61 7.37
				ADJUSTED	TO EXCLUI	DE DIVERS	ION FROM	COOPER LA	AKE			
MEAN	3297	1018	703	1267	720	464	348	2678	6617	6664	5452	4072
CFSM	5.20	1.61	1.11	2.00	1.14	0.73	0.55	4.22	10.44	10.51	8.60	6.42
IN	6.00	1.79	1.28	2.30	1.18	0.84	0.61	4.87	11.64	12.12	9.91	7.17
AC-FT	202750	60560	43240	77880	39970	28550	20700	164680	393770	409770	335230	242330
STATIS	STICS OF M	MONTHLY ME	AN DATA	FOR WATER	YEARS 194	7 - 2002,	BY WATER	R YEAR (W	Y)#			
MEAN	3272	1783	1122	827.7	657.5	514.4	545.6	1924	5436	7002	6366	5288
MAX	8955	4877	3469	2807	2066	1122	1071	3508	10010	10480	11430	11490
(WY)	1980	1958	1986	1981	1981	1977	1980	1990	1953	1980	1977	1967
MIN	1264	654	364	310	251	208	262	658	3268	4868	3651	2629
(WY)	1956	1951	1951	1951	1949	1951	1952	1952	1972	1996	1969	1969

[#] See Period of Record and Remarks; partial years used in monthly statistics.

e Estimated

15258000 KENAI RIVER AT COOPER LANDING—Continued

SUMMARY STATISTICS	FOR 2001 CALE	NDAR YEAR	FOR 2002 WA	ATER YEAR	WATER YEAR	S 1947 - 2002#
ANNUAL TOTAL	1403275		1066180			
ANNUAL MEAN	3845		2921		2913	
ANNUAL MEAN	3718		2789		2839	
HIGHEST ANNUAL MEAN					4499	1977
LOWEST ANNUAL MEAN					2102	1969
HIGHEST DAILY MEAN	15000	Sep 23	8010	Jul 26	22500	Sep 21 1974
LOWEST DAILY MEAN	587	Mar 29	478	Apr 16	100	Mar 28 1964
ANNUAL SEVEN-DAY MINIMUM	592	Mar 25	484	Apr 12	190	Mar 15 1951
MAXIMUM PEAK FLOW			8080	Jūl 26	a23100	Sep 21 1974
MAXIMUM PEAK STAGE			11.66	Jul 26	17.18	Sep 21 1974
INSTANTANEOUS LOW FLOW			462	Apr 15	b0.00	Mar 27 1964
ANNUAL RUNOFF (AC-FT)	2783000		2115000	-	2110000	
ANNUAL RUNOFF (AC-FT)	*2692000		*2019000		*2057000	
ANNUAL RUNOFF (CFSM)	*5.86		*4.40		*4.48	
ANNUAL RUNOFF (INCHES)	*79.61		*59.71		*60.81	
10 PERCENT EXCEEDS	9730		6680		6980	
50 PERCENT EXCEEDS	1620		1600		1620	
90 PERCENT EXCEEDS	663		583		414	

[#] See Period of Record and Remarks; partial years used in monthly statistics
Values shown on this page are unadjusted for inflow from diversion, unless otherwise noted
* Adjusted to account for inflow from diversion, see Remarks
a Result of release of stored water from glacier-dammed lake at head of unnamed
glacier in the Snow River Basin
b No flow, Mar. 27 and Mar. 28, 1964, caused by earthquake

15261000 COOPER CREEK AT MOUTH NEAR COOPER LANDING

LOCATION.--Lat $60^{\circ}28'50''$, long $149^{\circ}52'50''$, in $NW^{1}/_{4}$ SW $^{1}/_{4}$ sec. 31, T. 5 N., R. 3 W. (Seward B-8 quad), Hydrologic Unit 19020302 Kenai Peninsula Borough, on left bank, approximately 0.5 mi upstream from mouth, and 1.5 mi west of Cooper Landing.

DRAINAGE AREA.--48.6 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1957 to January 1965, August 1998 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 450 ft above sea level, from topographic map. From October 1957 to January 1965, 0.4 mi upstream at different datum.

REMARKS.--Records good except for estimated daily discharges, which are poor. Since July 1959, entire flow from 31.8 mi² of drainage area has been regulated by dam at Cooper Lake outlet. No spilling since 1959 except for period May 1961 to October 1962. GOES satellite telemetry at station.

		DISCHAF	RGE, CUBI	C FEET PE			YEAR OCTOBER	2001	TO SEPTEME	BER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	42 40 39 40 63	e27 e27 e27 e27 e26	e16 e16 e15 e15 e14	e19 e20 21 20 e19	e13 e12 12 12 12	e10 9.9 e10 e10 e10	e10 e10 e10 e10 e9.5	52 39 35 33 37	136 127 122 124 122	100 89 86 84 83	50 50 49 49 48	34 32 30 28 27
6 7 8 9 10	63 56 51 51 48	e26 e25 e25 e25 e24	e14 e14 e13 e13 e13	e18 e18 18 e18	12 12 e12 11 e12	e10 e10 e10 e10 e9.5	e9.5 e9.0 8.4 8.4 8.2	38 39 46 52 52	120 122 126 118 113	82 82 80 76 72	45 45 43 41 39	33 34 31 29 28
11 12 13 14 15	45 42 e41 40 39	e24 e23 e23 e23 e23	e13 e13 e12 e12 e12	e18 18 18 17 17	e11 e11 e11 11	e9.5 e9.5 e9.5 e9.5	e8.0 e8.0 e8.5 8.3 7.9	54 59 69 79 83	109 107 108 112 141	70 72 71 69 64	40 46 45 41 38	27 27 49 96 74
16 17 18 19 20	38 37 36 34 e33	e22 e21 e20 e19 e18	e12 e12 e12 e12 e12	17 18 19 18 e18	e11 11 e11 e11 e10	e9.5 e9.5 e9.5 9.6 9.3	7.8 7.9 8.0 8.3 8.4	87 104 125 150 159	149 156 153 142 120	66 69 78 72 64	35 34 34 33 35	59 55 52 47 42
21 22 23 24 25	33 31 e30 e30 e30	e20 19 19 e20 e19	e12 e13 e14 e14 e15	e17 e16 e15 e15 e14	e10 e10 e10 e10 e10	9.1 9.2 e9.0 9.1 9.0	8.4 8.4 8.5 8.8 9.1	164 157 169 169 173	105 101 100 101 102	62 66 68 76 68	38 36 34 32 31	39 37 36 38 43
26 27 28 29 30 31	e30 e30 e30 e28 e28 e28	e18 e18 e17 e17 e16	e16 e16 e17 e18 e18 e19	e14 e14 e13 e13 e13	10 10 10 	9.2 8.7 8.6 8.6 e9.0 e9.5	9.7 13 27 47 53	174 165 152 146 146 142	101 95 86 88 97	61 57 53 51 51 50	29 27 26 26 28 30	42 42 39 37 38
TOTAL MEAN MAX MIN AC-FT	1206 38.9 63 28 2390	658 21.9 27 16 1310	437 14.1 19 12 867	524 16.9 21 13 1040	309 11.0 13 10 613	293.3 9.46 10 8.6 582	367.0 12.2 53 7.8 728	3149 102 174 33 6250	3503 117 156 86 6950	2192 70.7 100 50 4350	1177 38.0 50 26 2330	1225 40.8 96 27 2430
STATIST	CICS OF MO	NTHLY MEA	N DATA FO	R WATER Y	EARS 1958	- 2002	, BY WATER Y	EAR (W	Y)#			
MEAN MAX (WY) MIN (WY)	71.8 264 1958 20.7 1964	50.2 285 1958 11.9 1964	24.5 82.9 1958 10.0 1964	20.2 58.9 1958 8.00 1964	13.8 32.4 1958 6.43 1999	11.6 28.0 1958 4.50 1999	18.3 50.3 1958 9.00 1960	101 219 1961 42.6 1964	196 412 1958 73.7 1963	148 326 1961 68.1 1960	84.2 226 1961 38.0 1963	76.3 309 1961 21.6 1963
SUMMARY	STATISTI	cs	FOR 2	001 CALEN	DAR YEAR		FOR 2002 WAT	ER YEAI	R	WATER YEARS	1958 -	2002#
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL 10 PERC 50 PERC		AN AN N MINIMUM W GE W FLOW C-FT) DS		19952.4 54.7 253 7.0 7.4 39580 148 28 9.4	Jun 24 Apr 1 Mar 31		15040.3 41.2 174 7.8 8.1 d213 d10.92 f 29830 103 27 9.5	May 20 Apr 10 Apr 11 May 20 May 20	5 1 3	69.0 a174 29.9 ab810 c4.0 4.0 ab841 b2.10 g3.1 49980 184 34 9.5	Sep 22 Mar 19 Mar 19 Sep 21 Sep 21 Mar 1	1999 1999 1961 1961

See Period of Record, partial years used in monthly statistics Includes natural flow or spill from area upstream from Cooper Lake dam Caused by release of water behind log jam upstream. Site and datum then in use From Mar. 19 to Apr. 14, 1999
Also occurred on May 25

Estimated

Not determined. see lowest daily mean Caused by temporary storage behind ice jam upstream (observed)

15261000 COOPER CREEK AT MOUTH NEAR COOPER LANDING—Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1998 to current year.

PERIOD OF DAILY RECORD .--

WATER TEMPERATURE: August 1998 to current year.

INSTRUMENTATION. -- Electronic water-temperature recorder set for 15 minute recording interval.

REMARKS.--Records represent water temperature at the sensor within 0.5°C. Temperature at the sensor was compared with the average for the stream by cross section on August 8. No variations were found within the cross section. No variation was found between mean stream temperature and sensor temperature. Heavy shore ice occurs near the gage.

EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 11.5° C, July 14, 1999; Minimum, 0.0° C on many days during winter periods.

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURE: Maximum, 11.0°C, August 3-4; Minimum, 0.0°C on many days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	STREAM WIDTH (FT) (00004)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)
AUG									
08	1247	28.2	3.00	10.09	41	10	8010	7.0	13.5
08	1249	28.2	8.00	10.09	41	10	8010	7.0	13.5
08	1251	28.2	13.0	10.09	41	10	8010	7.0	13.5
08	1253	28.2	18.0	10.09	41	10	8010	7.0	13.5
08	1255	28.2	23.0	10.09	41	10	8010	7.0	13.5

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NC	VEMBER		DE	ECEMBER			JANUARY	
1 2 3 4 5	4.5 4.0 5.5 6.5	3.5 2.0 3.5 5.5 4.5	4.0 3.0 4.5 5.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.5 0.5 1.0	0.0 0.0 0.5 0.5	0.0 0.5 0.5 1.0
6 7 8 9 10	4.5 4.0 3.5 4.5	3.0 2.0 2.0 3.0 2.5	4.0 3.0 3.0 3.5 3.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.0 1.0 0.5 0.5	1.0 0.5 0.0 0.0	1.0 1.0 0.5 0.0
11 12 13 14 15	2.5 0.5 1.0 2.5 2.0	0.5 0.0 0.0 1.0 1.5	1.0 0.0 0.0 2.0 2.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.5 0.0 0.5 1.0	0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.5 0.5
16 17 18 19 20	1.5 2.5 2.0 1.5 0.5	0.0 0.5 1.5 0.0	0.5 1.5 1.5 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.0 1.0 1.0 1.0	0.0 0.5 0.5 0.5	0.5 1.0 1.0 1.0
21 22 23 24 25	0.5 0.5 0.0 0.0	0.0 0.0 0.0 0.0	0.5 0.0 0.0 0.0	1.0 1.5 1.5 0.5	0.5 1.0 0.5 0.0	1.0 1.0 1.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
26 27 28 29 30 31	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0						
MONTH	6.5	0.0	1.6	1.5	0.0	0.1	0.0	0.0	0.0	1.0	0.0	0.3

15261000 COOPER CREEK AT MOUTH NEAR COOPER LANDING—Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	I	FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	0.5 0.5 1.0 0.5	0.0 0.0 0.5 0.0	0.0 0.0 0.5 0.0	0.5 0.5 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.5 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.0 2.5 3.0 3.5 3.0	0.5 0.5 1.0 1.0	1.0 1.5 1.5 2.0 2.0
6 7 8 9 10	0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.0	0.5 0.5 0.0 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.5 0.5 1.0	0.0 0.0 0.0 0.5	0.0 0.0 0.5 0.5	2.5 3.0 3.0 2.0 3.0	1.0 1.0 1.0 1.0	1.5 2.0 2.0 1.5 1.5
11 12 13 14 15	0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.0	0.5 0.5 0.0 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.5 0.0 0.0 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.5	3.0 4.0 4.0 3.5 3.0	1.0 1.0 1.0 1.0	2.0 2.0 2.0 2.0 2.0
16 17 18 19 20	0.0 0.5 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.5 0.0 0.0	0.0 0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.0 1.0 1.0 1.0	0.0 0.5 0.5 0.5	0.5 1.0 0.5 0.5	4.0 4.0 4.0 4.0	1.0 1.5 1.0 1.5	2.0 2.0 2.0 2.5 2.5
21 22 23 24 25	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.5 0.0 0.0 0.5 1.0	0.0 0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.5	1.5 1.5 1.5 2.0	0.5 0.0 0.0 0.0	0.5 0.5 0.5 0.5	4.5 3.5 4.5 5.0	1.5 1.5 2.0 1.5 2.0	2.5 2.5 3.0 3.0 3.0
26 27 28 29 30 31	1.0 0.5 1.0 	0.5 0.0 0.0 	0.5 0.5 0.5 	1.0 1.0 1.0 0.5 0.0	0.5 0.5 0.0 0.0 0.0	1.0 1.0 0.5 0.5 0.0	2.0 2.5 2.0 1.5 2.0	0.5 0.0 0.0 0.0	1.0 1.0 0.5 0.5	4.5 4.0 4.5 4.5 5.0	2.0 2.5 2.0 2.5 2.5 2.0	3.0 3.0 3.5 3.5 3.5
MONTH	1.0	0.0	0.2	1.0	0.0	0.1	2.5	0.0	0.4	5.5	0.5	2.3

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY		1	AUGUST		S	SEPTEMBE	R
1 2 3 4 5	4.5 4.5 5.0 5.5 4.5	2.5 2.0 2.5 2.5 2.5	3.5 3.5 3.5 3.5 3.5	7.5 7.5 8.5 8.0 9.0	4.0 4.0 4.0 4.5 4.0	5.5 5.5 6.0 6.0	10.5 10.5 11.0 11.0 9.0	6.0 6.0 6.0 6.0 5.5	8.0 8.0 8.5 8.5	8.0 7.5 7.0 8.0 8.5	6.0 5.5 4.0 5.5 6.5	7.0 7.0 5.5 6.5 7.5
6 7 8 9 10	4.0 6.5 5.0 5.0	3.0 3.0 3.0 3.0 3.0	3.5 4.0 3.5 4.0 4.0	8.5 9.0 8.0 7.5 8.5	4.5 4.5 5.0 4.5 5.0	6.5 6.5 6.0 6.5	10.5 8.5 8.0 8.5 7.5	6.5 7.0 6.5 4.5 5.5	8.5 7.5 7.0 6.5 6.5	7.5 7.5 7.5 6.0	6.5 5.0 5.5 5.5 3.5	7.0 6.5 6.0 5.0
11 12 13 14 15	5.5 6.0 5.0 7.5 7.0	3.0 3.0 3.0 3.0 3.0	4.0 4.5 4.0 4.5 4.5	9.0 9.0 9.0 9.0	5.0 4.5 5.0 5.5 5.0	7.0 6.5 7.0 6.5 7.0	7.5 8.0 9.0 8.0 7.5	6.0 6.5 6.0 4.5 6.0	7.0 7.0 7.5 6.5	5.5 6.0 7.0 6.0 6.5	3.5 5.0 5.5 5.0 4.5	4.5 5.5 6.0 5.5 5.0
16 17 18 19 20	7.0 7.5 7.5 5.5	3.0 3.0 3.0 3.5 3.0	4.5 5.0 5.0 4.5 4.5	10.0 10.5 8.0 8.5 7.5	4.5 6.0 6.0 5.0	7.0 8.0 7.0 6.5	9.0 9.5 9.5 8.0 8.5	5.0 6.0 6.0 6.0 7.0	7.0 7.5 8.0 7.0	6.5 6.0 5.5 5.5	4.0 4.5 3.0 3.5 2.0	5.0 5.5 4.0 4.5 3.0
21 22 23 24 25	6.0 8.0 6.0 6.5	3.5 3.5 3.5 4.0 4.0	4.5 5.0 4.5 5.0	9.0 9.0 8.5 8.0	6.0 6.5 6.0 6.5 5.5	7.5 7.5 7.5 7.0 7.0	8.5 8.5 8.5 8.0 8.5	7.0 6.5 6.0 6.0	7.5 7.5 7.5 7.0 7.0	4.5 6.0 7.0 6.5 7.5	2.0 3.5 5.5 6.0 6.0	3.0 4.5 6.0 6.5 6.5
26 27 28 29 30 31	6.5 6.0 8.0 9.0 9.0	4.0 3.5 3.0 3.5 4.5	4.5 5.0 5.5 6.0 6.0	7.5 7.5 8.5 9.0 10.0	6.0 5.0 5.0 6.0 5.5	6.5 6.0 7.0 7.5 7.5 8.0	7.5 8.0 8.0 7.5 8.0	4.0 4.5 5.0 6.0 6.0	6.0 6.5 7.0 7.0 7.0	7.5 6.0 6.0 5.0 5.0	6.0 4.5 4.0 3.0 4.5	6.5 5.5 5.0 4.0 4.5
MONTH	9.0	2.0	4.4	10.5	4.0	6.7	11.0	4.0	7.3		2.0	

15266110 KENAI RIVER BELOW SKILAK LAKE OUTLET NEAR STERLING

LOCATION.--Lat $60^{\circ}28'00''$, long $150^{\circ}35'56''$, in SW^{1}_{4} NW^{1}_{4} sec. 1, T. 4 N., R. 8 W. (Kenai B-2 quad), Kenai Peninsula Borough, Hydrologic Unit 19020302, on right bank, 3.5 mi downstream from Skilak Lake, 7 mi southeast of Sterling.

DRAINAGE AREA. -- 1,206 mi².

PERIOD OF RECORD. -- June 1997 to current year.

REVISED RECORDS.-- WRD-AK-00-1: Drainage area.

GAGE.--Water stage recorder. Elevation of gage is 240 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are poor. Rain gage recorder at station. GOES satellite telemetry and phone modem at station.

	DISCHARGE, in CFS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1	11600	3040	1510	2000	2050	1300	935	946	8460	11300	13000	10400	
2	10800	2940	1460	2030	2020	1290	943	1030	8770	11500	12800	10300	
3	10300	2850	1410	2050	1970	1290	947	1080	9040	11600	12600	10200	
4	9460	2760	1380	2120	2020	1280	933	1130	9190	11600	12500	10000	
5	8830	2690	1360	2130	1950	1270	927	1170	9270	11600	12400	9800	
6	8670	2600	1330	2150	1910	1250	934	1220	9470	11600	12300	9710	
7	8530	2520	1300	2170	1880	1230	931	1260	9540	11600	12300	9700	
8	8360	2440	1290	2210	1830	1220	908	1300	9790	11700	12300	9410	
9	8090	2360	1250	2520	1720	1210	931	1370	9560	11700	12200	9240	
10	7730	2270	1240	2650	1680	1180	933	1450	9300	11700	12100	9020	
11	7650	2200	1220	2610	1670	1180	911	1550	9230	11700	11900	8740	
12	7350	2140	1200	2620	1580	1160	899	1630	9190	11700	12000	8670	
13	7020	2070	e1150	2630	1670	1140	894	1720	9150	11600	12000	8500	
14	6670	1990	e1150	2730	1570	1130	888	1820	9060	11600	12000	8500	
15	6360	1960	e1100	2650	1530	1100	878	1940	8990	11500	11800	9200	
16	6030	1910	e1100	2700	1510	1130	871	2080	8990	11400	11600	9730	
17	5800	1910	e1100	2650	1530	1090	867	2220	9170	11400	11400	10300	
18	5550	1960	e1100	2620	1460	1080	937	2390	9410	11500	11400	10500	
19	5310	1890	e1100	2600	1430	1070	864	2610	9780	11700	11500	10400	
20	5070	1870	e1100	2580	1430	1060	843	2860	10100	11800	11400	10100	
21	4930	1820	e1200	2520	1430	1040	832	3180	10300	11900	11400	9710	
22	4730	1790	e1300	2470	1430	1030	832	3580	10300	12000	11500	9390	
23	4490	1740	e1400	2410	1400	1020	845	3960	10600	12200	11300	8930	
24	4280	1720	e1500	2360	1330	1020	846	4450	10600	12600	11300	8820	
25	4080	1700	e1600	2300	1360	992	832	4960	10600	13000	11400	8610	
26 27 28 29 30 31	3910 3720 3550 3400 3270 3150	1690 1640 1600 1560 1540	e1700 1800 1870 1900 1920 1950	2260 2220 2210 2200 2150 2110	1360 1310 1300 	985 975 980 962 947 939	812 832 855 876 918	5530 6150 6640 7180 7660 8050	10600 10700 10800 10900 11100	13300 13600 13700 13600 13500 13300	11500 11400 11000 10700 10600 10500	8970 9120 9240 9260 9160	
TOTAL	198690	63170	42990	73630	45330	34550	26654	94116	291960	374500	364100	283630	
MEAN	6409	2106	1387	2375	1619	1115	888.5	3036	9732	12080	11750	9454	
MAX	11600	3040	1950	2730	2050	1300	947	8050	11100	13700	13000	10500	
MIN	3150	1540	1100	2000	1300	939	812	946	8460	11300	10500	8500	
AC-FT	394100	125300	85270	146000	89910	68530	52870	186700	579100	742800	722200	562600	
CFSM	5.31	1.75	1.15	1.97	1.34	0.92	0.74	2.52	8.07	10.0	9.74	7.84	
IN.	6.13	1.95	1.33	2.27	1.40	1.07	0.82	2.90	9.01	11.55	11.23	8.75	
STATIS	STICS OF	MONTHLY ME	AN DATA	FOR WATER	YEARS 1997	- 2002,	BY WATE	R YEAR (WY) #				
MEAN	5896	2989	1746	1883	1463	1064	1060	2522	8328	13100	11900	10100	
MAX	7498	4441	2116	2960	2315	1325	1241	3036	9795	15400	13600	13860	
(WY)	1998	2000	2001	2001	2001	2001	1998	2002	1998	2001	2001	2001	
MIN	3937	2106	1387	1164	891	870	888	2210	6156	11960	10310	5659	
(WY)	2001	2002	2002	1999	1998	1998	2002	2001	1997	1999	1998	2000	
SUMMAF	RY STATIS	rics	FOR	2001 CALE	NDAR YEAR	F	OR 2002 I	WATER YEAR		WATER YEA	RS 1997	- 2002#	
ANNUAL HIGHES LOWEST ANNUAL MAXIMU MAXIMU INSTAN ANNUAL ANNUAL ANNUAL 10 PEF 50 PEF	T ANNUAL T ANNUAL 1 ST DAILY 1 M YIIAD 1	MEAN MEAN EAN AY MINIMUM LOW FAGE LOW FLOW (AC-FT) (CFSM) (INCHES) EEDS EEDS		2193660 6010 18300 a1060 1070 4351000 4.9 67.6 15000 2940 1160	8		1893320 5187 13700 812 833 b13800 11.765 3755000 4.365 11600 2580 983	87 Jul 28 Apr 20 30		5198 5886 4742 18300 776 792 18500 13.2 c765 3765000 58.5 12600 2700 1020	Mar 1 Mar Sep 1 Sep Mar 1	2 2001	

See Period of Record, partial year used in monthly statistics Apr. 8, 14 and 15 July 27 to 29 Mar. 12 and 13, 1998 and Apr. 20, 2002

Estimated

15266150 KENAI RIVER BELOW MOUTH OF KILLEY RIVER NEAR STERLING

LOCATION.--Lat $60^{\circ}29'28''$, long $150^{\circ}37'50''$, in $NW^{1}_{/4}$ $SW^{1}_{/4}$ $SE^{1}_{/4}$ sec. 26, T. 5 N., R. 8 W. (Kenai B-2 quad), Kenai Peninsula Borough, Hydrologic Unit 19020302, on right bank, 1.5 mi downstream from Killey River, 4.5 mi southeast of

DRAINAGE AREA.--1,496 mi².

PERIOD OF RECORD. -- June 1997 to current year.

GAGE.--Water stage recorder. Elevation of gage is 230 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry and phone modem at station.

			DISCHAF	RGE, in CFS		EAR OCTO		TO SEPTEM	BER 2002			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	12200	3000	1630	2210	2050	1400	1040	1580	9660	12800	14400	10700
2	11300	2940	1600	2200	2020	1390	1030	1610	9840	13000	14100	10500
3	10700	2860	e1600	2220	1960	1390	1030	1590	9960	13100	14000	10400
4	9970	2770	e1600	2230	2030	1390	1020	1600	10100	13200	13900	10200
5	9630	2690	e1550	2250	1970	1370	1020	1610	10200	13200	13800	10100
6	9460	2580	e1550	2290	1930	1360	1010	1640	10300	13100	13500	10500
7	9190	2470	e1550	2300	1900	1340	1000	1680	10200	13100	13600	10500
8	9030	2360	1550	2420	1870	1330	997	1730	10400	13200	13600	10100
9	8770	2270	1510	2680	1840	1310	1000	1800	10500	13200	e13500	9940
10	8340	2230	1460	2760	1800	1270	1000	1880	10300	13000	e13400	9580
11	7870	2190	1440	2710	1790	1280	995	1970	10100	13300	e13300	9360
12	7560	2140	1420	2720	1710	1250	987	2030	9830	13000	e13200	9220
13	7230	2090	e1400	2690	e1700	1240	981	2100	9860	12900	e13100	9090
14	6970	2030	e1400	2790	1690	1220	977	2200	9810	12800	e13000	9840
15	6700	2000	e1350	2720	1640	1200	977	2330	10000	12800	12800	10100
16	6360	1960	e1350	2750	1630	1210	963	2490	10300	12700	12500	10400
17	6100	1950	e1350	2720	e1600	1180	966	2640	10700	12700	12200	10700
18	5820	2020	e1400	2700	e1600	1170	1020	2900	11200	12800	12000	10900
19	5570	1960	e1450	2670	1550	1170	979	3280	11600	13200	11800	10900
20	5250	1940	e1500	2640	e1500	1160	982	3690	11600	13100	11700	10700
21	5070	1900	e1550	2560	e1500	1140	991	4160	11700	13200	11800	10300
22	4800	1880	e1600	2490	e1500	1130	1010	4680	11700	13500	11800	10000
23	4530	1860	e1650	2430	1500	1110	1020	5190	11800	14000	11800	9660
24	4330	1840	e1750	2370	1440	1110	1030	5790	11900	14500	11700	9650
25	4070	1790	e1850	e2350	1460	1090	1040	6380	11900	15000	11700	9690
26 27 28 29 30 31	3840 3640 3470 3360 3230 3080	1750 1700 1680 1660 1660	e1950 e2000 e2050 e2150 e2200 2200	e2300 2240 2210 2190 2140 2110	1470 1440 1410 	1080 1080 1080 1070 1060 1050	1050 1110 1220 1370 1500	6980 7620 8190 8640 9140 9400	12000 12000 12000 12100 12400	15100 15400 15300 15100 14900 14700	11600 11500 11200 11000 10900 10800	10000 10100 10100 10000 9860
TOTAL	207440	64170	50610	76060	47500	37630	31315	118520	325960	420900	389200	303090
MEAN	6692	2139	1633	2454	1696	1214	1044	3823	10870	13580	12550	10100
MAX	12200	3000	2200	2790	2050	1400	1500	9400	12400	15400	14400	10900
MIN	3080	1660	1350	2110	1410	1050	963	1580	9660	12700	10800	9090
AC-FT	411500	127300	100400	150900	94220	74640	62110	235100	646500	834900	772000	601200
CFSM	4.47	1.43	1.09	1.64	1.13	0.81	0.70	2.56	7.26	9.08	8.39	6.75
IN.	5.16	1.60	1.26	1.89	1.18	0.94	0.78	2.95	8.11	10.47	9.68	7.54
STATIS	STICS OF	MONTHLY ME	EAN DATA	FOR WATER	YEARS 1997	- 2002,	, BY WATE	R YEAR (WY) #			
MEAN	6199	3142	1889	1970	1514	1147	1229	2893	9511	14520	12850	10610
MAX	7859	4451	2276	3140	2337	1399	1490	3823	11080	18240	15930	14240
(WY)	1998	2000	2001	2001	2001	2001	1998	2002	1998	2001	2001	2001
MIN	4291	2139	1633	1126	989	926	1010	2456	7701	12580	11020	6196
(WY)	2001	2002	2002	1999	1998	1999	1999	1999	1997	1999	1998	2000
SUMMAF	RY STATIS	TICS	FOR	2001 CALE	NDAR YEAR			WATER YEAR	!	WATER YEA	ARS 1997 -	- 2002#
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU INSTAN ANNUAL ANNUAL ANNUAL 10 PEF 50 PEF	T ANNUAL ANNUAL T DAILY DAILY M	MEAN MEAN EAN AY MINIMUN LOW TAGE LOW FLOW (AC-FT) (CFSM) (INCHES) EEDS EEDS	1	2460710 6742 a19400 b1170 1190 4881000 4.5 61.1 17400 3000 1370			2072395 5678 15400 963 978 15600 11. 910 4111000 3. 51. 13000 2670 1120	Apr 16 Apr 11 Jul 27 20 Jul 27 Apr 17		5644 6632 5010 a19400 c800 836 d19600 12.2 f 4089000 3.5 51.2 13500 2890 1100	25 Sep 1	9 1997 1 1999 1 2001

See Period of Record, partial year used in monthly statistics Jul. 25 and 26, 2001
Mar. 29 and Apr. 6
Apr 19, 1997 and Apr. 6-7, 1999
Jul. 24 and 25
Estimated
Not determined associated and aprior of the state of t

Not determined, see lowest daily mean

15266300 KENAI RIVER AT SOLDOTNA

LOCATION.--Lat $60^{\circ}28'39''$, long $151^{\circ}04'46''$, in $W^{1}/_{2}$ SW $^{1}/_{4}$ sec. 32, T. 5 N., R. 10 W. (Kenai B-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020302, near center of span on downstream side of bridge on Sterling Highway, 1.0 mi southwest of Soldotna.

DRAINAGE AREA. -- 1,951 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1965 to current year.

REVISED RECORDS.--WRD AK-00-1 drainage area.

GAGE.--Water-stage recorder. Datum of gage is 35.34 ft above sea level. Prior to May 1, 1997, non-recording gage at same site and datum.

REMARKS.--Records good, except for estimated daily discharges, which are poor. GOES satellite telemetry and phone modem at station.

DISCHARGE, in CFS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	12900	3310	e1800	e2400	e2250	e1500	e1100	2750	9960	12700	14600	10900
2	11900	3230	e1750	e2400	e2200	e1500	e1100	2660	10100	12900	14400	10600
3 4	11300 10700	3180 2930	e1750 e1700	e2450 e2450	e2150 e2100	e1500 e1500	e1050 e1050	2560 2450	10200 10200	13100 13100	14200 14100	10400 10300
5	10000	2820	e1700	e2500	e2100	e1500	e1050	2340	10300	13200	14100	10400
3	10000	2020	C1700	02300	CZIOO	C1300	01050	2310	10300	15200	11000	10100
6	9690	2720	e1700	e2500	e2050	e1450	e1050	2370	10600	13000	14000	10700
7	9220	2610	e1700	e2650	e2050	e1450	e1050	2410	10700	13100	13900	10700
8	8980	2640	e1700	e2900	e2000	e1400	e1000	2440	10800	13200	13900	10400
9	9070	2400	e1650	e2950	e2000	e1400	e1000	2580	10900	13000	13700	10200
10	8670	2340	e1600	e3000	e1950	e1400	e1000	2650	10700	13200	13400	9740
11	8010	2320	e1600	e3000	e1950	e1400	e1050	2760	10500	13200	13300	9520
12	7580	2290	e1550	e2950	e1900	e1350	e1050	2770	10400	13100	13600	9500
13	7210	2270	e1500	e2950	e1900	e1350	e1050	2780	10300	13000	13500	9510
14	7020	e2250	e1450	e3000	e1850	e1350	e1050	2860	10500	13100	13300	10000
15	6810	e2200	e1450	e3000	e1800	e1300	e1050	2930	10700	12900	12900	10500
16	6420	2070	-1450	e2950	-1000	-1200	1070	3080	10800	12900	12700	10600
17	6430 6390	2070 e2100	e1450 e1500	e2950 e2900	e1800 e1750	e1300 e1250	1120	3310	11100	12900	12700	10900
18	6070	e2100	e1550	e2900	e1700	e1250	e1150	3590	11400	12800	12500	11100
19	5670	e2100	e1550	e2900	e1700	e1250	e1150	3930	11800	13300	12300	11000
20	5380	e2050	e1600	e2900	e1650	e1200	e1200	4240	12000	13300	12300	10800
20	3300	02000	01000	02300	01000	01200	01200	1210	12000	10000	12300	10000
21	5360	e2050	e1700	e2800	e1600	e1200	e1200	4810	12000	13400	12200	10500
22	4990	e2000	e1800	e2800	e1600	e1200	1230	5140	12100	13600	12200	10200
23	4660	e1950	e1850	e2700	e1600	e1200	1290	5610	12000	14100	12000	9930
24	4400	e1950	e1900	e2650	e1600	e1200	1410	6100	12300	14500	11800	9910
25	4170	1830	e2000	e2600	e1550	e1150	1510	6490	12400	14800	11700	10000
26	3950	1780	e2100	e2550	e1550	e1150	1730	7020	12400	14900	11700	10500
27	3780	e1850	e2150	e2500	e1550	e1150	2100	7700	12300	15200	11600	10600
28	3660	e1850	e2250	e2400	e1500	e1150	2350	8230	12300	15300	11500	10600
29	3630	e1800	e2300	e2350		e1150	2620	8590	12400	15100	11100	10400
30	3410	e1800	e2350	e2300		e1100	2830	9130	12400	15100	11100	10300
31	3380		e2400	e2300		e1100		9700		14800	11000	
TOTAL	214390	68790	55050	83600	51400	40350	39660	135980	336560	421800	397100	310710
MEAN	6916	2293	1776	2697	1836	1302	1322	4386	11220	13610	12810	10360
MAX	12900	3310	2400	3000	2250	1500	2830	9700	12400	15300	14600	11100
MIN	3380	1780	1450	2300	1500	1100	1000	2340	9960	12700	11000	9500
AC-FT	425200	136400	109200	165800	102000	80030	78670	269700	667600	836600	787600	616300
CFSM	3.54	1.18	0.91	1.38	0.94	0.67	0.68	2.25	5.75	6.97	6.57	5.31
IN.	4.09	1.31	1.05	1.59	0.98	0.77	0.76	2.59	6.42	8.04	7.57	5.92

15266300 KENAI RIVER AT SOLDOTNA—Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1965 - 2002, BY WATER YEAR (WY)#

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN MAX	7150 14370	3415 7335	2211 5469	1887 4290	1639 4575	1340 2696	1557 2836	3174 5645	8568 12570	13480 18740	14390 24890	11730 21280
(WY) MIN	1970 2852	1980 1631	1977 1132	1981 823	1981 822	1981 800	1980 812	1990 1950	1980 4940	1977 9696	1977 8706	1995 5873
(WY)	1993	1974	1976	1976	1976	1976	1972	1973	1972	1973	1969	1969
SUMMARY	STATIST:	ICS	FOR 2	2001 CALEN	IDAR YEAR	F	OR 2002	WATER YEAR		WATER YEARS	3 1965 -	2002#
ANNUAL ANNUAL		MEAN	:	2585650 7084			2155390 5905			5925 8810		1977
	ANNUAL M									4002		1973
	DAILY M			19800	Sep 3		15300	Jul 28		41400	Sep 24	
	DAILY MEA	AN Y MINIMUM		1340 1390	Apr 1 Mar 27		a1000 1030	Apr 8 Apr 4		b770 774	Apr 1 Apr 1	
	PEAK FLO			1330	nai 27		15600	Jul 30		42200	Sep 24	
	M PEAK STA M PEAK STA						9.	89 Jul 30		14.50 c22.62		
	TANEOUS LO							Apr 16		770	Apr 1	1966
	RUNOFF (!	5129000 3.63	,		4275000	0.3		4293000 3.04		
	RUNOFF (49.30			41.			41.27		
	CENT EXCE			17200			13000			14200		
	CENT EXCE			3330			2900			3200		
90 PERC	CENT EXCE	EDS		1680			1250			1200		

[#] See Period of Record; partial years used in monthly statistics
a Apr. 8 to Apr. 10
b Apr. 1 to Apr. 4, 1966
c Backwater from ice
e Estimated

15271000 SIXMILE CREEK NEAR HOPE

LOCATION.--Lat $60^{\circ}49'15''$, long $149^{\circ}25'31''$, in SW^{1}_{4} SE $^{1}_{4}$ sec. 34, T. 8 N., R. 1 W. (Seward D-7 quad), Kenai Peninsula Borough, Hydrologic Unit 19020302, Chugach National Forest, on left bank, 6.0 mi upstream from mouth at Turnagain Arm, and 10.6 mi southeast of Hope.

DRAINAGE AREA. -- 234 mi²

PERIOD OF RECORD.--June 1979 to September 1990, August 1997 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 250 ft above sea level, from topographic map. Prior to November 26, 1979, recording gage at site 0.8 mi downstream at different datum.

REMARKS.--Records good except for estimated daily discharges, which are poor. Rain gage at station. GOES satellite telemetry at station.

Gage

EXTREMES FOR CURRENT PERIOD.--Peak discharges greater than base discharge of 3,500 $\mathrm{ft^3/s}$ and maximum (*)

Gage

	Date	Time		scharge ft ³ /s)	Gage Height (ft)		Date		Time	Discharge (ft ³ /s)	Gage Height (ft)	
	Dec.27	0300		3580	11.48		June 18	8	04:15	3810*	11.60*	
	May 26	0115		3810*	11.60*							
		DISCHAR	GE, CU	BIC FEET		WATER Y MEAN	YEAR OCTOBE	R 2001	TO SEPTE	EMBER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	994 901 846 892 1370	426 412 401 389 373	e250 e250 e250 e250 e250	736 667 568 477 e460	e230 e220 e220 e220 e220	165 156 158 e160 e160	142 147 149 147 147	547 523 507 491 511	2920 2710 2720 2730 2650	2420 2230 2160 2160 2020	1030 1020 1040 1090 1050	689 670 648 613 616
6 7 8 9 10	1230 1030 925 957 890	355 331 337 e350 e350	e250 e250 e250 e250 e250	e800 e500 442 413 387	e220 e220 e220 e220 e200	e160 e160 e150 e150 e150	146 132 132 130 127	524 518 552 608 654	2590 2630 2780 2600 2490	2020 1960 1930 1880 1680	983 987 1040 979 865	672 656 622 602 581
11 12 13 14 15	823 740 685 683 651	361 356 313 324 345	e250 e250 e250 e250 e250	360 340 325 315 311	e200 e200 e200 e190 188	e140 e140 e140 e140 e140	130 134 137 129 126	690 766 924 1070 1140	2400 2220 2250 2230 2820	1640 1670 1670 1580 1450	913 1060 1150 984 865	556 591 602 1110 1180
16 17 18 19 20	612 603 584 554 529	309 325 348 335 356	e240 e240 e240 e240 e280	297 294 294 285 266	190 191 180 173 e180	e140 e140 e140 e130 e130	128 132 131 133 135	1130 1310 1760 2200 2520	3130 3340 3450 3240 2780	1430 1560 1760 1560 1380	782 795 798 792 944	830 846 853 713 654
21 22 23 24 25	543 514 476 452 405	345 330 321 301 278	e280 e280 e260 e350 460	238 e240 e240 e240 e240	e180 e170 e170 e170 e160	e130 e130 e130 e130 e130	137 137 139 143 149	2750 2940 3090 3380 3360	2400 2190 2300 2410 2530	1350 1420 1500 2040 1630	1010 911 847 809 751	612 576 561 611 745
26 27 28 29 30 31	397 398 449 422 412 421	e275 e275 e275 e275 e250	1310 2920 1180 652 660 638	e220 e220 e220 e220 e230 e230	e160 164 161 	136 134 133 143 142 144	160 189 237 352 481	3450 3490 3240 3160 3230 3070	2950 2670 2250 2170 2320	1320 1170 1050 1010 1010 1030	695 656 628 637 674 676	764 733 663 613 626
TOTAL MEAN MAX MIN AC-FT CFSM IN.	21388 690 1370 397 42420 2.95 3.40	10021 334 426 250 19880 1.43 1.59	13980 451 2920 240 27730 1.93 2.22	11075 357 800 220 21970 1.53 1.76	5417 193 230 160 10740 .83 .86	4431 143 165 130 8790 .61	4838 161 481 126 9600 .69 .77	54105 1745 3490 491 107300 7.46 8.60	78870 2629 3450 2170 156400 11.2		27461 886 1150 628 54470 3.79 4.37	20808 694 1180 556 41270 2.96 3.31
STATIST	CICS OF MO	NTHLY MEAN	N DATA	FOR WATER	YEARS 1979	- 2002	, BY WATER	YEAR (V	WY)#			
MEAN MAX (WY) MIN (WY)	876 1777 1981 500 1998	415 654 1980 221 1986	279 451 2002 198 1999	239 528 1981 133 1999	176 306 1981 113 1999	155 240 1984 106 1999	244 397 1990 119	1269 1811 1981 748 1985	2723 3957 2001 1736 1989	2251 3986 1980 1166 1990	1306 2699 1981 760 1990	1027 1556 1999 607 1983

See Period of Record; partial years used in monthly statistics

Estimated

15271000 SIXMILE CREEK NEAR HOPE—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR	YEAR	FOR 2002 W	ATER YEAR	WATER YEAR	3 1979	-	2002#
ANNUAL TOTAL	428291		303084					
ANNUAL MEAN	1173		830		924			
HIGHEST ANNUAL MEAN					1335			1980
LOWEST ANNUAL MEAN					675			1986
HIGHEST DAILY MEAN	5890 Ju	ın 28	3490	May 27	7570	Jul :	12	1980
LOWEST DAILY MEAN	a126 Ar	or 6	126	Apr 15	b80	Apr	1	1986
ANNUAL SEVEN-DAY MINIMUM	128 Ar	or 4	130	Mar 19	80	Apr	1	1986
MAXIMUM PEAK FLOW	-		3810	May 26	c8070	Jul	2	1980
MAXIMUM PEAK STAGE			11.60) May 26	13.22	Jul	2	1980
INSTANTANEOUS LOW FLOW				_	d29	Nov 2	26	1979
ANNUAL RUNOFF (AC-FT)	849500		601200		669500			
ANNUAL RUNOFF (CFSM)	5.01		3.55	5	3.95			
ANNUAL RUNOFF (INCHES)	68.09		48.18	3	53.66			
10 PERCENT EXCEEDS	3120		2350		2440			
50 PERCENT EXCEEDS	476		511		551			
90 PERCENT EXCEEDS	157		142		140			

See Period of Record; partial years used in monthly statistics Apr. 6, Apr. 7 and Apr. 9 Apr. 1 to Apr. 9, 1986 Peak discharge was probably greater sometime during the period, Nov. 26, 1979 to Jan. 9, 1980, during release from storage behind snow-avalanche dam upstream from former gage site Sometime between Nov. 26, 1979 and Jan. 9, 1980, during release from storage behind snow-avalanche dam upstream from former gage site, site and datum then in use

15272280 PORTAGE CREEK AT PORTAGE LAKE OUTLET NEAR WHITTIER

LOCATION.--Lat $60^{\circ}47'07''$, long $148^{\circ}50'20''$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec. 13, T. 8 N., R. 3 E. (Seward D-5 SW quad), Municipality of Anchorage, Hydrologic Unit 19020302, on left bank at lake outlet, 5.0 mi west of Whittier, 5.8 mi southeast of Portage, and 6.5 mi upstream from mouth.

DRAINAGE AREA. -- 40.5 mi².

Date

PERIOD OF RECORD. -- March 1989 to current year.

Time

GAGE.--Water-stage recorder. Elevation of gage is 95 ft above sea level, from topographic map.

Gage

REMARKS.--Records good except for estimated daily discharges, which are poor.

Discharge

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge, $12,500 \text{ ft}^3/\text{s}$, August 19, 1984 (elevation about 97.05 ft above sea level from USFS levels) by contracted-opening measurement of peak flow.

Discharge

Time

Date

Gage

EXTREMES FOR CURRENT YEAR.--Peak discharge greater than base discharge of 4,600 $\mathrm{ft^3/s}$ and maximum (*).

	Date	e T11	ne	(ft³/s)	Height		Date	3	Time	(ft³/s)	Height	
	Oct	5 16	00	5070	7.60		Sept	14	1315	*7210	*8.57	
			DISCH	ARGE, in C		YEAR OCT		TO SEP	TEMBER 200)2		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	774	135	111	1120	e90	e60	e29	e95	1040	1630	1520	1520
2	673	132	101	789	89	e55	e30	122	996	1530	1510	1380
3	720	141	92	571	93	e50	e30	130	1450	1510	1600	1290
4	1590	128	e88	437	e100	e45	e30	133		1480	1700	1110
5	4230	118	e83	541	e110	e40	e30	136	1490	1450	1680	1060
6	2980	106	e82	990	e100	e35	e30	137		1460	1630	1110
7	1640	95 87	e79	1020	e95	e30	e31	137		1460	2090	1090
8	1070	87	e78	735	e90	e30	e31	139		1490	2040	1010
9	1260	81	e75	1130	e85	e30	e32	150		1500	1670	949
10	1050	78	75	788	e80	e30	e31	164	2040	1440	1530	869
11	725	79	80	459	e80	e30	e31	173	2000	1450	2170	778
12	542	95	82	308	e75	e28	e30	184		1460	2300	955
13	431	88	78	242	e70	e27	e30	199		1470	2130	2350
14	368	82	e76	257	e80	e28	e30	219		1460	1750	6270
15	338	90	e74	292	e85	e32	e32	242	1240	1390	1440	4400
16	293	84	e70	262	e80	e35	e34	250		1380	1220	2150
17	272	103	69		e75	e34	e38	262		1480	1260	1720
18	240	180	62		e65	e32	e40	301	1510	1790	1290	1820
19	218	206	58		e65	e30	e40	366		2110	1250	1280
20	225	275	84	250	e60	e29	e42	454	1440	1960	1610	923
21	299	307	107	209	e55	e28	e40	537		1820	2510	694
22	258	280	130	174	e55	e28	e38	630		1970	2730	583
23	218	301	116	148	e55	e30	e38	847		2210	2850	653
24	191	280	101	129	e50	e32	e36	920		3390	2550	1440
25	170	230	190	e120	e45	e34	e40	906	1900	3120	2030	3160
26	150	191	1430 2490 1150 718	e110	e45	e35	e42	907		2610	1520	2830
27	137	163	2490	e100	e50	e32	e44	1030		2310	1230	2110
28	132	147	1150	e94 e90	e55	e30	e46	1040		1760	1070	1360
29 30	121 112	137 122	964	e90		e30 e29	e50 e75	1030 1120		1580 1510	1190 1820	957 915
31	112	122	962	e90		e28		1110		1510	1780	915
moma r	01530	4541	0055	10513	0.055	1046	1100	14050	45506	E 4 E 1 O	E4680	4000
TOTAL MEAN	21539	4541	9955	12513	2077 74.18	1046 33.74	1100 36.67	14070 453.9		54710 1765	54670	48736 1625
MEAN	694.8 4230	151.4 307	321.1 2490	403.6	74.18 110	33.74	36.67	453.9 1120		3390	1764 2850	1625 6270
MIN	112	78	58	1130 90	45	60 27	75 29	95		1380	1070	583
AC-FT	42720	9010	19750	24820	4120	2070	2180	27910		108500	108400	96670
CFSM	17.2	3.74	7.93	9.97	1.83	0.83	0.91	11.2		43.6	43.5	40.1
IN.	19.78	4.17	9.14	11.49	1.91	0.96	1.01	12.92		50.25	50.22	44.76
STATIST	rics of	MONTHLY ME	EAN DATA	FOR WATER	YEARS 19	89 - 2002,	BY WATER	YEAR (WY)#			
MEAN	545.1	228.1	139.0	146.2	114.4	84.04	229.6	599.0	1448	2104	2040	1855
MAX	1014	553	325	460	277	189	393	1158		2518	3164	3583
(WY)	1994	1998	2002	2001	1997	1998	1995	1995	1990	1990	1989	1995
MIN	136	90.5	26.3	26.0	26.0	26.0	36.7	286		1714	1409	649
(WY)	1997	1991	1991		1991	1991	2002	2001		1999	1998	1992

See Period of Record, partial years used in monthly statistics $\ensuremath{\mathsf{Estimated}}$

15272280 PORTAGE CREEK AT PORTAGE LAKE OUTLET NEAR WHITTIER—Continued

SUMMARY STATISTICS	FOR 2001 CALENDA	AR YEAR	FOR 2002 WAT	TER YEAR	WATER YEARS	1989 - 2002
ANNUAL TOTAL	295440		270753			
ANNUAL MEAN	809.4		741.8		786.1	
HIGHEST ANNUAL MEAN					972	1995
LOWEST ANNUAL MEAN					656	2000
HIGHEST DAILY MEAN	7970	Aug 29	6270	Sep 14	10700	Sep 20 1995
LOWEST DAILY MEAN	58	Dec 19	27	Mar 13	a26	Dec 5 1990
ANNUAL SEVEN-DAY MINIMUM	69	Feb 19	29	Mar 8	26	Dec 5 1990
MAXIMUM PEAK FLOW			7620	Sep 14	13000	Sep 20 1995
MAXIMUM PEAK STAGE			8.57	Sep 14	10.66	Sep 20 1995
INSTANTANEOUS LOW FLOW			b		26	Dec 5 1990
ANNUAL RUNOFF (AC-FT)	586000		537000		569500	
ANNUAL RUNOFF (CFSM)	20.0		18.3		19.4	
ANNUAL RUNOFF (INCHES)	271.37		248.69		263.73	
10 PERCENT EXCEEDS	1880		1820		1980	
50 PERCENT EXCEEDS	280		262		304	
90 PERCENT EXCEEDS	89		33		55	

[#] See Period of Record, partial years used in monthly statistics a From Dec. 5, 1990 to Mar. 31, 1991 b Not determined, see lowest daily mean

15272380 TWENTYMILE RIVER BELOW GLACIER RIVER NEAR PORTAGE

LOCATION.--Lat $60^{\circ}53'53''$, long $148^{\circ}55'19''$, in $NE^{1}/_{4}$ $NW^{1}/_{4}$ $SE^{1}/_{4}$ sec. 4, T. 9 N., R. 3 E. (Seward D-6 quad), Hydrologic Unit 19020401, on right bank, 0.1 miles downstream from Glacier River, 4.0 miles upstream from mouth at Seward Highway, and 6.0 miles northeast of Portage.

DRAINAGE AREA. -- 141 mi².

PERIOD OF RECORD. -- April 2001 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 50 ft above sea level, from topographic map.

REMARKS.--Record is good except for July 18 to September 1 which are fair, and estimated daily discharges which are poor. GOES satellite telemetry at station.

REVISIONS.--Revised figures of discharge for water year 2001 are given below. These figures supercede those published in report for 2001.

DISCHARGE,	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	2000	TO	SEPTEMBER	2001
				DAIL	Y MEAN	VALUE	ES				

					DITT	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11110110					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							e195	547	1760	3510	e2900	4500
2							e195	521	1950	3490	3010	3260
3							258	533	2090	3380	3180	2820
4							271	469	2030	3190	3180	3170
5							226	416	2020	3310	3070	4410
5							220	410	2020	3310	3070	4410
6							197	483	2070	3310	3010	3260
7							183	490	1920	3020	2900	2730
8							180	440	1750	2810	2710	2330
9							178	439	1870	2660	2600	2030
10							191	433	2070	2670	2450	1810
11							344	422	2230	2630	2370	1660
12							439	412	2230	2800	2590	2170
13	‡758						345	432	2100	2790	2910	3100
14							294	505	2170	2720	3210	2850
15							263	603	2380	2770	3270	2530
13							203	003	2380	2770	3270	2550
16		‡ 552					264	682	2700	2650	3150	2200
17							254	731	3050	2780	2980	2450
18							243	789	3160	2890	3090	2590
19							243	866	2970	3040	3110	2380
20							247	1010	2850	4440	6140	2110
21							267	1090	3020	4830	5620	2140
22							282	1170	3250	5160	4130	2070
23							300	1130	3730	4900	3170	2650
24							295	1140	4050	4040	2920	4090
25							395	1100	3840	3360	2760	3080
25							393	1100	3640	3360	2760	3000
26							437	1060	4020	e3200	2580	2520
27							464	1060	4480	e3100	2530	2080
28							734	1200	4640	e2900	5510	1940
29							626	1400	4410	e2800	11000	1860
30							559	1460	3880	e2700	9230	1600
31								1630		e2800	7170	
TOTAL							9369	24663	84690	100650	118450	78390
MEAN							312	796	2823	3247	3821	2613
MAX							734	1630	4640	5160	11000	4500
MIN							178	412	1750	2630	2370	1600
MED							266	682	2540	3020	3070	2480
AC-FT							18580	48920	168000	199600	234900	155500
CFSM							2.21	5.64	20.0	23.0	27.1	18.5
IN.							2.47	6.51	22.34	26.55	31.25	20.68

[†] Result of discharge measurement

e Estimated

15272380 TWENTYMILE RIVER BELOW GLACIER RIVER NEAR PORTAGE—Continued

90 PERCENT EXCEEDS

[#] See Period of Record, partial years used in monthly statistics

e Estimated

15272380 TWENTYMILE RIVER BELOW GRANITE RIVER NEAR PORTAGE—Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- April 2002 to September 2002.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: April 2002 to Spetember 2002.

INSTRUMENTATION.--Electronic water-temperature recorder set for 15 minute recording interval.

REMARKS.--Probe installed on April 22. Records represent water temperature at the sensor within 0.5°C. Temperature at the sensor was compared with the average for the stream by cross section on April 22 and September 3. No variation more than 0.5°C was found within the cross sections. No variation more than 0.5°C was found between mean stream temperature and sensor temperature. Heavy shore ice occurs near the gage.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum, 9.0°C, several days in June, July and August; Minimum, 0.0°C on April 23 and 24.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	STREAM WIDTH (FT) (00004)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	TEMPER- ATURE WATER (DEG C) (00010)
APR								
22	1245	57.0	5.00	14.98	121	10	8010	2.5
22	1247	57.0	15.0	14.98	121	10	8010	2.6
22	1249	57.0	25.0	14.98	121	10	8010	2.5
22	1251	57.0	35.0	14.98	121	10	8010	2.5
22	1253	57.0	45.0	14.98	121	10	8010	2.6
22	1255	57.0	55.0	14.98	121	10	8010	2.6
SEP								
03	1342	150	15.0	18.15	1960	10	8010	6.2
03	1344	150	45.0	18.15	1960	10	8010	6.2
03	1346	150	75.0	18.15	1960	10	8010	6.2
03	1348	150	105	18.15	1960	10	8010	6.1
03	1350	150	135	18.15	1960	10	8010	6.1

15272380 TWENTYMILE RIVER BELOW GRANITE RIVER NEAR PORTAGE—Continued

WATER TEMPERATURE, (DEGREES CELSIUS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
Dill		FEBRUARY		11111	MARCH	THE	11111	APRIL	1111111	11111	MAY	TIDILLY
1 2										4.5 6.0	0.5 0.5	2.0
3										5.5	1.0	3.0
4 5										6.5 6.0	0.5 1.0	3.0 3.5
6										3.5	2.0	2.5
7										7.0	1.5	4.0
8 9										6.0 5.5	2.0	3.5 3.5
10										6.5	1.5	4.0
11										7.5	2.0	4.0
12 13										8.0 8.5	1.5 1.5	4.5 4.5
14										7.0	2.0	4.0
15										5.5	2.5	3.5
16 17										8.5 8.5	1.5	4.5
18										8.5	2.0	5.0 5.0
19 20										8.0 8.0	2.0	4.5 4.5
20											2.5	
21 22							5.0			8.0 5.5	2.5	5.0 4.0
23							5.5	0.0	2.5	8.0	3.5	5.5
24 25							6.0 5.5	0.0 0.5	3.0	8.0 8.0	3.0	5.0 5.0
26 27							6.0 6.5	1.5 1.0	3.5 3.5	7.0 6.0	3.0 3.5	5.0 4.5
28							4.5	1.0	2.5	6.0	3.0	4.5
29 30							5.0 3.0	1.0 0.5	2.5	6.5 6.0	4.0 3.5	5.0 4.5
31										7.5	3.5	5.0
MONTH										8.5	0.5	4.1
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY		I	AUGUST		\$	SEPTEMBE	R
1	6.0	JUNE 3.5	4.5	6.5	JULY 5.0	5.5	9.0	AUGUST	6.5	7.0	SEPTEMBE	R 5.5
1 2 3	6.0 6.0 6.0	JUNE 3.5 3.5 4.0	4.5 4.5 5.0	6.5 8.5 7.5	JULY 5.0 4.5 4.5	5.5 6.0 6.0	9.0 8.5 9.0	AUGUST 4.5 4.5 5.0	6.5 6.5 6.5	7.0 7.5 7.0	SEPTEMBE 4.5 4.0 4.0	5.5 5.5 5.0
1 2 3 4	6.0 6.0 6.0 6.5	JUNE 3.5 3.5 4.0 4.0	4.5 4.5 5.0 4.5	6.5 8.5 7.5 8.0	JULY 5.0 4.5 4.5 4.5	5.5 6.0 6.0	9.0 8.5 9.0 9.0	4.5 4.5 5.0 5.0	6.5 6.5 6.5 6.5	7.0 7.5 7.0 7.5	4.5 4.0 4.0 4.0	5.5 5.5 5.0 5.5
1 2 3 4 5	6.0 6.0 6.0 6.5 6.0	JUNE 3.5 3.5 4.0 4.0	4.5 4.5 5.0 4.5 5.0	6.5 8.5 7.5 8.0 8.5	JULY 5.0 4.5 4.5 4.5 4.0	5.5 6.0 6.0 6.0	9.0 8.5 9.0 9.0	4.5 4.5 5.0 5.0 5.0	6.5 6.5 6.5 6.5	7.0 7.5 7.0 7.5 6.0	4.5 4.0 4.0 4.5 5.0	5.5 5.5 5.0 5.5 5.5
1 2 3 4	6.0 6.0 6.0 6.5	JUNE 3.5 3.5 4.0 4.0 4.0	4.5 4.5 5.0 4.5 5.0	6.5 8.5 7.5 8.0 8.5	JULY 5.0 4.5 4.5 4.5	5.5 6.0 6.0 6.0 6.0	9.0 8.5 9.0 9.0 8.0	4.5 4.5 5.0 5.0 5.0	6.5 6.5 6.5 6.0	7.0 7.5 7.0 7.5	4.5 4.0 4.0 4.0	5.5 5.5 5.0 5.5 5.5
1 2 3 4 5	6.0 6.0 6.5 6.0 5.5 8.5 6.0	JUNE 3.5 3.5 4.0 4.0 4.0 3.5 3.5 4.0	4.5 4.5 5.0 4.5 5.0 4.5 5.0	6.5 8.5 7.5 8.0 8.5 6.5 9.0	JULY 5.0 4.5 4.5 4.5 4.0 5.0 4.5 4.0	5.5 6.0 6.0 6.0 6.0 5.5 6.5	9.0 8.5 9.0 9.0 8.0 7.0 7.5 6.0	4.5 4.5 5.0 5.0 5.0 5.0	6.5 6.5 6.5 6.0 6.0 5.5	7.0 7.5 7.0 7.5 6.0 5.5 6.5	4.5 4.0 4.0 4.5 5.0 5.0 4.0	5.5 5.5 5.0 5.5 5.0 5.0
1 2 3 4 5	6.0 6.0 6.0 6.5 6.0	JUNE 3.5 3.5 4.0 4.0 4.0 3.5 3.5	4.5 4.5 5.0 4.5 5.0 4.5 5.0	6.5 8.5 7.5 8.0 8.5 6.5 9.0	JULY 5.0 4.5 4.5 4.5 4.0 5.0 4.5	5.5 6.0 6.0 6.0 6.0	9.0 8.5 9.0 9.0 8.0 7.0 7.5	4.5 4.5 5.0 5.0 5.0 5.0	6.5 6.5 6.5 6.0 6.0	7.0 7.5 7.0 7.5 6.0 5.5 6.5	4.5 4.0 4.0 4.5 5.0	5.5 5.5 5.0 5.5 5.5
1 2 3 4 5 6 7 8 9	6.0 6.0 6.5 6.0 5.5 6.0 5.5 5.5	JUNE 3.5 3.5 4.0 4.0 4.0 3.5 3.5 4.0 3.5 3.5	4.5 4.5 5.0 4.5 5.0 4.5 5.0 4.5 5.0 4.5	6.5 8.5 7.5 8.0 8.5 6.5 9.0 9.0 6.0	JULY 5.0 4.5 4.5 4.5 4.0 5.0 4.5 4.5 4.5 4.5	5.5 6.0 6.0 6.0 5.5 6.5 6.5 6.5	9.0 8.5 9.0 9.0 8.0 7.0 7.5 6.0 8.0	4.5 4.5 5.0 5.0 5.0 5.0 5.0 5.0	6.5 6.5 6.5 6.0 6.0 6.0 5.5 6.0	7.0 7.5 7.0 7.5 6.0 5.5 6.5 6.5 7.0	4.5 4.0 4.0 4.5 5.0 5.0 4.5 4.5 4.5 3.5	5.5 5.5 5.0 5.5 5.5 5.0 5.0 5.0 5.0
1 2 3 4 5 6 7 8 9 10	6.0 6.0 6.0 6.5 6.0 5.5 6.0 5.5 5.5	JUNE 3.5 3.5 4.0 4.0 3.5 3.5 4.0 3.5 4.0 4.0 3.5	4.5 4.5 5.0 4.5 5.0 4.5 5.0 4.5 5.5 5.0 4.5 5.5 5.0 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5	6.5 8.5 7.5 8.0 8.5 6.5 9.0 9.0 9.0	JULY 5.0 4.5 4.5 4.0 5.0 4.5 4.5 5.0 4.5 5.0 5.0	5.5 6.0 6.0 6.0 6.0 5.5 6.5 6.5 6.5	9.0 8.5 9.0 9.0 8.0 7.5 6.0 8.0 6.0	4.5 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	6.5 6.5 6.5 6.0 6.0 5.5 5.5	7.0 7.5 7.0 7.5 6.0 5.5 6.5 7.0 7.0	\$EPTEMBE 4.5 4.0 4.0 4.5 5.0 5.0 4.5 4.5 3.5 4.0 4.5	5.5 5.5 5.5 5.5 5.5 5.0 5.0 5.0 5.0
1 2 3 4 5 6 7 8 9 10	6.0 6.0 6.5 6.0 5.5 8.5 6.0 5.5 6.5 7.5	JUNE 3.5 3.5 4.0 4.0 4.0 3.5 3.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0	4.5 4.5 5.0 4.5 5.0 4.5 5.0 4.5 5.0 5.0 5.0	6.5 8.5 7.5 8.0 8.5 6.5 9.0 6.0 9.0 8.0 8.5	JULY 5.0 4.5 4.5 4.0 5.0 4.5 4.5 5.0 4.5 5.0 5.0	5.5 6.0 6.0 6.0 5.5 6.5 6.5 6.5 6.5	9.0 8.5 9.0 9.0 8.0 7.5 6.0 8.0 6.0	4.5 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	6.5 6.5 6.5 6.0 6.0 5.5 6.0 5.5 6.0	7.0 7.5 7.0 7.5 6.0 5.5 6.5 7.0 7.0 5.5 5.5	4.5 4.0 4.0 4.5 5.0 5.0 4.5 4.5 3.5 4.0 4.5 4.5 4.5	5.5 5.5 5.5 5.5 5.5 5.0 5.0 5.0 5.5 5.0
1 2 3 4 5 6 7 8 9 10	6.0 6.0 6.0 6.5 6.0 5.5 6.0 5.5 5.5	JUNE 3.5 3.5 4.0 4.0 3.5 3.5 4.0 3.5 4.0 4.0 3.5	4.5 4.5 5.0 4.5 5.0 4.5 5.0 4.5 5.5 5.0 4.5 5.5 5.0 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5	6.5 8.5 7.5 8.0 8.5 6.5 9.0 9.0 9.0	JULY 5.0 4.5 4.5 4.0 5.0 4.5 4.5 5.0 4.5 5.0 5.0	5.5 6.0 6.0 6.0 6.0 5.5 6.5 6.5 6.5	9.0 8.5 9.0 9.0 8.0 7.5 6.0 8.0 6.0	4.5 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	6.5 6.5 6.5 6.0 6.0 5.5 5.5	7.0 7.5 7.0 7.5 6.0 5.5 6.5 7.0 7.0	\$EPTEMBE 4.5 4.0 4.0 4.5 5.0 5.0 4.5 4.5 3.5 4.0 4.5	5.5 5.5 5.0 5.5 5.5 5.0 5.0 5.0 5.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	6.0 6.0 6.5 6.0 5.5 6.0 5.5 5.5 6.5 7.5 6.5 9.0	JUNE 3.5 3.5 4.0 4.0 4.0 3.5 4.0 4.0 3.5 4.0 3.5 4.0 3.5 3.5	4.5 4.5 5.0 4.5 5.0 4.5 5.0 4.5 5.0 6.0	6.5 8.5 7.5 8.0 8.5 6.5 9.0 6.0 9.0 8.5 9.0 7.0	JULY 5.0 4.5 4.5 4.0 5.0 4.5 4.5 5.0 4.5 5.0 5.0 5.0 5.0	5.5 6.0 6.0 6.0 5.5 6.5 5.5 6.5 6.5 6.5 6.5	9.0 8.5 9.0 9.0 8.0 7.5 6.0 8.0 6.5	4.5 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.5 5.0	6.5 6.5 6.5 6.0 6.0 5.5 6.0 5.5 6.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	7.0 7.5 7.0 7.5 6.0 5.5 6.5 7.0 7.0 5.5 5.5 5.5	4.5 4.0 4.0 4.5 5.0 5.0 4.5 4.5 3.5 4.5 4.5 4.5	5.5 5.5 5.5 5.5 5.0 5.0 5.0 5.0 5.0 5.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	6.0 6.0 6.5 6.0 5.5 8.5 6.0 5.5 5.5 6.5 7.5 6.9 9.0 9.0	JUNE 3.5 3.5 4.0 4.0 3.5 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0	4.5 4.5 5.0 4.5 5.0 4.5 5.5 4.5 5.5 6.0 6.0	6.5 8.5 7.5 8.0 8.5 9.0 9.0 9.0 8.5 9.0 7.0 9.0	JULY 5.0 4.5 4.5 4.0 5.0 4.5 5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	5.5 6.0 6.0 6.0 5.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	9.0 8.5 9.0 9.0 8.0 7.5 6.0 8.0 6.5 8.0 6.5	4.5 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.5 5.0 4.5 4.5	6.55 6.55 6.00 6.05 6.05 5.05 5.55 5.50	7.0 7.5 7.0 7.5 6.0 5.5 6.5 7.0 7.0 5.5 5.5 5.5 5.5	\$EPTEMBE 4.5 4.0 4.0 4.5 5.0 \$5.0 4.5 4.5 3.5 \$4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	5.5 5.5 5.5 5.5 5.5 5.0 5.0 5.0 5.0 5.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	6.0 6.0 6.5 6.0 5.5 8.5 6.0 5.5 5.5 6.5 9.0 9.0 8.5 8.5	JUNE 3.5 3.5 4.0 4.0 4.0 3.5 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5	4.5 4.5 5.0 4.5 5.0 4.5 5.0 4.5 5.0 4.5 5.0 6.0 6.0 6.0 6.0 5.5	6.5 8.5 7.5 8.0 8.5 6.5 9.0 9.0 6.0 9.0 8.5 9.0 7.0 9.0	JULY 5.0 4.5 4.5 4.0 5.0 4.5 4.5 5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	5.5 6.0 6.0 6.0 5.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	9.0 8.5 9.0 9.0 8.0 7.5 6.0 8.0 6.5 8.0 6.5 8.5 8.0	4.5 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.5 5.0 4.5 5.0	6.5 6.5 6.5 6.0 6.0 5.5 5.5 6.5 5.5 5.5 6.5 5.5 6.5 5.5 6.5 5.5 6.5 5.5 6.5 5.5 5	7.0 7.5 7.0 7.5 6.0 5.5 6.5 7.0 7.0 5.5 5.5 5.5 5.5 6.0 6.0	\$EPTEMBE\$ 4.5 4.0 4.0 4.5 5.0 5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.0 4.5 4.5	5.5 5.5 5.5 5.5 5.5 5.0 5.0 5.0 5.0 5.0
1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18	6.0 6.0 6.5 6.0 5.5 8.5 6.0 5.5 5.5 6.5 7.5 6.9 9.0 9.0	JUNE 3.5 3.5 4.0 4.0 3.5 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0	4.5 4.5 5.0 4.5 5.0 4.5 5.5 4.5 5.5 6.0 6.0	6.5 8.5 7.5 8.0 8.5 9.0 9.0 9.0 8.5 9.0 7.0 9.0	JULY 5.0 4.5 4.5 4.0 5.0 4.5 5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	5.5 6.0 6.0 6.0 5.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	9.0 8.5 9.0 9.0 8.0 7.5 6.0 8.0 6.5 8.0 6.5	4.5 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.5 5.0 4.5 4.5	6.55 6.55 6.00 6.05 6.05 5.05 5.55 5.50	7.0 7.5 7.0 7.5 6.0 5.5 6.5 7.0 7.0 5.5 5.5 5.5 5.5	\$EPTEMBE 4.5 4.0 4.0 4.5 5.0 \$5.0 4.5 4.5 3.5 \$4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	5.5 5.5 5.5 5.5 5.5 5.0 5.0 5.0 5.0 5.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	6.0 6.0 6.5 6.0 5.5 8.5 6.0 5.5 5.5 6.5 7.5 9.0 9.0 8.5 7.5	JUNE 3.5 3.5 4.0 4.0 3.5 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 4.0 4.0 4.0 4.0	4.5 4.5 5.0 4.5 5.0 4.5 5.5 5.5 6.0 6.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	6.5 8.5 7.5 8.0 8.5 6.5 9.0 6.0 9.0 8.0 8.5 9.0 9.0 9.0 9.0	JULY 5.0 4.5 4.5 4.0 5.0 4.5 5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	5.5 6.0 6.0 6.0 5.5 6.5 5.5 6.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 8.5 9.0 9.0 8.0 7.5 6.0 8.0 6.0 5.5 8.0 6.5 8.0 6.5	AUGUST 4.5 4.5 5.0 5.0 5.0 5.0 5.0 4.5 5.0 5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	6.5.5.5.6.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	7.0 7.5 7.0 7.5 6.0 5.5 6.5 7.0 5.5 5.5 5.5 5.5 5.5 6.0 6.0 5.5	\$EPTEMBE 4.5 4.0 4.5 5.0 \$5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	5.5 5.5 5.5 5.5 5.0 5.0 5.0 5.0 5.0 5.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	6.0 6.0 6.5 6.0 5.5 8.5 6.0 5.5 5.5 6.5 7.5 9.0 9.0 8.5 8.0 7.5	JUNE 3.5 3.5 4.0 4.0 3.5 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0	4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55	6.5 8.5 7.5 8.0 8.5 9.0 9.0 9.0 8.5 9.0 9.0 9.0 9.0 7.0 9.0	JULY 5.0 4.5 4.5 4.0 5.0 4.5 5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	5.5 6.0 6.0 6.0 5.5 6.5 6.5 6.5 6.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 8.5 9.0 9.0 8.0 7.5 6.0 8.0 6.0 5.5 8.0 6.5 8.0 6.0 6.0	AUGUST 4.5 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	6.55550 0.05055 5.0055 5.0055 5.0055 5.0055 5.0055 5.0055 5.0055 5.0055 5.0055 5.0055 5.0055 5.0055 5.0055 5.0	7.0 7.5 7.0 7.5 6.0 5.5 6.5 7.0 7.0 5.5 5.5 5.5 5.5 6.0 6.0 6.0	\$EPTEMBE 4.5 4.0 4.0 4.5 5.0 5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	5.5 5.5 5.5 5.5 5.5 5.0 5.0 5.0 5.0 5.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	6.0 6.0 6.5 6.0 5.5 8.5 5.5 5.5 6.5 7.5 9.0 9.0 8.5 7.5 7.5 9.0 7.5	JUNE 3.5 3.5 4.0 4.0 3.5 3.5 4.0 3.5 4.0 3.5 4.0 4.0 3.5 3.5 4.0 4.0 4.0 4.0 4.5 4.0	4.5 4.5 5.0 4.5 5.0 4.5 5.5 5.5 6.0 6.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	6.5 8.5 7.5 8.0 8.5 6.5 9.0 9.0 8.0 9.0 8.5 9.0 9.0 9.0 9.0 7.0 9.0 7.5 7.5	JULY 5.0 4.5 4.5 4.0 5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	5.5 6.0 6.0 6.0 5.5 6.5 5.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 8.5 9.0 9.0 8.0 7.5 6.0 8.0 6.0 5.5 8.0 6.5 8.0 6.5 8.5 8.0 6.0	AUGUST 4.5 4.5 5.0 5.0 5.0 5.0 5.0 4.5 5.0 5.0 4.5 5.0 5.0 4.5 5.0 5.0 4.5 5.0 5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	6.5.5.5.0 0.5.0.5.5 5.0.0.5.5 5.5.5.5 5.5.5.5 5.5.5.5 5.5.5.5 5.5.	7.0 7.5 7.0 7.5 6.0 5.5 6.5 7.0 5.5 5.5 5.5 5.5 6.0 6.0 5.5	\$EPTEMBE 4.5 4.0 4.5 5.0 \$5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	5.5 5.5 5.5 5.5 5.0 5.0 5.0 5.0 5.0 5.0
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	6.0 6.0 6.5 6.0 5.5 8.5 6.0 5.5 5.5 6.5 9.0 9.0 9.0 7.0 7.5 7.5 9.0 6.0	JUNE 3.5 3.5 4.0 4.0 3.5 3.5 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5 3.5 4.0 4.0 4.0 4.0 4.0 4.5	4.5 4.5 5.0 4.5 5.0 4.5 5.0 5.0 5.0 6.0 6.0 5.5 5.5 5.0 6.0 6.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	6.5 8.5 7.5 8.0 8.5 9.0 9.0 9.0 8.5 9.0 7.0 9.0 7.0 7.5 7.5 7.5	JULY 5.0 4.5 4.5 4.0 5.0 4.5 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	5.5 6.0 6.0 6.0 5.5 6.5 6.5 6.5 6.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 8.5 9.0 9.0 8.0 7.5 6.0 8.0 6.5 8.0 6.5 8.5 8.0 6.5 8.5 8.0 6.0	4.5 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.5 5.0 5.0 4.5 4.5 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	6.55 6.50 6.05 6.05 6.05 5.50 5.50 5.55 5.50 6.55 5.50 5.55 5.55	7.0 7.5 7.0 7.5 6.0 5.5 6.5 7.0 7.0 5.5 5.5 5.5 5.5 6.0 6.0 6.0 6.0 6.0	\$EPTEMBE 4.5 4.0 4.0 4.5 5.0 5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	5.5 5.5 5.5 5.5 5.5 5.0 5.0 5.0 5.0 5.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	6.0 6.0 6.5 6.0 5.5 8.5 5.5 5.5 6.5 7.5 9.0 9.0 8.5 7.5 9.0 7.5 7.5 9.0 6.0 6.0	JUNE 3.5 3.5 4.0 4.0 3.5 3.5 4.0 4.0 3.5 4.0 4.0 3.5 3.5 4.0 4.0 4.0 4.5 4.0 4.5 4.5 4.5	4.5 4.5 4.5 5.0 4.5 5.0 4.5 5.5 6.0 6.0 6.0 5.5 5.5 5.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	6.5 8.5 7.5 8.0 8.5 6.5 9.0 9.0 8.0 9.0 9.0 9.0 9.0 7.0 9.0 7.5 7.5 6.5 6.5 6.5 6.5	JULY 5.0 4.5 4.5 4.0 5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	5.5 6.0 6.0 6.0 5.5 6.5 5.5 6.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 8.5 9.0 9.0 8.0 7.5 6.0 8.0 6.0 5.5 8.0 6.5 8.0 6.5 8.5 8.0 6.5 7.5	AUGUST 4.5 4.5 5.0 5.0 5.0 5.0 5.0 4.5 5.0 5.0 4.5 6.0 5.0 4.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	7.0 7.5 7.0 7.5 6.0 5.5 6.5 7.0 5.5 5.5 5.5 5.5 6.0 6.0 6.0 5.5 5.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	\$EPTEMBE 4.5 4.0 4.5 5.0 \$.5 0 4.0 4.5 3.5 4.5 4.5 4.5 4.5 4.5 4.0 3.5 5.0 6.0 4.0 4.5 4.0 3.5 5.0 4.0 4.5 4.0 3.5 5.0 4.0 4.5 4.0 4.5 5.0 4.0 4.5 5.0 4.0 4.5 5.0 4.0 4.5 5.0 4.0 4.5 5.0 4.0 4.5 5.0 4.0 4.5 5.0 4.0 4.5 5.0 4.0 4.5 5.0 4.0 4.5 5.0 4.0 4.5 5.0 4.0 4.5 5.0 4.0 4.5 5.0 4.0 4.5 5.0 6.0 4.0 4.5 5.0 6.0 4.0 4.5 5.0 6.0 4.0 4.5 5.0 6.0 4.0 4.5 5.0 6.0 4.0 4.5 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	5.5 5.5 5.5 5.5 5.0 5.0 5.0 5.0 5.0 5.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 26 27	6.0 6.0 6.5 6.0 5.5 8.5 6.5 5.5 5.5 6.5 7.5 9.0 9.0 8.5 8.0 7.5 9.0 6.0 6.0	JUNE 3.5 3.5 4.0 4.0 3.5 3.5 4.0 3.5 4.0 3.5 4.0 4.0 3.5 4.0 4.0 4.0 4.5 4.0 4.5 4.0 4.5 4.0 4.5 4.0	4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	6.5 8.5 7.5 8.0 8.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 7.5 7.5 6.5 6.5 6.5 6.5	JULY 5.0 4.5 4.5 4.0 5.0 4.5 5.0 6.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	5.5 6.0 6.0 6.0 5.5 5.5 6.5 6.5 6.5 6.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 8.5 9.0 8.0 7.5 6.0 6.0 5.5 8.0 6.5 8.5 8.5 6.5 8.5 6.5 8.5 6.0 6.0	AUGUST 4.5 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.5 5.0 5.0 5.0 5.0 6.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	7.0 7.5 7.0 7.5 6.0 5.5 6.5 7.0 5.5 5.5 5.5 6.0 6.0 6.0 5.5 5.5 5.5 6.0 6.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	\$EPTEMBE 4.5 4.0 4.0 4.5 5.0 5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.0 4.5 5.0 5.0 6.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	5.5 5.5 5.5 5.5 5.0 5.0 5.0 5.0 5.0 5.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	6.0 6.0 6.5 6.0 5.5 8.5 5.5 5.5 6.5 7.5 9.0 9.0 8.5 7.5 7.5 9.0 7.5 7.5 9.0 6.0 6.0 6.5	JUNE 3.5 3.5 4.0 4.0 3.5 3.5 4.0 3.5 4.0 4.0 3.5 3.5 4.0 4.0 4.0 4.5 4.0 4.5 4.5 4.0 4.0 4.5 4.5 4.0	4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	6.5 8.5 7.5 8.0 8.5 6.5 9.0 9.0 8.5 9.0 9.0 9.0 9.0 7.5 6.5 6.5 6.5 7.5 6.5 6.5 7.5 6.5 7.5	JULY 5.0 4.5 4.5 4.0 5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	5.5 6.0 6.0 6.0 5.5 5.5 6.5 5.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 8.5 9.0 9.0 8.0 7.5 6.0 8.0 6.5 8.0 6.5 8.0 6.5 8.5 8.0 6.5 7.5 6.5 8.0 6.0	AUGUST 4.5 4.5 5.0 5.0 5.0 5.0 5.0 4.5 5.0 5.0 4.5 5.0 5.0 4.5 5.0 5.0 4.5 4.5 5.0 5.0 4.5 5.0 5.0 5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	7.0 7.5 7.0 7.5 6.0 5.5 6.5 7.0 5.5 5.5 5.5 6.0 6.0 6.0 6.5 5.5 6.0 6.0 6.5 5.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	\$EPTEMBE 4.5 4.0 4.5 5.0 \$.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.0 3.5 \$.5 5.0 4.0 4.5 4.0 3.5 \$.5 5.0 4.0 4.5 5.0 4.0 3.5 \$.5 5.0 4.0 4.5 5.0 4.0 3.5 \$.5 5.0 4.0 4.5 5.0 4.0 4.5 5.0 4.0 4.5 5.0 4.0 4.5 5.0 5.0 4.0 4.5 5.0 5.0 4.0 4.5 5.0 5.0 4.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	5.5 5.5 5.5 5.5 5.0 5.0 5.0 5.0 5.0 5.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 20 30 30 30 30 30 30 30 30 30 30 30 30 30	6.0 6.0 6.5 6.0 5.5 8.5 6.5 5.5 5.5 6.5 9.0 9.0 8.5 8.0 7.5 9.0 6.0 6.0 6.0 6.5 8.5 9.0 9.0 8.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	JUNE 3.5 4.0 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 4.0 4.5 4.0 4.5 4.0 4.5 4.5	4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 5.5.0 6.0 6.0 5.0 5.0 6.0 5.0 6.0 6.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	6.5 8.5 7.5 8.0 8.5 9.0 9.0 9.0 9.0 9.0 9.0 7.0 9.0 7.5 7.5 6.5 6.5 6.5 6.5 9.0	JULY 5.0 4.5 4.5 4.0 5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	5.5 6.0 6.0 6.0 5.5 5.5 6.5 6.5 6.5 6.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 8.5 9.0 8.0 7.5 6.0 6.0 5.5 8.0 6.5 8.5 6.5 8.0 6.5 8.0 6.5 8.0 6.5 8.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	AUGUST 4.5 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.5 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	5.5.5.5.0 0.5.0.5.5.5.5.5.5.5.5.5.5.5.5.	7.0 7.5 7.5 7.5 6.5 5.5 6.5 7.0 5.5 5.5 5.5 5.5 6.0 6.0 6.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	\$EPTEMBE 4.5 4.0 4.5 5.0 5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.0 4.5 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	5.5 5.5 5.5 5.5 5.5 5.0 5.0 5.0 5.0 5.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	6.0 6.0 6.5 6.0 5.5 8.5 5.5 5.5 6.5 7.5 9.0 9.0 8.5 7.5 7.5 9.0 7.5 7.5 9.0 6.0 6.0 6.5	JUNE 3.5 3.5 4.0 4.0 3.5 3.5 4.0 3.5 4.0 4.0 3.5 3.5 4.0 4.0 4.0 4.5 4.0 4.5 4.5 4.0 4.0 4.5 4.5 4.0	4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 4.5.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	6.5 8.5 7.5 8.0 8.5 6.5 9.0 9.0 8.5 9.0 9.0 9.0 9.0 7.5 6.5 6.5 6.5 7.5 6.5 6.5 7.5 6.5 7.5	JULY 5.0 4.5 4.5 4.0 5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	5.5 6.0 6.0 6.0 5.5 5.5 6.5 5.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 8.5 9.0 9.0 8.0 7.5 6.0 8.0 6.5 8.0 6.5 8.0 6.5 8.5 8.0 6.5 7.5 6.5 8.0 6.0	AUGUST 4.5 4.5 5.0 5.0 5.0 5.0 5.0 4.5 5.0 5.0 4.5 5.0 5.0 4.5 5.0 5.0 4.5 4.5 5.0 5.0 4.5 5.0 5.0 5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	7.0 7.5 7.0 7.5 6.0 5.5 6.5 7.0 5.5 5.5 5.5 6.0 6.0 6.0 6.5 5.5 6.0 6.0 6.5 5.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	\$EPTEMBE 4.5 4.0 4.5 5.0 \$.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.0 3.5 \$.5 5.0 4.0 4.5 4.0 3.5 \$.5 5.0 4.0 4.5 5.0 4.0 3.5 \$.5 5.0 4.0 4.5 5.0 4.0 3.5 \$.5 5.0 4.0 4.5 5.0 4.0 4.5 5.0 4.0 4.5 5.0 4.0 4.5 5.0 5.0 4.0 4.5 5.0 5.0 4.0 4.5 5.0 5.0 4.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	5.5 5.5 5.5 5.5 5.0 5.0 5.0 5.0 5.0 5.0

15276000 SHIP CREEK NEAR ANCHORAGE

LOCATION.--Lat $61^{\circ}13'32''$, long $149^{\circ}38'06''$, in SW^{1}_{4} SE $^{1}_{4}$ sec. 9, T. 13 N., R. 2 W. (Anchorage A-8 quad), Municipality of Anchorage, Hydrologic Unit 19020401, in Fort Richardson Military Reservation, on left bank, 800 ft downstream from diversion dam, 3.3 mi upstream from North Fork Ship Creek, and 7.8 mi east of intersection of Seward and Glenn Highways in Anchorage.

DRAINAGE AREA. -- 90.5 mi².

PERIOD OF RECORD. -- October 1946 to current year.

REVISED RECORDS.--WSP 1936: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 490 ft above sea level, from topographic map. Prior to August 22, 1985, water-stage recorder at dam 800 ft upstream. See WSP 1936 for history of changes prior to October 1, 1954.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Discharge data represent the net flow remaining after diversion for water supply to Fort Richardson, Elmendorf Air Force Base, and Municipality of Anchorage. Average diversion for water year 2002 was 7.43 ft³/s. Diversion began in 1944. Magnitude of discharges downstream of dam may be affected by periodic spillway adjustment.

COOPERATION.--Gage inspected and records of diversion provided by Office of Post Engineers, Fort Richardson.

			DISCHAR	GE, in CF	S, WATER DAII	YEAR OCTO		TO SEPTE	MBER 2002			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	120	e80	e55	e42	e36	e30	e26	81	493	233	105	163
2	117	e75	e50	e42	e34	e30	e26	68	453	233	100	163
3	117	e75	e50	e42	e32	e30	e26	65	429	223	98	152
4	127	e75	e50	e42	e34	e30	e26	64	417	231	97	146
5	130	e70	e50	e42	e34	e30	e24	67	404	219	96	145
6	133	e70	e50	e42	e34	e30	e24	73	409	211	103	195
7	128	e70	e50	e40	e34	e28	e24	73	408	202	98	185
8	125	e70	e50	e40	e34	e28	e22	81	404	193	112	182
9	123	e65	e50	e40	e34	e28	e24	93	384	188	114	178
10	125	e65	e50	e40	e34	e28	e24	90	353	179	107	173
11	123	e65	e55	e40	e32	e28	e26	88	336	171	132	168
12	e115	e65	e50	e40	e32	e28	e26	95	321	163	151	200
13	e110	e65	e48	e40	e32	e28	e28	116	321	168	219	204
14	111	e65	e46	e38	e32	e28	e28	140	330	164	193	197
15	111	e65	e46	e38	e32	e28	e28	158	391	158	171	193
16	e100	e70	e46	e38	e32	e28	e30	162	435	154	152	184
17	e100	e65	e46	e38	e32	e28	e30	208	462	151	138	177
18	105	e65	e46	e38	e32	e28	31	278	467	184	129	170
19	e100	e65	e50	e38	e32	e28	32	356	439	168	123	167
20	e100	e65	e46	e36	e32	e28	32	448	378	156	154	160
21	e95	e65	e46	e36	e32	e28	32	512	329	149	192	154
22	e95	e65	e44	e36	e32	e28	32	561	298	145	208	148
23	e95	e65	e44	e36	e30	e28	32	570	299	143	207	143
24	e90	e65	e44	e36	e30	e26	32	599	291	162	186	168
25	e90	e65	e44	e36	e30	e26	32	643	290	159	170	194
26	e90	e60	e55	e36	e30	e26	33	677	271	151	167	225
27	e85	e60	e50	e36	e30	e26	37	660	256	159	161	278
28	e85	e60	e46	e36	e30	e26	39	611	248	151	154	280
29	e85	e55	e44	e36		e26	56	560	243	135	152	273
30 31	e80 e80	e55	e44 e44	e36 e36		e26 e26	70 	560 535	241	117 110	167 170	294
TOTAL	3290	1985	1489	1192	904	864	932	9292	10800	5330	4526	5659
MEAN	106.1	66.17	48.03	38.45	32.29	27.87	31.07	299.7	360.0	171.9	146.0	188.6
MAX	133	80	55	42	36	30	70	677	493	233	219	294
MIN	80	55	44	36	30	26	22	64	241	110	96	143
AC-FT	6530	3940	2950	2360	1790	1710	1850	18430	21420	10570	8980	11220
ADJUST	ED TO INC	CLUDE DIVE	RSION									
MEAN	112	72.5	54.6	44.7	36.6	33.0	36.0	306	366	180	168	194
CFSM	1.24	0.80	0.60	0.49	0.40	0.36	0.40	3.39	4.04	1.99	1.85	2.14
IN	1.43	0.89	0.70	0.57	0.44	0.42	0.44	3.90	4.51	2.30	2.14	2.39
AC-FT	6890	4320	3360	2750	2110	2030	2140	18840	21770	11090	10320	11550
STATIS'	rics of M	MONTHLY ME	AN DATA FO	OR WATER	YEARS 1947	7 - 2002,	BY WATER	YEAR (WY) #			
						·				205 5	207 6	210 6
MEAN	148.6	77.39	47.22	31.27	22.26	16.83	24.92	166.9	453.7	305.5	207.6	210.6
MAX	318 1994	177 1953	107 1948	79.3 1961	54.6 1961	42.1 1947	69.7	456 1990	798 1977	645 1980	510	471 1967
(WY) MIN	1994 48.7	24.3	1948	7.13	5.36	3.61	1990 4.77	39.9	1977	72.0	1981 73.0	55.8
(WY)	1969	1969	1969	1956	1983	1956	1954	39.9 1971	1996	1996	1996	1969
/ AA T /	エクロク	1202	1202	T 2 2 0	1202	T 2 2 0	エクジセ	エフィエ	エクラゼ	1220	1220	T 2 0 3

See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted Estimated

15276000 SHIP CREEK NEAR ANCHORAGE—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1947 - 2002#
ANNUAL TOTAL	58906	46263	
ANNUAL MEAN	161.4	126.7	143.1
ANNUAL MEAN	*170	*134	*161
HIGHEST ANNUAL MEAN			223 1980
LOWEST ANNUAL MEAN			67.3 1969
HIGHEST DAILY MEAN	826 Jun 18	677 May 26	1420 Aug 9 1971
LOWEST DAILY MEAN	a27 Apr 5	22 Apr 8	b0.00 Jan 2 1956
ANNUAL SEVEN-DAY MINIMUM	28 Apr 5	24 Apr 4	0.43 Jan 9 1956
MAXIMUM PEAK FLOW		750 May 25	1860 Jun 21 1949
MAXIMUM PEAK STAGE		5.90 May 25	c3.44 Jun 21 1949
MAXIMUM PEAK STAGE			d6.52 Jun 21 1949
INSTANTANEOUS LOW FLOW			0.00 Jan 2 1956
ANNUAL RUNOFF (AC-FT)	116800	91760	103700
ANNUAL RUNOFF (AC-FT)	*122900	*97200	*116600
ANNUAL RUNOFF (CFSM)	*1.87	*1.48	*1.78
ANNUAL RUNOFF (IN)	*25.4	*20.1	*24.2
10 PERCENT EXCEEDS	511	296	369
50 PERCENT EXCEEDS	65	73	76
90 PERCENT EXCEEDS	32	28	14

[#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted

* Adjusted to account for diversion, see Remarks

Apr. 5 and Apr. 7

b No flow during one or more days in water years 1956, 1960, 1969, and 1971

Site and datum then in use

d Current site and datum

15278000 EKLUTNA LAKE NEAR PALMER

LOCATION.--Lat $61^{\circ}24'39''$, long $149^{\circ}07'20''$, in $NE^{1}_{/4}$ NE $^{1}_{/4}$ sec. 18, T. 15 N., R. 2 E. (Anchorage B-6 quad), Municipality of Anchorage, Hydrologic Unit 19020402, on north shore, 0.7 mi upstream from lake outlet, 12 mi upstream from mouth of Eklutna River, and 14 mi south of Palmer.

DRAINAGE AREA. -- 119 mi2.

PERIOD OF RECORD.--November 1946 to September 1962 (fragmentary after January 1955), June 1983 to current year. Fragmentary records for the period October 1962 to June 1983 available from Eklutna Hydroelectric Project.

GAGE.--Water-stage recorder. Datum of gage is sea level (levels by Alaska Power Administration). Prior to June 1983, non-recording gage at lake outlet at datum of 859.8 ft above sea level.

REMARKS.--Lake outlet consists of earth and rockfill dam with uncontrolled spillway crest at an elevation of 871 ft. Prior to 1965, control structure 1400 ft upstream with spillway crest at elevation of 867.5 ft which could be flash-boarded to elevation of 871 ft. Outflow was controlled by the flash boards and sluice gates. Dead storage below elevation of 859 ft. Reservoir is used for power generation and water supply. GOES satellite telemetry at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 877.68 ft, September 25, 1995; minimum observed, 814.2 ft, June 1, 1962.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 867.14 ft, October 1; minimum, 833.51 ft, May 19.

GAGE HEIGHT from DCP, in FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	867.05	863.04	860.00	855.75	851.71	848.02	842.43	834.87	835.08	841.60	856.17	864.31
2	866.93	862.96	859.91	855.66	851.58	847.89	842.22	834.73	835.16	841.97	856.51	864.41
3	866.82	862.80	859.84	855.57	851.42	847.77	842.02	834.56	835.22	842.34	856.87	864.46
4	866.73	862.61	859.70	855.48	851.27	847.62	841.77	834.44	835.31	842.88	857.36	864.53
5	866.72	862.47	859.55	855.38	851.12	847.46	841.56	834.34	835.44	843.49	857.86	864.63
6	866.75	862.36	859.39	855.33	851.00	847.30	841.35	834.25	835.57	844.03	858.39	864.84
7	866.64	862.22	859.21	855.25	850.90	847.16	841.14	834.30	835.70	844.62	858.87	865.02
8	866.45	862.07	859.06	855.11	850.78	847.04	840.94	834.35	835.85	845.15	859.33	865.13
9	866.26	861.95	858.95	855.01	850.66	846.91	840.71	834.40	835.94	845.61	859.77	865.16
10	866.06	861.86	858.81	854.91	850.59	846.77	840.50	834.46	836.00	845.98	860.15	865.18
11	865.87	861.76	858.65	854.76	850.52	846.63	840.30	834.40	836.04	846.35	860.55	865.18
12	865.69	861.67	858.50	854.65	850.38	846.48	840.09	834.29	836.05	846.85	861.00	865.13
13	865.53	861.57	858.38	854.54	850.21	846.36	839.81	834.14	836.07	847.36	861.47	865.09
14	865.43	861.49	858.24	854.37	850.05	846.22	839.60	834.02	836.11	847.90	861.78	865.16
15	865.30	861.41	858.09	854.21	849.89	846.02	839.42	833.88	836.22	848.41	861.96	865.22
16	865.18	861.35	857.97	854.10	849.73	845.85	839.21	833.72	836.40	848.84	862.04	865.19
17	865.04	861.30	857.79	853.96	849.59	845.66	838.94	833.59	836.63	849.27	862.13	865.09
18	864.93	861.27	857.60	853.83	849.47	845.42	838.62	833.54	836.93	849.85	862.25	864.98
19	864.85	861.19	857.38	853.69	849.34	845.16	838.27	833.57	837.27	850.47	862.42	864.84
20	864.75	861.10	857.18	853.55	849.20	844.87	837.96	833.58	837.61	850.99	862.69	864.70
21	864.67	860.99	857.01	853.35	849.08	844.62	837.64	833.62	837.95	851.48	863.02	864.57
22	864.51	860.91	856.87	853.19	848.97	844.39	837.27	833.69	838.30	851.97	863.33	864.44
23	864.34	860.81	856.76	853.04	848.86	844.25	836.92	833.73	838.69	852.47	863.59	864.29
24	864.19	860.69	856.62	852.87	848.75	844.13	836.53	833.79	839.09	853.13	863.77	864.19
25	864.00	860.60	856.44	852.68	848.65	844.00	836.18	833.94	839.54	853.77	863.91	864.18
26	863.83	860.49	856.33	852.54	848.52	843.78	835.85	834.16	839.92	854.24	863.97	864.20
27	863.75	860.37	856.27	852.43	848.35	843.55	835.56	834.38	840.20	854.64	863.98	864.24
28	863.70	860.26	856.17	852.29	848.17	843.32	835.29	834.56	840.46	854.96	863.96	864.23
29	863.55	860.15	856.05	852.13		843.10	835.14	834.67	840.76	855.21	864.01	864.21
30	863.35	860.07	855.92	851.97		842.84	835.00	834.83	841.16	855.50	864.14	864.14
31	863.17		855.82	851.84		842.61		834.98		855.82	864.22	
MEAN	865.23	861.46	857.89	853.98	849.96	845.59	838.94	834.19	837.22	848.94	861.34	864.70
MAX	867.05	863.04	860.00	855.75	851.71	848.02	842.43	834.98	841.16	855.82	864.22	865.22
MIN	863.17	860.07	855.82	851.84	848.17	842.61	835.00	833.54	835.08	841.60	856.17	864.14

15280200 EKLUTNA RIVER AT OLD GLENN HIGHWAY AT EKLUTNA

LOCATION.--Lat $61^{\circ}27'01''$, long $149^{\circ}22'02''$, in $NE^{1}/_{4}$ $SW^{1}/_{4}$ $NE^{1}/_{4}$ sec. 25, T. 16 N., R. 1 W. (Anchorage B-7 quad), Municipality of Anchorage, Hydrologic Unit 19020402, on right bank, 1.3 mi upstream from mouth, 0.7 mi south of Eklutna.

DRAINAGE AREA.--172 mi².

PERIOD OF RECORD. -- May 1 to September 30, 2002.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Records are fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

EXTREMES FOR CURRENT PERIOD.--Maximum discharge during period May to September, 111 ft³/s, May 26 and 27, gageheight, 85.79 ft; minimum daily discharge, 26 ft³/s, May 4.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1								‡40	86	62	46	69
2								e32	85	61	47	69
3								e28	77	61	47	67
4								e26	74	59	49	65
5								e27	82	58	48	65
6								e28	82	57	48	76
7								e28	79	55	50	71
8								e29	80	55	52	70
9								e30	76	55	56	74
10								#31	75	56	52	77
11								e32	71	55	55	77
12								e33	70	54	59	76
13								e34	68	54	66	73
14								e35	74	53	70	70
15								‡36	85	53	76	68
16								38	90	53	76	66
17								42	90	51	74	64
18								48	87	53	69	63
19								53	82	50	69	61
20								61	81	52	73	59
21								69	82	49	70	57
22								72	8.0	4.8	71	55
23								69	76	49	70	54
24								75	74	51	76	53
25								82	73	51	80	53
26								97	72	50	72	57
27								104	70	52	68	57
28								91	71	50	65	55
29								84	68	48	66	55
30								87	66	48	68	56
31								87		48	70	
TOTAL								1628	2326	1651	1958	1932
MEAN								52.52	77.53	53.26	63.16	64.40
MAX								104	90	62	80	77
MIN								26	66	48	46	53
AC-FT								3230	4610	3270	3880	3830
CFSM								0.31	0.45	0.31	0.37	0.37
IN.								0.35	0.50	0.36	0.42	0.42

Result of discharge measurement Estimated

15281000 KNIK RIVER NEAR PALMER

LOCATION.--Lat 61°30′18″, long 149°01′50″, in NE¹/₄ SE¹/₄ sec. 2, T.16 N., R.2 E. (Anchorage C-6 quad), Matanuska-Susitna Borough, Hydrologic Unit 19020402, near the right bank on downstream side of bridge on Old Glenn Highway, 7 mi south of Palmer, 7 mi upstream from Alaska Railroad bridge, 9 mi downstream from Friday Creek, and about 17 mi downstream from Knik Glacier.

DRAINAGE AREA. -- 1,180 mi², approximately.

PERIOD OF RECORD.--October 1959 to January 1988, annual maximum, water year 1989, October 1991 to September 1992, and April, 2001 to current year.

REVISED RECORDS. -- WRD-AK-77-1: 1974-75 (M).

GAGE.--Water-stage recorder. Datum of gage is 27.51 ft above National Geodetic Vertical Datum of 1929 (surveys show a correction of -2.69 ft needed after earthquake of Mar. 27, 1964. Correction used beginning in 1985) Prior to June 27, 1960, nonrecording gage, and June 27, 1960 to Apr. 25,1974, water-stage recorder at old bridge 100 ft upstream at original 1929 datum. Apr. 26, 1974 to Apr. 18, 1976, recording gage at site 0.4 mi upstream at different datum.

REMARKS.--Records good except for estimated daily discharges, which are poor. Flood peaks due to outbreak of glacier-dammed Lake George, 1948-62, 1964, 1965, published in WSP 1936. Streamflow augmented by glaciers, which cover 54 percent of the basin.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge since at least 1948, 359,000 ft³/s, July 18, 1958, gage height, 25.30 ft, at site in use beginning 1959, from outbreak of glacier-dammed Lake George.

DISCHARGE, in CFS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e1500 e1300 14700 22800 26000 6040 e2200 e1200 e900 e850 e950 14000 2 6020 e2200 e1500 e1200 e900 e850 e950 e1600 13600 e23000 26100 13300 3 5670 e2200 e1500 e1200 e900 e850 e950 e1600 13100 e24000 26200 12500 6270 4 e2100 e1500 e1100 e900 e850 e950 e1500 12800 e23000 28200 11500 5 7430 e2100 e1500 e1100 e900 e850 e950 e1500 12500 e23000 29000 11800 e1500 e850 e1700 6 8300 e2100 e1100 e900 e950 11800 e22000 29800 13800 e1400 e23000 e2000 e850 7840 e1100 e900 e950 e1800 11400 29400 13100 8 7020 e2000 e1400 e1100 e900 e850 e950 e2000 12100 e24000 28700 11700 e950 12600 e2000 e900 e850 e23000 27300 6660 e1100 e2200 10300 e1400 e22000 10 6350 e2000 e1400 e1100 e900 e850 e950 e2400 11900 24100 9110 11 5890 e1900 e1400 e1100 e850 e850 e950 e2800 12300 23200 22800 8040 e1900 12 5130 e1400 e1100 e850 e850 e950 e3200 12500 24600 23500 7460 13 4560 e1900 e1400 e1000 e850 e850 e1000 e3100 12700 25400 24700 7800 e1900 4040 e850 e850 e1000 12600 25600 22800 14 e1400 e1000 e3600 9210 e1400 15 3750 e1800 e1000 e850 e850 e1000 e4000 13900 25000 20300 10200 16 e3500 e1800 e1300 e5000 24700 8950 17 3350 e1800 e1300 e1000 e850 e850 e1000 5570 19200 26200 15700 7610 18 3180 e1800 e1300 e1000 e850 e850 e1000 6130 21100 29600 17000 6690 e1800 e1000 e850 e850 22600 29300 5860 19 2.0 e3000 e1700 e1300 e1000 e850 e900 e1000 8010 22000 28500 20300 5280 e1300 e900 27800 2920 e1700 e1000 e850 e1000 9040 21200 22 2870 e1700 e1300 e950 e850 e900 e1000 10100 20400 28000 21700 3720 e1700 e950 e850 e900 20500 28500 22700 3750 23 e2800 e1300 e1000 10100 e2700 e1700 e950 e850 e900 e1000 19500 32300 25 e2600 e1600 e1200 e950 e850 e900 e1000 11200 20000 33600 19900 5540 e950 e2500 e850 e1000 26 e1200 e900 12000 20300 32400 e1600 17600 7210 27 e2500 e1600 e1200 e950 e850 e900 e1000 14200 19400 29200 15600 9400 e2400 e1600 e1200 e950 e850 e900 19900 25300 13300 9750 e1100 14100 28 ---13700 20400 22900 29 e2400 e1600 e1200 e950 e900 e1200 13400 9430 30 e2300 e1600 e1200 e950 e900 e1300 16200 21400 23000 14200 8800 15800 e2300 e1200 e900 24700 31 e950 14200 TOTAL 41700 24300 26950 203130 135360 55600 32000 30000 494900 799600 674300 264400 MEAN 4366 1853 1345 1032 867.9 869.4 1000 6553 16500 25790 21750 8813 1300 8300 2200 1500 1200 900 ann 16200 22600 33600 29800 14000 MAY MIN 2300 1600 1200 950 850 850 950 1300 11400 22000 13300 3720 AC-FT 268500 110300 82710 63470 48200 53460 59500 402900 981600 1586000 1337000 524400 3.70 0.87 0.85 CESM 1.57 1.14 0.74 0.74 5.55 14.0 21 9 18.4 7.47 25.21 15.60 21.26 IN. 4.27 1 75 1.31 1.01 0.77 0.85 0.95 6.40 8.34 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1960 - 2002, BY WATER YEAR (WY)# MEAN 4346 1776 968 8 870 1 731 2 651 7 913 9 3775 12800 23560 21380 11260 MAX 9419 4844 1932 3781 2464 1314 1534 7347 19960 37450 28300 16960 1970 1965 1977 1981 1977 1977 1983 1981 (WY) 1969 1960 1979 1974 MTN 1782 637 500 460 338 260 348 1039 2598 17440 15260 6594 1969 1974 1976 1962 (WY) 1982 1962 1965 1965 1970 1969 1992

[#] See Period of Record; partial years used in monthly statistics

e Estimated

15281000 KNIK RIVER NEAR PALMER—Continued

SUMMARY STATISTICS	FOR 2002 WA	TER Y	EAR	WATER	YEARS	1960) -	2002#
ANNUAL TOTAL	2782240							
ANNUAL MEAN	7623			70	02			
HIGHEST ANNUAL MEAN				138	00			2001
LOWEST ANNUAL MEAN				22	86			1988
HIGHEST DAILY MEAN	33600	Jul	25	3410	00	Jul	26	1961
LOWEST DAILY MEAN	a850	Feb	11	b2	60	Mar	1	1962
ANNUAL SEVEN-DAY MINIMUM	850	Feb	11	2	60	Mar	1	1962
MAXIMUM PEAK FLOW	34800	Jul	25	cd3550	00	Jul	26	1961
MAXIMUM PEAK STAGE	11.96	Jul	25	:	24.35	Jul	17	1960
ANNUAL RUNOFF (AC-FT)	5519000			50720	00			
ANNUAL RUNOFF (CFSM)	6.46				5.93			
ANNUAL RUNOFF (INCHES)	87.71			1	80.62			
10 PERCENT EXCEEDS	23000			212	00			
50 PERCENT EXCEEDS	2000			20	00			
90 PERCENT EXCEEDS	850			5	0 0			

[#] See Period of Record; partial years used in monthly statistics
a Feb. 11 to Mar. 19
b Mar. 1-31, 1962
C Site then in use, caused by release of stored water (Lake George) behind Knik Glacier
d Gage height, 24.3 ft

15284000 MATANUSKA RIVER AT PALMER

LOCATION.--Lat $61^{\circ}36'33''$, long $149^{\circ}04'15''$, in $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec. 34, T. 18 N., R. 2 E. (Anchorage C-6 quad), Matanuska-Susitna Borough, Hydrologic Unit 19020402, on downstream left bank of old Glenn Highway bike path bridge, and 1 mi east of Palmer.

DRAINAGE AREA. -- 2,070 mi², approximately.

PERIOD OF RECORD.--April 1949 to September 1973, May 1985 to September 1986, October 1991 to September 1992, and May 2000 to current year. Annual maximum, water year 1974 and 1995.

GAGE.--Water-stage recorder. Datum of gage is 170.92 ft above National Geodetic Vertical Datum of 1929 (Alaska Railroad Commission benchmark, prior to Mar. 27,1964 earthquake). Prior to Nov. 2, 1950, non-recording gage at bridge 20 ft upstream at same datum. Nov.2,1950 to Apr.30,1952, non-recording gage at current site and same datum. May 1, 1952 to Sep.30, 1973, July 19 to Oct. 20, 1987, and Oct. 1, 1991 to Sep.30, 1992, water-stage recorder at site 100 ft downstream at same datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Rain gage at station. GOES satellite telemetry at station.

Discharge

 (ft^3/s)

Gage

Height

(ft)

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 21,000 ft³/s and maximum (*).

Time

Date

								(10)				
				Jul 18	3 07	'00 *	a15,600	*11.51				
				our re	, ,	00	a15,000	11.51				
			DISCH	ARGE, in C	FS. WATER	YEAR OCT	OBER 2001	TO SEPTE	EMBER 2002			
				,		ILY MEAN Y						
					DA	LLI MEAN	VALUES					
D311	OOM	MOI	, 550	7737	FFF	M3.D	3.00	242.17	77737		3.110	SEP
DAY	OCT	NOV	J DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
									=			==
1	2160	e1200			e550	e550	e500	4470	7320	9860	8960	5540
2	2130	e1200			e550	e550	e500	3440	6870	9850	9490	5770
3	2020	e1200			e550	e500	e500	2980	6340	9700	10000	5650
4	2060	e1100			e550	e500	e500	2730	6190	11600	11800	5220
5	2040	e1100	e800	e700	e550	e500	e500	2400	6250	10800	12900	5210
6	2080	e1100			e550	e500	e500	2380	6250	9310	13800	6430
7	2000	e1100	e800	e700	e550	e500	e500	2330	6070	8910	12300	6210
8	1950	e1100	e800	e650	e550	e500	e500	2380	6360	9500	10900	5700
9	1900	e1000	e800	e700	e550	e500	e500	2570	5860	10300	10300	5240
10	1890	e1000			e550	e500	e500	2600	5270	9520	9060	5000
11	1860	e1000	e800	e650	e550	e500	e500	2500	5170	10000	8720	4590
12	1750	e1000			e550	e500	e500	2390	5190	10700	9530	4220
13	1630	e1000			e550	e500	e500	2520	5280	10600	11100	3980
14	1590	e950			e550	e500	e500	3000	5470	10500	10000	3780
15	1550	e950			e550	e500	e500	3270	6490	10600	9000	3660
15	1550	6950	e/50	e700	6550	6500	6500	3270	6490	10600	9000	3000
1.0	1510	e950	e750	e700	e550	e490	e500	3050	7860	11000	7970	3620
16	1510											
17	1480	e950			e550	e490	e500	3190	9550	13500	7570	3520
18	1490	e950			e550	e490	e500	3820	10200	14700	7780	3480
19	1520	e950			e550	e490	e500	4960	10900	13300	8250	3370
20	1520	e900	e750	e600	e550	e490	e500	5850	9340	12000	9040	3320
21	1550	e900			e550	e490	e500	8430	8750	11700	9490	3090
22	1480	e900			e550	e490	e500	9510	8370	11500	8910	2850
23	1440	e900	e750	e600	e550	e490	e500	8750	8580	11100	8000	2690
24	e1400	e900	e700	e600	e550	e490	e500	9280	8480	11700	7360	2650
25	e1400	e900	e700	e600	e550	e490	e520	10400	10100	11600	7020	2920
26	e1300	e850	e750	e600	e550	e490	e540	10900	10400	10700	6710	3230
27	e1300	e850	e700	e600	e550	e490	e560	10000	8780	9130	6290	4030
28	e1300	e850			e550	e490	e650	8330	8480	8030	5770	3810
29	e1300	e850				e490	e900	8420	8650	7620	5650	3580
30	e1200	e850				e490	e4000	8440	9630	8730	5510	3440
31	e1200					e490		7460		8980	5450	
31	01200		0,00	0000		0150		, 100		0,000	5150	
TOTAL	51000	29450	23550	20050	15400	15440	19170	162750	228450	327040	274630	125800
MEAN	1645	981.7			550.0	498.1	639.0	5250	7615	10550	8859	4193
MAX	2160	1200			550	550	4000	10900	10900	14700	13800	6430
	1200	850			550	490	500	2330	5170	7620	5450	2650
MIN					30550	30630	38020		453100	648700		
	101200	58410						322800			544700	249500
CFSM	0.79	0.47			0.27	0.24	0.31	2.54	3.68	5.10	4.28	2.03
IN.	0.92	0.53	0.42	0.36	0.28	0.28	0.34	2.92	4.11	5.88	4.94	2.26
STATIS	TICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS 194	49 - 2002,	, BY WATER	YEAR (W	Y)#			
	_			_				_			_	
MEAN	1929	984.9			520.1	473.5	636.8	2744	10120	13080	9910	4893
MAX	3093	1793			629	583	985	6019	17250	18750	15730	8966
(WY)	2001	1972			2001	2001	1964	1960	1964	2000	1971	1951
MIN	1166	568	3 440	349	381	360	465	1007	5415	9206	4992	2123
(WY)	1992	1959	1969	1959	1971	1971	1972	1966	1965	1973	1969	1969

a Peak discharge adjusted to exclude surge; peak gage-height not adjusted to exclude surge

e Estimated

15284000 MATANUSKA RIVER AT PALMER—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR	YEAR	FOR 2002 WATE	R YEAR	WATER YEARS	1949 - 2002#
ANNUAL TOTAL	1547976		1292730			
ANNUAL MEAN	4241		3542		3825	
HIGHEST ANNUAL MEAN					4815	1957
LOWEST ANNUAL MEAN					2562	1969
HIGHEST DAILY MEAN	31300	Jun 29	14700	Jul 18	40700	Aug 10 1971
LOWEST DAILY MEAN	507	Apr 9	b490	Mar 16	234	Apr 25 1956
ANNUAL SEVEN-DAY MINIMUM	523	Apr 4	490	Mar 16	304	Apr 20 1956
MAXIMUM PEAK FLOW		_	a15600	Jul 18	c82100	Aug 10 1971
MAXIMUM PEAK STAGE			11.51	Jul 18	d13.60	Aug 10 1971
ANNUAL RUNOFF (AC-FT)	3070000		2564000		2771000	_
ANNUAL RUNOFF (CFSM)	2.05		1.71		1.85	
ANNUAL RUNOFF (INCHES)	27.82		23.23		25.10	
10 PERCENT EXCEEDS	12700		9850		11700	
50 PERCENT EXCEEDS	1000		1300		1160	
90 PERCENT EXCEEDS	579		500		480	

[#] See Period of Record; partial years used in monthly statistics
a Peak discharge adjusted to exclude surge; peak stage not adjusted to exclude surge
b Mar. 16 to 31
c From rating curve extended above 34,000 ft³/s on basis of velocity-area study, from break-out of natural reservoir on Granite Creek tributary
d Site then in use

15290000 LITTLE SUSITNA RIVER NEAR PALMER

LOCATION.--Lat $61^{\circ}42'37''$, long $149^{\circ}13'47''$, in $SE^{1}/_{4}$ NW $^{1}/_{4}$ sec. 26, T. 19 N., R. 1 E. (Anchorage C-6 NW quad), Matanuska-Susitna Borough, Hydrologic Unit 19020505, on right bank 100 ft downstream from highway bridge on Wasilla-Fishhook Road, 1.5 mi north of road junction, 1.8 mi downstream from unnamed tributary, and 8 mi northwest of Palmer. Prior to October 1, 1991 at site 60 ft upstream.

DRAINAGE AREA. -- 61.9 mi².

Date

Time

PERIOD OF RECORD.--July 1948 to current year. Low-flow records not equivalent prior to January 1962 because most measurements below 300 ft^3/s were made at site 3.4 mi downstream.

GAGE.--Water-stage recorder. Datum of gage is 916.6 ft above sea level (river-profile survey). Prior to August 16, 1948, non-recording gage and August 17, 1948 to May 15, 1972, water-stage recorder on left bank; water-stage recorder on right bank, May 16, 1972 to September 30, 1991, at site 60 ft upstream. Prior to October 1, 1974, at datum 4.00 ft higher; October 1, 1974 to September 30, 1991, at datum 2.00 ft higher.

REMARKS.--Records fair except for October 16 to April 30 (flow under ice), and for discharges above 700 ${\rm ft}^3/{\rm s}$, which are poor. GOES satellite telemetry at station.

Date

Time

Discharge Gage height

(f+3/a)

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,200 ft³/s and maximum (*).

Discharge Gage Height

(f+3/e)

	Duc	_	111110	(f	$[t^3/s)$		(ft)		Date	11111	_	(ft^3/s)		(ft)	
	May	21	2000		1270		5.37		Aug. 13	041	5	*1600		*5.69	
	May		2230	*	1600		5.68		J						
	ridy	23	2230		1000		3.00								
		DI	SCHARGI	E, CU	BIC FEET	PER		WATER Y MEAN		BER 200	L TO	SEPTEMBER	2002		
DAY	OCT	NO	OV	DEC	JAN		FEB	MAR	APR	MAY		JUN	JUL	AUG	SEP
1	108	e	55	e37	29		24	21	18	151		572	303	186	305
2	112	e		e37	29		23	21	18	94		441	283	185	282
3	108	e		e36	29		23	20	18	77		430	274	189	258
4	137	e		e36	28		23	20	18	74		434	644	193	240
5	124	e	0	e36	29		23	20	18	68		512	337	188	246
6	122	e	50	36	28		23	20	18	61		423	289	190	663
7	116	e!		34	28		23	20	18	55		386	268	177	528
8	109	e!		e34	28		23	20	18	60		385	267	310	429
9	107	e!		e34	28		23	e20	18	71		317	260	372	389
10	107	e!	50	e34	28		23	e20	18	65		301	232	314	359
11	104	e!	50	e34	27		22	e20	18	70	1	319	243	451	346
12	99	e4	18	e34	27		22	e20	18	84		326	265	668	492
13	93	e4		e34	27		22	e20	18	113		338	287	1180	497
14	96	e4		e32	27		22	e20	18	143		415	247	737	428
15	92	e4	14	e32	27		22	e19	18	145		516	224	535	391
16	e90	e4	14	e32	27		22	e19	18	133		616	225	418	371
17	e90	e4		e32	27		22	e19	18	194		682	229	359	359
18	86	e4	13	e32	27		22	e19	18	278		608	255	323	356
19	83	e4	13	e32	26		22	19	18	382		576	233	331	332
20	84	e4	12	32	26		21	19	18	573		465	215	693	313
21	82	e4	12	32	25		21	19	18	805		339	202	828	288
22	78	e4		32	25		21	19	18	854		312	193	787	267
23	77	e4		31	25		22	19	18	738		324	190	621	248
24	e75	e4	10	31	25		21	19	18	789	1	317	205	492	296
25	e75	e4	10	31	25		21	19	18	1080	1	399	240	418	416
26	e75	e3	3 9	31	25		21	19	19	1130		321	208	373	595
27	e70	e3		31	25		21	19	22	799		293	247	339	894
28	e70	e.		30	e25		21	18	e29	692		303	220	312	819
29	e70	e3	8 8	30	e24			18	e50	865		335	200	298	672
30	e70	e3	37	30	24			18	e170	802		313	194	290	674
31	e70			29	24			18		612			189	322	
TOTAL	2879	142	27	1018	824		619	601	740	12057	,	12318	7868	13079	12753
MEAN	92.9	47		32.8	26.6		22.1	19.4	24.7	389		411	254	422	425
MAX	137		55	37	29		24	21	170	1130		682	644	1180	894
MIN	70		37	29	24		21	18	18	55		293	189	177	240
MED	90		14	32	27		22	19	18	151		386	240	339	365
AC-FT	5710	283	3 0	2020	1630		1230	1190	1470	23920		24430 1	5610	25940	25300
CFSM	1.50	0.7	77	0.53	0.43		0.36	0.31	0.40	6.28		6.63	4.10	6.82	6.87
IN.	1.73	0.8	36	0.61	0.50		0.37	0.36	0.44	7.25		7.40	4.73	7.86	7.66
STATISTI	CS OF	MONTHLY	MEAN	DATA	FOR WATE	R YE	ARS 1948	- 2002	, BY WATER	YEAR	WY)‡	ŧ			
MEAN	137	62	. 4	40.1	30.7		24.8	20.3	25.2	221		666	496	408	304
MAX	391	13		61.7	54.1		41.2	29.7	68.0	649			1047	909	651
(WY)	1984	198		1980	1961		1982	1991	1990	1990			1963	1971	1985
MIN	51.3	24		17.4	17.5		14.0	10.0	10.0	52.9		276	193	169	82.2
(WY)	1969	196	59	1955	1959		1952	1956	1955	1971			1996	1969	1969

See Period of Record for remark on low-flow records; partial years used in monthly statistics

15290000 LITTLE SUSITNA RIVER NEAR PALMER—Continued

SUMMARY STATISTICS	FOR 2001 CALEN	DAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1948 - 2002‡
ANNUAL TOTAL	62434		66183			
ANNUAL MEAN	171		181		203	
HIGHEST ANNUAL MEAN					316	1949
LOWEST ANNUAL MEAN					95.8	1969
HIGHEST DAILY MEAN	1100	Jun 17	1180	Aug 13	5040	Aug 10 1971
LOWEST DAILY MEAN	a20	Mar 21	b18	Mar 28	c8.0	Apr 1 1956
ANNUAL SEVEN-DAY MINIMUM	20	Apr 2	18	Mar 28	8.0	Apr 1 1956
MAXIMUM PEAK FLOW		_	d1600	Aug 13	f7840	Aug 10 1971
MAXIMUM PEAK STAGE			5.69	Aug 13	g13.00	Aug 10 1971
INSTANTANEOUS LOW FLOW			16	Apr 21	8.0	Apr 1 1956
ANNUAL RUNOFF (AC-FT)	123800		131300	-	147200	-
ANNUAL RUNOFF (CFSM)	2.76		2.93		3.28	
ANNUAL RUNOFF (INCHES)	37.52		39.77		44.60	
10 PERCENT EXCEEDS	432		494		565	
50 PERCENT EXCEEDS	53		65		68	
90 PERCENT EXCEEDS	22		19		20	

See Period of Record for remark on low-flow records; partial years used in monthly statistics Mar. 21 to Mar. 23, Mar. 31, Apr. 2, Apr. 5 to Apr. 7 and Apr. 9
Mar. 28 to Apr. 25
Apr. 1 to Apr. 20, 1956; and Mar. 11 and 12, 1957
Also May 25

From rating curve extended above 4,600 ft³/s on basis of slope-area measurement of peak flow Gage height about 13.0 ft, from floodmarks; 9.84 ft in gage well; 12.30 ft at top of needle peak in gage well; at prior datum (WY 1974-91) at sites then in use

15292000 SUSITNA RIVER AT GOLD CREEK

DRAINAGE AREA.--6,160 mi², approximately.

PERIOD OF RECORD.--August 1949 to 1996 and May 2001 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 676.50 ft above sea level. Prior to June 6, 1957, non-recording gage at same site and datum. June 7, 1957 to June 2, 1964, water-stage recorder at site 0.3 mi upstream at same datum.

REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

REMARKS	Recor	ds good e	xcept fo	r estimate	d daily dis	charges	s, which a	re poor.	GOES sat	ellite te	lemetry at	t station
			DISCH	ARGE, in C	FS, WATER Y	EAR OCT	OBER 2001	TO SEPTI	EMBER 200	2		
						Y MEAN Y						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e5800	e3200	e2200	e1700	e1500	e1400	e1300	e1900	19900	15200	14100	17600
2	e5600	e3200	e2200	e1600	e1500	e1300	e1200	e2000	18900	19700	13900	16200
3	e5500	e3200	e2100	e1600	e1500	e1300	e1200	e2100	17400	e22000	13900	14800
4	e6000	e3000	e2100	e1600	e1500	e1300	e1200	e2200	17000	e21000	e14000	13700
5	e6300	e3000	e2100	e1600	e1500	e1300	e1200	e2300	17500	e20000	e16500	12800
6	6760	e3000	e2100	e1600	e1500	e1300	e1200	e2400	18300	e24000	e18000	16900
7 8	7130	e2900	e2000	e1600		e1300	e1200	e2600	18600	e22000	22400	22800
9	7010 6530	e2900 e2800	e2000 e2000	e1600 e1600	e1400 e1400	e1300 e1300	e1200 e1200	e2800 e3000	19000 16800	e19000 e17000	29000 31200	25100 21700
10	e6000	e2800	e2000	e1600	e1400	e1300	e1200	e3200	14600	e16000	33800	18600
11	e5500	e2700	e2000	e1600	e1400	e1300	e1200	e3400	13400	e18000	31900	16100
12	e5500	e2700	e1900	e1600	e1400	e1300	e1200	e3800	13700	e16000	32900	17000
13	e5000	e2700	e1900	e1600	e1400	e1300	e1200	e4000	13500	e17000	34200	18300
14	e5000	e2600	e1900	e1600	e1400	e1300	e1200	e4400	13300	e17000	31500	16700
15	e4800	e2600	e1900	e1500	e1400	e1300	e1200	e5000	13100	e17000	26000	15200
16	e4600	e2600	e1900	e1500	e1400	e1300	e1200	e4600	13400	e16000	21200	14600 13500
17 18	e4400 e4400	e2500 e2500	e1900 e1900	e1500 e1500	e1400 e1400	e1300 e1300	e1300 e1300	e6000 e8000	13800 14700	e15000 e17000	18500 17200	12900
19	e4200	e2500	e1800	e1500	e1400	e1300	e1300	e12000	16500	e18000	16700	12300
20	e4200	e2400	e1800	e1500	e1400	e1300	e1300	e20000	19100	e19000	20500	11800
21	e4000	e2400	e1800	e1500	e1400	e1300	e1400	e30200	21500	e20000	28500	11400
22	e4000	e2400	e1800	e1500	e1400	e1300	e1400	e25800	18600	e19000	32900	10800
23	e3800	e2400	e1800	e1500	e1400	e1300	e1400	e25000	17100	e18000	34800	10100
24 25	e3800 e3600	e2300 e2300	e1800 e1700	e1500 e1500	e1400 e1400	e1300 e1300	e1400 e1500	e23000 e24000	17600 18500	e16000 17200	32700 29200	10100 13500
26	e3600	e2300	e1700	e1500		e1300		e25000	19800	19900	26000	17800
27	e3600	e2300	e1700		e1400	e1300		e24000	18100	20400	22200	22500
28	e3400	e2200	e1700	e1500	e1400	e1300	e1700	e21000	14700	19800	19600	21800
29	e3400	e2200	e1700	e1500		e1300	e1700	e20000	13800	17300	18100	21200
30 31	e3400 e3200	e2200	e1700 e1700	e1500		e1300 e1300	e1800	e22000 e21000	14200	14600 14500	17600	19700
31	e3200		e1700	e1500		e1300		e21000		14500	18200	
	150030	78800	58800	48000	39800	40400	39900	356700	496400	562600	737200	487500
MEAN	4840	2627	1897	1548	1421	1303	1330	11510	16550	18150	23780	16250
MAX MIN	7130 3200	3200 2200	2200 1700	1700 1500	1500 1400	1400 1300	1800 1200	30200 1900	21500 13100	24000 14500	34800 13900	25100 10100
AC-FT	297600	156300	116600	95210	78940	80130	79140	707500		1116000		967000
CFSM	0.79	0.43	0.31	0.25	0.23	0.21	0.22	1.87	2.69	2.95	3.86	2.64
IN.	0.91	0.48	0.36	0.29	0.24	0.24	0.24	2.15	3.00	3.40	4.45	2.94
STATIS	TICS OF	MONTHLY MI	EAN DATA	FOR WATER	YEARS 1949	- 2002	, BY WATER	YEAR (W	Y)#			
MEAN	6180	2657	1878	1590	1399	1289	1641	13460	26830	23900	21400	13710
MAX	12680	4192	3264	2452	2028	1900	4250	25630	50580	34400	37870	26510
(WY)	1987	1980	1958		1972	1968	1990	1990	1964	1963	1981	1990
MIN	3124	1215	866	724	723	713	745	3745	15500	16010	8879	5093
(WY)	1970	1970	1970	1969	1969	1964	1964	1971	1969	1996	1969	1969
SUMMAR	Y STATIS	TICS			FOR 20	02 WATE	R YEAR			WATER YE	ARS 1949	- 2002#
	TOTAL				309613							
ANNUAL		MEDAN			848	3				9698		1000
	T ANNUAL 'ANNUAL									13020 5597		1990 1969
	T DAILY				3480	0 2	Aug 23			85900	Jun '	7 1964
	DAILY M				a120		Apr 2			b600		5 1950
		AY MINIMUN	M		120		Apr 2			614		5 1950
	M PEAK F M PEAK S				3620 1		Aug 23 Aug 23			90700 16.		7 1964 7 1964
	M PEAK S				_	,, 1	9 23			c24.		
ANNUAL	RUNOFF	(AC-FT)			614100					7026000	-	
	RUNOFF					1.38				1.		
	RUNOFF CENT EXC				1 2100	8.70 n				21. 25400	39	
	CENT EXC				290					3300		
	CENT EXC				130					1100		

1300

1100

90 PERCENT EXCEEDS

See Period of Record; partial years used in monthly statistics

a Apr. 2-16 b Feb. 16-20, 1950

c Maximum observed, ice jam

e Estimated

15292700 TALKEETNA RIVER NEAR TALKEETNA (Hydrologic Bench-Mark Station)

LOCATION.--Lat $62^{\circ}20'49''$, long $150^{\circ}01'01''$, in $\mathrm{NE}^1/_4$ sec. 16, T. 26 N., R. 4 W. (Talkeetna B-1 quad), Matanuska-Susitna Borough, Hydrologic Unit 19020503, on left bank 1.7 mi downstream from Chunilna Creek, 3.5 mi northeast of Talkeetna, and about 5 mi upstream from mouth.

DRAINAGE AREA.--1,996 mi²

REVISED RECORDS. -- WRD AK 2000-1: Drainage Area.

PERIOD OF RECORD .-- June 1964 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 400 ft above sea level, from topographic map. From October 1, 1992 to September 30, 1994 at site 0.5 mi upstream at different datum.

REMARKS .-- Records good except for estimated daily discharges, which are poor.

DISCHARGE, in CFS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JIII TITT. AUG SEP e800 2620 e1200 e750 e550 e500 e460 e400 6990 6640 6470 8980 2 2920 e1200 e750 e550 e500 e460 e380 e900 5950 7340 6460 8130 2660 e1100 e750 e550 e500 e460 e380 e950 5670 6840 6610 7260 e1100 2680 e750 e550 e500 e460 e380 e1000 6160 8930 7150 6680 5 2780 e700 e1100 e550 e500 e460 e380 e1100 7980 8080 7420 6500 3050 e1100 e700 e550 e500 e460 e380 e1200 8170 6710 8030 11200 6 3030 e1100 e700 e550 e500 e460 e380 e1400 7840 6440 8600 11800 e700 7900 6760 8 2750 e1000 e550 e500 e440 e380 e1500 10500 10500 9 2590 e1000 e700 e550 e500 e440 e380 e1600 6150 6880 12100 9890 e440 10 e700 e500 e1800 6370 9130 2610 e1000 e550 e380 5980 11400 2660 e1000 e700 e2000 11900 11 e550 e500 e440 e380 6240 6290 8380 2430 e1000 e700 e550 e500 e440 e380 2240 5950 6810 14900 13 e1000 e550 2080 e700 e500 e440 e360 2750 5750 6910 16000 13000 e700 e500 5590 10700 2040 e950 e550 3480 6840 12700 14 e440 e360 15 2100 e950 e650 e550 e500 e440 e380 4220 5990 6530 10200 9300 1880 e900 e650 e500 e420 e380 3700 6170 6950 8570 16 e550 8530 1790 e900 e650 e550 e500 e400 17 e420 5250 6630 7220 7780 7920 7530 18 e1700 e900 e650 e550 e500 e420 e400 8300 7170 7470 7390 e1700 7240 e900 e650 e420 e400 12200 8540 6910 e650 e550 e400 20 e1600 e850 e480 e420 15400 7300 8180 11600 6590 21 e1600 e850 e650 e550 e480 e420 e400 20100 6200 7760 15500 6080 22 e1500 e850 e650 e550 e480 e420 e420 19000 5450 7690 15000 5620 e1500 e800 e600 e550 e480 e420 e460 15300 5350 7100 13100 5270 23 e800 e550 24 e1400 e600 e480 e420 e480 14300 5320 8590 11900 5460 25 e1400 e800 e600 e500 e480 e420 e500 14500 6540 8880 11200 8050 2.6 e1400 e800 e600 e500 e480 e400 e550 15200 8690 8140 10600 8010 e500 e600 27 e800 e600 e400 13100 6850 7240 9490 11600 e1300 e480 28 e1300 e800 e600 e460 e400 e650 6060 6760 10700 29 e1300 e800 e600 e500 e400 e700 10200 6330 6330 8080 9630 e750 e500 e750 11400 10200 30 e1200 e600 e400 6290 6160 8550 31 6450 261010 TOTAL 62770 28300 20600 16700 13800 13340 13170 223300 196290 223500 314630 MEAN 2025 943.3 664.5 492.9 430.3 7203 6543 7210 8700 MAX 3050 1200 750 550 500 460 750 20100 8690 8930 16000 13000 MIN 1200 750 600 500 460 400 360 800 5980 5270 5320 6460 26460 AC-FT 124500 56130 40860 33120 27370 26120 442900 389300 443300 624100 517700 CFSM 1.01 0.47 0.33 0.27 0.25 0.22 0.22 3.61 3.28 3.61 5.08 4.36 5.86 4.86 IN. 1.17 0.53 0.38 0.31 0.26 0.25 0.25 4.16 3.66 4.17 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1964 - 2002. BY WATER YEAR (WY)# 829 7 MEAN 2778 1165 680.4 573.9 514 3 660.0 4791 10950 10290 9159 5874 1122 990 11510 16770 10000 1992 996 1912 19040 15410 12090 MAX 1058 (WY) 1987 1987 1987 1990 1990 1990 1990 1990 1971 1981 1971 1993 MTN 1424 672 538 457 401 285 396 2145 5207 7080 3787 2070 (WY) 1992 1996 1996 1969 1982 1986 1971 1969 1969 1969 1969 SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1964 - 2002# ANNUAL TOTAL 1299400 1387410 ANNUAL MEAN 3560 3081 4035 HIGHEST ANNUAL MEAN 5389 1990 LOWEST ANNUAL MEAN 2249 1969 HIGHEST DAILY MEAN 16200 20100 May 22 63200 Oct. 11 1986 Jun 12 a500 Feb 27 LOWEST DAILY MEAN Mar 22 b360 Apr 13 c260 ANNUAL SEVEN-DAY MINIM Apr 8 May 22 500 Mar 22 374 260 Feb 27 1982 MAXIMUM PEAK FLOW 75700 22800 Oct. 11 1986 MAXIMUM PEAK STAGE May 22 Oct 11 1986 10.25 17.38 ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) 2577000 2752000 2923000 1.78 1.90 2.02 ANNUAL RUNOFF (INCHES) 24.22 25.86 27.47 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 10200 9730 10600 1100 1100 1400

500

90 PERCENT EXCEEDS

See Period of Record; partial years used in monthly statistics

Mar. 22 to Apr. 1 Apr. 13-14 From Feb. 27 to Ma

²⁷ to Mar. 20, 1982

Estimated

15294005 WILLOW CREEK NEAR WILLOW

LOCATION.--Lat $61^{\circ}46'51''$, long $149^{\circ}53'04''$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ sec. 31, T.20 N., R.3 W. (Anchorage D-8 quad), Matanuska-Susitna Borough, Hydrologic Unit 19020505, on the right bank, 0.9 mi downstream from unnamed tributary, 5.5 mi northeast of Willow, and 6.7 mi upstream from Deception Creek.

DRAINAGE AREA. -- 166 mi².

PERIOD OF RECORD.--June 1978 to September 1993, and May 2001 to current year.

REVISED RECORDS. -- WRD-AK-80-1: 1979 (M).

GAGE.--Water-stage recorder. Elevation of gage is 350 ft above sea level from topographic map. Prior to Apr. 2, 1981 at site 0.2 mi upstream at different datum.

REMARKS.--Records good, except for estimated daily discharges, which are poor. Rain gage at station. GOES satellite telemetry at station.

EXTREMES FOR CURRENT YEAR.--Peak discharge greater than base discharge 2,300 ${\rm ft}^3/{\rm s}$ and maximums (*).

Dat	te	Time	D	ischarge (ft ³ /s)	• •	_	Height (ft)
Aug.	13	0600		*2120		*	4.65
DISCHARGE,	in CFS,	WATER	YEAR	OCTOBER	2001	TO	SEPTEMB

			DISCHA	ARGE, in C	FS, WATER Y	YEAR OCT Y MEAN V		TO SEPTE	MBER 2002	2		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	205	e120	e80	e65	e60	e50	e46	e300	929	433	217	660
2	253	e110	e75	e60	e60	e50	e46	e290	813	412	204	656
3	218	e110	e75	e60	e60	e50	e46	e280	742	387	193	558
4	321	e110	e75	e60	e60	e50	e46	288	779	519	186	512
5	291	e110	e75	e60	e60	e50	e44	243	943	412	179	499
3	2,71	CIIO	675	200	200	030	CII	213	515	112	1,7	100
6	308	e110	e75	e60	e60	e50	e44	211	856	365	221	1260
7	275	e100	e75	e60	e60	e50	e44	179	729	344	254	1070
8	249	e100	e75	e60	e60	e50	e44	185	712	321	595	932
9	235	e100	e75	e60	e55	e50	e42	258	605	303	720	849
10	246	e100	e75	e60	e55	e50	e42	229	568	288	501	789
												==0
11	244	e100	e75	e60	e55	e50	e42	212	610	276	750	752
12	221	e100	e70	e60	e55	e50	e42	248	654	e270	1040	1220
13	e200	e100	e70	e60	e55	e50	e40	344	659	e270	1610	1250
14	e190	e95	e70	e60	e55	e50	e40	453	681	e280	989	998
15	e180	e95	e70	e60	e55	e50	e40	455	722	e280	778	881
16	e170	e90	e70	e60	e55	e50	e40	386	770	e290	674	835
17	e160	e90	e70	e60	e55	e50	e38	549	789	e300	596	786
18	e160	e90	e70	e60	e55	e50	e38	674	760	293	528	819
19	e150	e90	e70	e60	e55	e50	e38	797	745	282	522	733
20	e150	e90	e70	e60	e55	e50	e40	963	708	253	1080	693
21	e140	e90	e70	e60	e55	e50	e40	1160	573	224	1280	637
22	e140	e85	e70	e60	e55	e50	e40	1230	510	211	1080	594
23	e140	e85	e70	e60	e55	e50	e40	1210	497	205	890	564
24	e140	e85	e65	e60	e55	e50	e40	1170	488	221	794	683
25	e140	e85	e65	e60	e55	e50	e40	1380	635	298	857	1010
26	e130	e85	e65	e60	e55	e50	e40	1450	531	293	774	1160
27	e130	e80	e65	e60	e55	e50	e42	1130	470	407	682	1670
28	e130	e80	e65	e60	e55	e48	e50	1020	459	359	618	1470
29	e120	e80	e65	e60		e48	e80	1150	459	326	583	1230
30	e120	e80	e65	e60		e48	e120	1190	456	266	604	1370
31	e120		e65	e60		e48		954		235	661	
					4500							
TOTAL	5876	2845	2190	1865	1580	1542	1374	20588	19852	9623	20660	27140
MEAN	189.5	94.83	70.65	60.16	56.43	49.74	45.80	664.1	661.7	310.4	666.5	904.7
MAX	321	120	80	65	60	50	120	1450	943	519	1610	1670
MIN	120	80	65	60	55	48	38	179	456	205	179	499
AC-FT	11660	5640	4340	3700	3130	3060	2730	40840	39380	19090	40980	53830
CFSM	1.14	0.57	0.43	0.36	0.34	0.30	0.28	4.00	3.99	1.87	4.01	5.45
IN.	1.32	0.64	0.49	0.42	0.35	0.35	0.31	4.61	4.45	2.16	4.63	6.08
STATIS	TICS OF M	MONTHLY ME	EAN DATA	FOR WATER	YEARS 1978	- 2002,	BY WATER	YEAR (WY	7)#			
MEAN	391.8	157.5	107.3	84.94	73.02	63.62	90.87	636.5	1052	699.0	622.4	658.2
MAX	1197	364	152	112	98.8	97.5	205	1578	1500	1287	1286	1177
(WY)	1987	1980	1980	1980	1990	1990	1990	1990	1990	1980	1981	1993
MIN	177	81.5	57.3	57.1	52.9	33.7	45.8	340	484	310	307	259
(WY)	1985	1985	1981	1981	1981	1982	2002	1985	1981	2002	1978	1978

See Period of Record; partial years used in monthly statistics Estimated

15294005 WILLOW CREEK NEAR WILLOW—Continued

SUMMARY STATISTICS	FOR 2002 WAT	TER YEAR	WATER YEARS	1978 - 2002#
ANNUAL TOTAL	115135			
ANNUAL MEAN	315.4		395.9	
HIGHEST ANNUAL MEAN			536	1990
LOWEST ANNUAL MEAN			315	2002
HIGHEST DAILY MEAN	1670	Sep 27	8670	Oct 11 1986
LOWEST DAILY MEAN	a38	Apr 17	b33	Mar 9 1982
ANNUAL SEVEN-DAY MINIMUM	39	Apr 13	33	Mar 9 1982
MAXIMUM PEAK FLOW	2120	Aug 13	c12000	Oct 11 1986
MAXIMUM PEAK STAGE	4.65	Aug 13	9.01	Oct 11 1986
MAXIMUM PEAK STAGE			d9.40	Dec 18 1986
ANNUAL RUNOFF (AC-FT)	228400		286800	
ANNUAL RUNOFF (CFSM)	1.90		2.39	
ANNUAL RUNOFF (INCHES)	25.80		32.41	
10 PERCENT EXCEEDS	852		1000	
50 PERCENT EXCEEDS	120		195	
90 PERCENT EXCEEDS	50		62	

[#] See Period of Record; partial years used in monthly statistics
a Apr. 17-19
b Mar. 9-30, 1982
c From rating curve extended above 3,900 ft³/s on basis of slope-area measurement of peak flow
d Backwater from ice

15294700 JOHNSON RIVER ABOVE LATERAL GLACIER NEAR TUXEDNI BAY

LOCATION.--Lat $60^{\circ}05'41"$, long $152^{\circ}54'38"$, in $SW^{1}_{/4}$ $NW^{1}_{/4}$ sec. 16, T. 1 S., R. 21 W. (Kenai A-8 quad), Kenai Peninsula Borough, Hydrologic Unit 19020602, on the right bank about 20 mi upstream from mouth, 10 mi south of Tuxedni Bay, and 60 mi northeast of Iliamna.

DRAINAGE AREA. -- 24.8 mi2.

PERIOD OF RECORD. -- July 1995 to current year (no winter record).

GAGE.--Water-stage recorder. Elevation of gage is 450 ft above sea level, from topographic map. July 1995 to June 1996, at site 300 ft downstream at same datum.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge 8,800 ft^3/s , September 21, 1995 from rating curve extended above 3,500 ft^3/s on the basis of slope-area measurement, gage height 14.60 ft at site then in use, gage height 16.27 ft at the current site; minimum not determined, occurs during the winter.

EXTREMES FOR CURRENT PERIOD.--Maximum discharge for the period October 2001 and May through September 2002, 2,080 ${\rm ft}^3/{\rm s}$, September 24, gage height, 12.68 ft; minimum not determined, occurs during the winter.

REMARKS.--Records are fair except for estimated discharges, which are poor. Rain gage at station. GOES satellite telemetry at station.

DISCHARGE, in CFS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 233 e50 525 837 685 481 2 186 -----------------e46 463 507 796 681 480 778 687 420 460 e42 1090 ___ ------___ ------536 849 ------------------5 863 e32 505 805 604 477 6 528 ___ ___ ___ ___ e32 535 765 588 464 ------------378 -----e34 560 672 567 393 302 e38 589 595 556 334 8 349 e40 ------------------953 545 563 314 ------------------10 259 e40 869 524 611 257 11 194 ---_ _ _ ------_ _ _ --e42 635 604 692 210 ---------12 171 --------e44 603 647 624 594 13 e44 14 140 _ _ _ ---------_ _ _ --e46 603 527 537 1430 ------------------15 129 e50726 538 493 910 572 559 16 120 _ _ _ _ _ _ ------_ _ _ --e60 814 597 ------------17 e115 -----e90 814 690 628 807 e150 589 108 19 104 _ _ _ ---------_ _ _ --e250 774 733 558 399 ---------------20 99 e350 645 655 633 273 ___ ___ ___ 21 95 --------e600 636 651 759 219 -----------e90 ------22 e1000 666 769 749 221 23 e85 --e1500 653 962 709 24 e85 _ _ _ ------_ _ _ -----e1300 689 1110 483 1630 ---------25 e80 725 422 1040 e900 831 26 ---------717 389 967 e80 --------e800 925 e75 e750 776 763 627 27 393 2.8 e75 -----------------e650 697 639 418 434 ------------------29 e70 e600 740 647 398 322 30 e65 e550 818 682 483 278 31 e60 ------------------584 717 464 TOTAL 6839 10750 20184 22243 17755 17905 MEAN 220.6 ------------------346.8 672.8 717.5 572.7 596.8 ------------------953 759 MAX 1090 1500 1110 1660 MIN 60 463 524 389 210 AC-FT 13570 ------------------21320 40030 44120 35220 35510 CFSM 27.1 8.90 28.9 23.1 24.1 14.0

16.12

30.28

IN.

10.26

e Estimated

15295700 TERROR RIVER AT MOUTH NEAR KODIAK

LOCATION.--Lat $57^{\circ}41'41''$, long $153^{\circ}09'42''$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec. 5, T. 29 S., R. 24 W. (Kodiak C-4 quad), Kodiak Island Borough, Hydrologic Unit 19020701, on Kodiak Island, in Kodiak National Wildlife Refuge, on right bank, 0.9 mi upstream from mouth, 7.5 mi downstream from Terror Lake Dam, and 29 mi southwest of Kodiak.

DRAINAGE AREA.--30.7 mi², 45.7 mi² prior to partial diversion of Terror Lake to hydropower plant in February 1985.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--February 1964 to October 1968, October 1981 to current year.

REVISED RECORDS.--WDR AK-84-1: 1982-83. WDR AK-96-1: 1995(M).

GAGE.--Water-stage recorder. Elevation of gage is 30 ft above sea level, from topographic map. Prior to October 1, 1981 at site 0.2 mi downstream at different datum.

REMARKS.--No estimated daily discharges. Records fair. Flow from 15 mi² at headwaters regulated by Terror Lake Dam and some flow diverted from Terror Lake to Kizhuyak River. Regulation for construction began in November 1982. Began filling reservoir April 29, 1984. Diversion to hydropower plant began February 12, 1985. GOES satellite telemetry at station.

		DISCH	ARGE, CU	BIC FEET		, WATER LY MEAN	YEAR OCTOB VALUES	BER 2001	TO SEPTEM	BER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	244	154	81	642	95	100	118	550	472	455	211	180
2	207	126	81	277	93	91	122	346	447	417	218	186
3	305	127	81	180	108	87	120	270	448	383	197	195
4	1650	124	83	198	100	98	120	239	418	392	229	190
5	649	123	96	396	91	98	122	244	351	375	266	209
6	360	123	84	212	90	96	124	340	301	354	202	196
7	252	125	91	147	88	94	126	341	290	312	208	188
8	229	121	92	238	88	91	122	374	633	266	213	180
9	220	129	107	330	103	91	121	375	864	227	213	173
10	185	126	102	181	93	91	122	312	541	247	248	179
11	160	121	89	121	103	89	121	250	457	233	229	178
12	169	133	83	118	101	88	130	227	399	230	248	174
13	189	148	94	104	101	90	125	243	354	263	223	182
14	180	133	110	128	89	95	127	268	368	320	211	234
15	177	129	105	98	95	98	131	269	416	355	210	216
16	197	126	111	93	93	146	134	267	502	248	200	173
17	237	208	109	152	99	107	135	335	465	213	196	190
18	191	324	103	138	93	100	153	439	425	250	178	192
19	185	882	101	106	92	94	147	480	373	333	175	178
20	192	795	110	84	90	89	145	527	298	276	218	186
21	179	363	106	88	94	87	135	537	275	300	200	184
22	177	223	105	90	98	83	124	658	255	339	219	246
23	175	159	98	84	102	83	128	595	309	288	236	273
24	180	120	126	79	103	77	130	464	427	215	249	271
25	184	94	151	70	130	80	134	415	780	169	227	201
26	179	80	156	106	177	84	148	368	1400	196	210	195
27	176	87	128	111	128	84	164	460	806	195	226	197
28	178	79	109	109	116	83	464	564	573	212	196	186
29	177	83	192	113		83	769	609	474	210	203	192
30	179	77	714	102		82	684	523	473	225	199	200
31	182		720	96		87		481		223	188	
TOTAL	8144	5642	4518	4991	2853	2846	5445	12370	14594	8721	6646	5924
MEAN	263	188	146	161	102	91.8	182	399	486	281	214	197
MAX	1650	882	720	642	177	146	769	658	1400	455	266	273
MIN	160	77	81	70	88	77	118	227	255	169	175	173
AC-FT	16150	11190	8960	9900	5660	5650	10800	24540	28950	17300	13180	11750
										1/300	13160	11/50
STATIST	rics of	MONTHLY ME	EAN DATA	FOR WATER	YEARS 198	6 - 2002	, BY WATER	YEAR (W	Y)#			
MEAN	273	184	145	123	110	101	173	328	499	363	285	289
MAX	427	354	313	161	168	152	247	454	872	1070	662	707
(WY)	1995	1987	1986	2002	1994	1998	1993	1993	1987	1987	1988	1995
MIN	192	93.8	78.4	81.8	72.6	60.9	115	244	305	228	183	175
(WY)	1998	1995	1988	1989	1989	1986	1986	2000	1990	1989	1994	2000
(WW ± /	1000	1000	1700	100	100	1700	1700	2000	1000	100	1004	2000

[#] See Period of Record and Remarks

15295700 TERROR RIVER AT MOUTH NEAR KODIAK—Continued

SUMMARY STATISTICS	FOR 2001 CALEN	NDAR YEAR	FOR 2002 WAT	TER YEAR	WATER YEARS	1986 - 2002#
ANNUAL TOTAL	85620		82694			
ANNUAL MEAN	235		227		240	
HIGHEST ANNUAL MEAN					369	1987
LOWEST ANNUAL MEAN					193	2000
HIGHEST DAILY MEAN	1650	Oct 4	1650	Oct 4	4610	Sep 20 1995
LOWEST DAILY MEAN	75	Feb 15	70	Jan 25	a26	Dec 11 1996
ANNUAL SEVEN-DAY MINIMUM	81	Nov 28	81	Nov 28	39	Nov 19 1985
MAXIMUM PEAK FLOW			3030	Oct 4	b10000	Sep 19 1995
MAXIMUM PEAK STAGE			4.78	Oct 4	7.67	Sep 19 1995
INSTANTANEOUS LOW FLOW			59	Jan 25	a9.8	Dec 11 1996
ANNUAL RUNOFF (AC-FT)	169800		164000		173900	
10 PERCENT EXCEEDS	478		451		460	
50 PERCENT EXCEEDS	177		180		185	
90 PERCENT EXCEEDS	89		90		85	

PRIOR TO CONSTRUCTION OF TERROR LAKE DAM

SUMMARY STATISTICS, WATER YEARS 1965 - 1983 #

ANNUAL MEAN		293
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	421 230	1983 1967
HIGHEST DAILY MEAN LOWEST DAILY MEAN	2600 c19	Oct 2 1965 Feb 23 1967
ANNUAL SEVEN-DAY MINIMUM	20	Feb 23 1967
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS PEAK STAGE	3820 d6.48 f7.54	Sep 26 1966 Sep 26 1966 Mar 28 1964
ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (IN)	212200 9.54 129.66	
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	774 157 39	

[#] See Period of Record and Remarks
a Occurred while dam release valve was closed for repair
b From rating curve extended above 960 ft³/s on basis of slope-area measurement of peak flow
c Feb. 23 and Mar. 1, 1967
Site and datum then in use
f Site and datum then in use; from tidal wave

15295700 TERROR RIVER AT MOUTH NEAR KODIAK—Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1968, 1982 to current year.

PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: December 1981 to current year.

INSTRUMENTATION.--Water-temperature recorder since December 10, 1981. Electronic water temperature recorder set 1-hour recording interval.

REMARKS.--Records represent water temperature at sensor within 0.5°C. Temperature at the sensor was compared with the average for the river by cross section on February 19, April 22, and September 7. No variation was found within the cross sections. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 13.5°C, July 19, 1990 and August 8, 1993; minimum, 0.0°C on many days during winter periods.

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURE: Maximum, 12.0°C, July 30-31; minimum, 0.0°C on many days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DATE	TIME	STREAM WIDTH (FT) (00004)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C)
FEB		(,	(,	(,	(/	(,	(/	(,
19	1300	44.5		3.0	1.20	93	1.0	-2.3
19	1302	44.5		18.0	1.20	93	1.0	-2.3
19	1304	44.5		28.0	1.20	93	1.0	-2.3
19	1306	44.5		38.0	1.20	93	1.0	-2.3
19	1308	44.5		41.0	1.20	93	1.0	-2.3
APR								
22	1056	40.0		0.0	1.32	122	2.0	2.5
22	1057	40.0		10.0	1.32	122	2.0	2.5
22	1058	40.0		20.0	1.32	122	2.0	2.5
22	1059	40.0		30.0	1.32	122	2.0	2.5
22	1100	40.0		40.0	1.32	122	2.0	2.5
SEP								
07	1340	48.0	4.00		1.53	181	8.0	14.0
07	1342	48.0	14.0		1.53	181	8.0	14.0
07	1344	48.0	24.0		1.53	181	8.0	14.0
07	1346	48.0	34.0		1.53	181	8.0	14.0
07	1348	48.0	44.0		1.53	181	8.0	14.0

WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NC	VEMBER		DE	ECEMBER			JANUARY	
1 2 3 4 5	6.0 6.0 8.5 8.0 6.5	5.0 4.0 6.0 6.0 5.5	5.5 5.0 7.5 7.5 6.0	4.0 2.5 3.0 3.0 2.5	2.5 1.5 1.5 1.5	3.5 2.0 2.5 2.0	1.5 1.0 1.5 0.5	1.0 0.5 0.5 0.0	1.0 1.0 1.0 0.5	1.5 1.5 1.0 2.0 2.0	1.0 1.0 0.5 1.0	1.5 1.0 0.5 1.5
6 7 8 9 10	5.5 5.5 6.0 6.0	4.0 3.5 4.0 5.0 2.5	5.0 4.5 5.0 5.5 4.0	3.0 3.0 2.5 3.0 3.5	2.0 1.0 1.0 2.0 2.5	2.5 2.5 2.0 2.5 3.0	0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.5 0.5	0.0 0.0 0.5 0.5	2.0 2.0 1.5 1.5	1.5 0.5 0.5 1.0	1.5 1.0 1.5 1.0
11 12 13 14 15	3.0 4.0 5.0 5.5	2.0 1.5 3.0 4.0 3.5	2.5 2.5 4.0 4.5 4.5	3.0 3.0 3.0 2.5 2.5	2.0 3.0 2.5 2.0 2.0	2.5 3.0 2.5 2.5 2.0	2.0 1.5 0.5 0.0	1.5 0.5 0.0 0.0	1.5 1.0 0.0 0.0	1.0 0.5 1.5 2.0 2.0	0.0 0.0 0.5 1.5 0.5	0.5 0.5 1.0 1.5
16 17 18 19 20	4.5 5.5 4.5 3.5 4.5	3.0 4.0 3.0 2.5 3.0	3.5 5.0 4.0 3.0 4.0	2.5 2.0 2.5 2.0 3.0	2.0 1.5 1.5 2.0 2.0	2.0 2.0 2.0 2.0 2.5	0.0 0.5 0.5 0.0	0.0 0.0 0.0 0.0	0.0 0.5 0.0 0.0	2.5 2.5 1.5 1.5	1.0 1.5 1.0 1.0	2.0 2.0 1.0 1.5 0.5
21 22 23 24 25	3.0 3.5 3.5 3.0 4.0	2.0 2.0 2.5 2.0 2.5	2.5 3.0 3.0 2.5 3.0	2.5 2.0 1.0 0.5	2.0 1.0 0.5 0.5	2.0 1.5 0.5 0.5	1.5 1.0 0.0 0.0 2.0	1.0 0.0 0.0 0.0 0.0	1.5 0.5 0.0 0.0	0.5 0.5 0.5 0.0	0.0 0.0 0.0 0.0	0.0 0.5 0.0 0.0
26 27 28 29 30 31	3.0 3.0 3.0 3.0 3.0 4.0	2.0 1.5 2.0 1.5 2.0	2.5 2.0 2.5 2.0 2.5 3.5	1.0 1.5 2.0 2.0 1.5	0.5 1.0 1.5 1.5	0.5 1.0 1.5 1.5	2.0 1.5 2.0 2.0 1.0	1.5 1.0 1.0 1.0 0.5	2.0 1.5 1.5 1.5 0.5	0.5 0.5 2.0 2.0 1.5	0.0 0.5 0.5 1.5 0.5	0.5 0.5 1.5 1.5 0.5
MONTH	8.5	1.5	3.9	4.0	0.5	1.9	2.0	0.0	0.7	2.5	0.0	1.0

15295700 TERROR RIVER AT MOUTH NEAR KODIAK—Continued

WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	2.0 2.0 2.0 1.5	1.5 1.5 1.0 1.0	1.5 1.5 1.5 1.5	2.0 2.0 2.0 2.0 2.0	1.0 0.5 0.0 0.0	1.5 1.0 1.0 0.5	3.5 5.0 4.0 4.5 4.5	0.5 1.5 1.0 1.5 0.5	2.0 2.5 2.0 2.5 2.0	5.0 4.5 6.5 5.0	1.0 2.5	2.5 2.5 3.5 3.5 4.0
6 7 8 9 10	2.0 1.5 0.5 1.0	1.0 0.0 0.0 0.5 0.0	1.5 0.5 0.5 1.0	2.5 2.0 2.5 3.0 2.0	0.0 0.0 0.0 0.5	1.0 0.5 1.0 1.5	4.5 4.5 4.5 5.0	0.5 1.0 1.0 1.5	2.5 2.5 2.5 3.0 2.5	5.5 5.0 5.5 5.5	3.0 2.5 3.0 2.5 2.0	4.0 3.5 4.0 3.5 3.5
11 12 13 14 15	2.5 1.5 2.0 1.5 1.5	1.0 0.0 0.5 0.5	1.5 1.0 1.5 1.0	2.5 2.5 2.0 3.5 4.0	0.5 0.0 0.0 1.0	1.5 1.0 1.0 2.0 2.5	3.5 4.0 4.0 5.0	0.5 0.5 0.5 1.5 2.0	2.0 2.0 2.0 3.0 3.5	6.0 6.0 7.5 6.5 5.0	2.0 1.5 2.0 2.5 2.5	3.5 3.5 4.5 4.5 3.5
16 17 18 19 20	0.5 0.5 1.5 1.5	0.0 0.0 0.5 0.0	0.5 0.5 1.0 0.5 0.0	3.0 2.5 3.5 3.0	1.5 1.5 1.5 1.5	2.0 2.0 2.5 2.0 2.0	5.5 4.5 5.5 5.5 4.5	1.5 2.5 2.5 2.5 2.0	3.0 3.0 3.5 3.5 3.0	6.0 8.5 8.0 8.0	3.0 2.0 2.5 2.5 2.5	4.5 4.5 4.5 4.5 4.5
21 22 23 24 25	1.0 1.0 2.5 2.0 3.0	0.0 0.5 0.5 1.0	0.0 0.5 1.5 1.5	3.5 3.5 4.0 3.5 3.5	1.5 1.5 2.0 2.0	2.5 2.5 2.5 2.5	5.5 5.0 5.5 6.0 6.5	0.5 1.0 2.0 1.5	2.5 2.5 3.0 3.5 3.5	6.5 6.0 7.5	2.5 3.0 3.0 2.0 2.5	4.5 4.5 4.0 4.5 4.0
26 27 28 29 30 31	2.5 2.0 2.5 	1.0 1.0 1.0	1.5 1.5 1.5 	3.0 4.0 4.0 4.0	1.5 1.0 1.0 0.5 0.5	2.0 2.0 2.0 2.0 2.0 1.5	7.0 6.0 5.5 5.5	2.0 2.0 2.5 2.0 2.0	4.0 4.0 4.0 3.0 3.0	5.5 5.5 4.5 5.0 5.5	3.5 3.5 3.0 3.0 3.0	4.0 4.0 3.5 4.0 4.0
MONTH	3.0	0.0	1.1	4.0	0.0	1.7	7.0	0.5	2.9	8.5	1.0	3.9
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN		MIN SEPTEMBE	
DAY 1 2 3 4 5	4.5			10.0				AUGUST	9 0		SEPTEMBE	
1 2 3 4	4.5 7.0 5.5 7.0 7.5	JUNE 3.0 3.0 3.0 3.0	4.0 4.5 4.5 4.5 4.5	10.0 9.0 10.5 9.5 10.5 8.5 9.5 8.5	JULY 5.5 6.0 5.0 5.5	7.5 7.0 7.5 7.0 8.0	11.5 11.5 11.5 10.5	7.0 7.0 7.0 7.0 7.0 8.0	9.0 9.0 9.0 9.0 8.5	9.0 9.0 8.5 9.0	7.0 6.0 5.5 7.0	7.5 7.0 7.0 7.5
1 2 3 4 5 6 7 8 9	4.5 7.0 5.5 7.0 7.5 6.5 7.5 5.5	JUNE 3.0 3.0 3.0 3.0 2.5 3.0 2.5 3.0 2.5 3.0 3.0	4.0 4.5 4.5 4.5 4.5 5.0 5.0 4.0	10.0 9.0 10.5 9.5 10.5 8.5 9.5 8.5	JULY 5.5 6.0 5.5 5.5 6.0 6.0 6.0 6.0	7.5 7.0 7.5 7.0 8.0 7.0 7.5 7.0 7.0	11.5 11.5 11.5 10.5 9.5	7.0 7.0 7.0 7.0 7.0 8.0 7.5 7.5 7.0 7.0	9.0 9.0 9.0 9.0 8.5 8.5 8.5 8.5	9.0 9.0 9.0 9.0 9.0 9.0 8.5 8.0 8.5	7.0 6.0 5.5 7.0 7.5 7.0 7.0 6.5 6.0	7.5 7.0 7.0 7.5 8.0 7.5 7.5 7.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14	4.5 7.0 7.5 7.5 6.5 7.5 5.5 6.0 5.5 6.0	JUNE 3.0 3.0 3.0 3.0 2.5 3.0 2.5 3.0 3.5 3.5 3.5 4.0 3.5 3.5 3.5	4.0 4.5 4.5 4.5 5.0 4.0 4.5 4.5 5.0 5.0 6.0	10.0 9.0 10.5 9.5 10.5 8.5 9.5 8.0 8.5 8.5 8.5 8.5	JULY 5.5 6.0 5.5 5.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	7.5 7.0 7.5 7.0 8.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	11.5 11.5 11.5 10.5 9.5 10.0 10.0 10.5 9.0 9.0	7.0 7.0 7.0 7.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5	9.0 9.0 9.0 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.0	9.0 9.0 8.5 9.0 9.0 8.5 8.0 8.5 8.5 8.0 7.0 8.5 8.7	7.0 6.0 5.5 7.0 7.5 7.0 7.0 6.5 6.0 5.0	7.5 7.0 7.0 7.5 8.0 7.5 7.5 7.0 6.0 7.0 7.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	4.5 7.0 7.5 7.5 6.5 7.5 5.5 6.0 5.5 6.0 9.5 10.0 9.5 9.5 6.5	JUNE 3.0 3.0 3.0 3.0 2.5 3.0 2.5 3.0 3.5 3.5 3.0 3.5 4.0 3.5 4.0 3.5 4.0 4.0	4.0 4.5 4.5 4.5 5.0 4.0 4.5 5.0 5.0 5.0 6.5 6.5 5.5	10.0 9.0 10.5 9.5 10.5 8.5 9.5 8.0 8.5 8.5 10.0 10.5 7.5 7.5	JULY 5.5 6.0 5.5 5.5 6.0 6.0 6.0 6.0 6.0 6.0 6.5 6.0 6.5 7.5	7.5 7.0 7.5 7.0 8.0 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.5 8.0 7.5 7.0 7.0 7.0 8.0	11.5 11.5 11.5 10.5 9.5 10.0 10.0 10.5 9.0 9.0 9.0 10.0 10.0 10.5 9.0	7.0 7.0 7.0 7.0 8.0 7.5 7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	9.0 9.0 9.0 9.0 8.5 8.5 8.5 8.5 8.0 8.5 8.5 8.0 8.5 8.5 8.0	9.0 9.0 8.5 9.0 9.0 8.5 8.0 7.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	7.0 6.0 5.5 7.0 7.5 7.0 7.0 6.5 6.0 5.0 6.5 6.5 6.5 6.5 6.5	7.5 7.0 7.0 7.5 8.0 7.5 7.5 7.0 6.0 7.0 7.0 7.0 7.5 6.5 6.5 6.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	4.5 7.0 7.5 7.5 6.5 7.5 5.5 6.0 5.5 9.5 10.0 9.5 9.5 6.0 7.0 9.5 9.5 6.0	JUNE 3.0 3.0 3.0 3.0 2.5 3.0 2.5 3.0 3.5 3.5 3.0 3.5 4.0 3.5 4.0 4.0 4.0 4.5 4.0 5.0	4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55	10.0 9.0 10.5 9.5 10.5 8.5 9.5 8.6 8.5 8.5 10.0 10.5 7.5 7.5 10.0 10.5 9.0 8.0	JULY 5.5 6.0 5.5 5.5 6.0 6.0 6.0 6.0 6.0 6.5 6.0 6.5 7.0 6.5 7.0 7.5 7.5	7.5 7.0 7.5 7.0 8.0 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 8.0 7.0 8.0 7.0 8.0 8.0 8.0 7.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	11.5 11.5 11.5 10.5 9.5 10.0 10.0 10.5 9.0 9.0 10.0 9.0 10.0 10.5 8.5 10.5	7.0 7.0 7.0 7.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	9.0 9.0 9.0 9.0 9.0 8.5 8.5 8.5 8.0 8.0 8.5 8.0 9.0 8.0 8.0 8.0 8.0 8.0	9.0 9.0 8.5 9.0 9.0 8.5 8.0 7.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	7.0 6.0 5.5 7.0 7.5 7.0 7.0 6.5 6.0 5.0 6.5 6.5 6.5 6.5 6.5 6.5 7.0	7.5 7.0 7.0 7.5 8.0 7.5 7.5 7.0 6.0 7.0 7.0 7.0 7.5 6.5 6.5 6.5 5.5

15297610 RUSSELL CREEK NEAR COLD BAY

LOCATION.--Lat 55°10'40", long 162°41'15", (Cold Bay A-3 quad), Aleutians East Borough, Hydrologic Unit 19030101, on left bank, at Russell Creek Fish Hatchery, 2.1 mi upstream from mouth, and 2.6 mi southeast of Cold Bay. Prior to February 27, 1997, at site 0.2 mi downstream.

DRAINAGE AREA. -- 30.9 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1981 to December 1986, October 1995 to current year.

REVISED RECORDS.-- WRD AK-97-1: 1996, Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 7.65 ft above sea level. Prior to February 27, 1997, elevation 3.55 ft above sea level at site 0.2 mi downstream (levels by private engineering firm).

REMARKS.--Records good, except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

DISCHARGE, in CFS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES													
DAY	OCT	NOV	/ DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	187 178 337 213 191	230 191 193 189 210	7 166 3 153 9 142	e110 e120 e120 e120 e110	e110 e120 e120 e110 e110	e95 e95 e100 e100 e100	123 128 130 125 118	294 261 253 335 420	361 330 299 278 263	264 241 228 238 239	211 226 502 454 405	215 197 245 371 257	
6 7 8 9	187 191 525 393 285	17' 15! 21: 16! 14!	e130 e130 e120	e110 e110 e120 e120 e110	e100 e100 e100 e95 e95	e100 e100 e110 e110 e110	117 115 113 111 105	311 305 318 292 258	257 328 456 391 425	228 209 198 191 194	386 311 272 237 435	229 332 352 260 206	
11 12 13 14 15	229 217 208 195 174	200 172 164 e160 e160	e120 e120 e120 e110	e110 e110 e120 e120 e130	e95 e95 e100 e100 e95	e110 116 204 183 881	102 101 99 121 144	213 287 909 542 372	382 323 309 339 424	191 316 342 305 349	308 268 242 324 361	216 383 368 445 278	
16 17 18 19 20	704 499 302 307 304	e150 e150 214 235 169	e110 e110 e120	e130 e120 e120 e110 e110	e95 e90 e90 e85 e85	653 416 423 273 284	148 167 132 134 142	313 283 838 914 1530	395 358 309 277 247	271 231 220 203 238	266 221 222 296 371	228 233 198 175 162	
21 22 23 24 25	233 251 215 195 177	184 173 199 335 279	e110 e110 e110	e100 e110 e110 e120 e120	e80 e80 e85 e85 e90	252 276 263 225 224	125 115 114 124 150	901 639 1030 1670 1100	231 226 262 298 300	543 375 771 341 337	392 330 240 202 180	168 181 161 152 293	
26 27 28 29 30 31	196 292 191 180 277 371	298 319 233 194 179	e100 e100 e110 e110	e130 e130 e130 e120 e120 e110	e90 e90 e95 	188 168 155 142 142 132	157 248 602 497 426	806 584 488 480 485 394	258 229 219 213 248	324 331 280 247 223 212	171 168 165 252 297 221	308 248 241 207 198	
TOTAL MEAN MAX MIN AC-FT CFSM IN.	8404 271.1 704 174 16670 8.77 10.12	6033 201.3 339 149 11970 6.53 7.26	L 119.9 5 166 5 100 7370 L 3.88	3630 117.1 130 100 7200 3.79 4.37	2685 95.89 120 80 5330 3.10 3.23	6730 217.1 881 95 13350 7.03 8.10	5033 167.8 602 99 9980 5.43 6.06	17825 575.0 1670 213 35360 18.6 21.46	9235 307.8 456 213 18320 9.96 11.12	8880 286.5 771 191 17610 9.27 10.69	8936 288.3 502 165 17720 9.33 10.76	7507 250.2 445 152 14890 8.10 9.04	
STATIST	TICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS 19	82 - 2002	, BY WATE	R YEAR (W	Y)#				
MEAN MAX (WY) MIN (WY)	274.2 516 1986 172 1997	296.4 530 1986 168 2000	549 5 1984 3 86.8	164.6 318 1982 59.5 2000	147.8 272 1982 71.2 2000	139.1 218 1996 75.8 1986	141.3 261 1998 80.3 1985	239.9 575 2002 133 2001	334.3 634 2000 208 1997	342.0 528 1982 192 1997	314.2 403 2000 256 1996	358.7 538 1998 170 2000	

See Period of Record Estimated

15297610 RUSSELL CREEK NEAR COLD BAY—Continued

SUMMARY STATISTICS	FOR 2001 CALENDA	R YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1982 - 2002#
ANNUAL TOTAL	80834		88616			
ANNUAL MEAN	221.5		242.8		250.3	
HIGHEST ANNUAL MEAN					302	1982
LOWEST ANNUAL MEAN					206	1983
HIGHEST DAILY MEAN	1060	Jun 23	1670	May 24	4000	Jun 24 1996
LOWEST DAILY MEAN	100	Mar 29	a80	Feb 21	b50	Feb 19 1982
ANNUAL SEVEN-DAY MINIMUM	104	Dec 22	84	Feb 18	51	Feb 18 1982
MAXIMUM PEAK FLOW			2220	May 24	c6000	Oct 22 1981
MAXIMUM PEAK STAGE			28.11	May 24	d11.76	Jun 24 1996
INSTANTANEOUS LOW FLOW				=	£49	Mar 13 1983
ANNUAL RUNOFF (AC-FT)	160300		175800		181400	
ANNUAL RUNOFF (CFSM)	7.17		7.86		8.10	
ANNUAL RUNOFF (INCHES)	97.31		106.68		110.07	
10 PERCENT EXCEEDS	358		399		440	
50 PERCENT EXCEEDS	191		199		202	
90 PERCENT EXCEEDS	120		101		95	

[#] See Period of Record
a Feb. 21-22
b Feb. 19-23, 1982
c From rating curve extended above 610 ft³/s on basis of estimate
by slope-area measurement of 6,000 ft³/s and gage height of 11.19 ft
d Site and datum then in use; from flood marks
f Mar. 13-14, 1983

15297610 RUSSELL CREEK NEAR COLD BAY—Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Water years 1982-83, 1996 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: August 1996 to current year.

INSTRUMENTATION.--Electronic water-temperature recorder set for 1-hour recording interval.

REMARKS.--Records represent water-temperature at the sensor within 0.5° C. Temperature at the sensor was compared with the stream average by cross section on June 19. No variation was found within the cross section. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF RECORD.-WATER TEMPERATURE: Maximum, 15.5°C, August 13-14, 2001, July 31 and August 1, 2002; minimum, 0.0°C on many days during winter periods.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum, 15.5°C, July 31 and August 1; minimum 0.0°C on many days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	STREAM WIDTH (FT) (00004)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)
JUN 19 19 19 19	1845 1846 1847 1848 1849	71.6 71.6 71.6 71.6 71.6	4.00 24.0 44.0 64.0 69.0	26.05 26.05 26.05 26.05 26.05	255 255 255 255 255	10.5 10.5 10.5 10.5	18.0 18.0 18.0 18.0 18.0

WATER TEMPERATURE, (DEGREES CELSIUS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NC	VEMBER		DE	ECEMBER			JANUARY	
1 2 3 4 5	9.0 7.0 9.0 7.5 8.0	4.0 3.5 6.0 4.5 3.0	5.5 5.5 7.0 6.0 5.0	2.5 0.0 0.0 0.0 1.0	0.0 0.0 0.0 0.0	1.5 0.0 0.0 0.0 0.5	1.0 2.0 2.0 2.0 1.0	0.0 1.0 0.5 0.5	0.5 1.5 1.5 1.5		0.0 0.0 0.0 0.0	
6 7 8 9 10	7.0 7.0 6.5 5.5 4.5	3.5 3.0 4.5 3.0 2.0	5.0 5.0 5.5 4.5 3.0	2.5 2.5 2.5 3.0 2.5	1.0 0.0 1.5 1.5	1.5 1.5 2.0 2.0	0.0 0.0 0.0 2.0 1.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
11 12 13 14 15	4.5 6.0 6.5 4.5 5.0	1.0 2.5 4.0 2.5 2.0	2.5 4.0 5.0 3.0 3.0	2.0 2.5 0.0 0.0	1.0 0.0 0.0 0.0 0.0	1.5 1.5 0.0 0.0	0.5 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.5 0.0 0.0 0.0	0.0 0.5 0.5 0.5	0.0 0.0 0.5 0.0	0.0 0.5 0.5 0.0
16 17 18 19 20	8.0 6.5 4.5 5.5 6.0	4.0 3.5 3.0 3.5 3.5	6.0 5.0 3.5 4.5	0.0 0.5 2.5 3.0 3.0	0.0 0.0 0.5 2.0 1.0	0.0 0.0 1.5 2.5 2.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 1.0 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.5 0.5
21 22 23 24 25	3.5 4.0 4.0 3.0 2.0	2.0 1.0 1.0 0.5	2.5 2.5 2.0 1.5	3.0 3.5 4.0 4.0	1.0 1.0 0.5 3.5 2.5	2.0 2.5 2.5 4.0 3.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.5 2.0 0.0 0.0	0.5 0.0 0.0 0.0	0.5 0.5 0.0 0.0
26 27 28 29 30 31	3.5 3.5 2.0 1.5 3.5	1.0 1.5 1.0 0.0 0.5	2.0 2.5 1.5 0.5 1.5 2.5	3.5 3.5 3.0 2.5 2.5	3.0 2.0 1.5 0.5 1.0	3.0 2.5 2.5 1.5 2.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
MONTH	9.0	0.0	3.6	4.0	0.0	1.5		0.0			0.0	

SOUTHWEST ALASKA

15297610 RUSSELL CREEK NEAR COLD BAY—Continued

WATER TEMPERATURE, (DEGREES CELSIUS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	0.5 0.5 1.0 2.0	0.0 0.0 0.0 0.0	0.0 0.5 0.5 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	4.5 5.5 8.0 6.0 8.0	0.5 1.5 1.0 0.5 0.0	2.0 3.0 3.5 3.0 3.0	8.5 8.0 9.0 5.5 6.5	1.5 2.0 2.5 3.5 3.0	4.5 4.5 5.5 4.5
6 7 8 9 10	0.5 0.5 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 1.0 2.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.5	8.0 8.5 7.5 5.0 6.5	0.0 0.0 0.0 2.0 1.0	3.5 3.5 3.5 3.0 3.0	8.0 8.5 7.0 5.5 8.0	1.5 3.5 3.0 2.5 2.5	4.5 5.5 4.5 4.0 4.5
11 12 13 14 15	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	3.0 3.0 1.5 2.5 0.5	0.0 0.5 0.0 0.5 0.0	0.5 1.5 0.5 1.0	2.5 2.0 6.0 6.5 7.5	0.0 0.0 1.0 2.0	1.0 0.5 3.0 3.5	8.0 6.5 5.5 5.0 10.5	2.5 3.5 3.0	4.5 4.0 4.0 3.5 5.5
16 17 18 19 20	0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.5 2.5 4.0 3.0 3.5	0.0 0.5 0.5 0.0	1.0 1.5 1.5 1.5 2.0	5.0 3.0 7.0 5.5 5.5	2.0 1.5 0.5 1.5 2.5	3.5 2.5 3.0 3.0	11.0 11.5 5.5 5.0 6.0	3.0 4.0 3.5	6.0 6.5 4.5 4.0
21 22 23 24 25	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	3.5 3.5 3.5 2.5 5.5	1.0 1.0 1.0 0.5	2.0 2.0 2.0 1.5 2.5	6.0 7.5 5.5 5.5 8.5	1.0 2.0 2.0 2.5 2.5	3.0 4.0 3.5 3.5	9.5 8.0 5.0 5.0	2.5 4.0 3.5 3.5 3.5	5.5 5.5 4.0 4.0
26 27 28 29 30 31	0.0 0.0 0.0 2.0	0.0 0.0 0.0 	0.0	6.0 4.5 3.5 2.0 5.0 4.0	1.0 0.5 0.5 0.0 0.0	2.5 2.0 2.0 1.0 1.5 1.5	10.0 8.0 6.0 7.5 7.0 	2.5 3.0 3.0 3.0 2.5	5.5 4.5 4.0 4.5 4.5	9.0 7.0 9.0 9.0 9.0 8.5	3.0 4.0 4.5 4.0 3.5 4.0	5.5 5.0 6.5 6.5 6.0 6.0
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN		MIN SEPTEMBE	
DAY 1 2 3 4 5	7.5 9.5 8.0 12.0		MEAN 5.5 6.5 6.0 7.0 7.5	MAX 10.0 9.0 14.0 10.5 9.5					MEAN 10.0 9.5 8.0 8.0 7.5		SEPTEMBE	
1 2 3 4	7.5 9.5 8.0 12.0	JUNE 4.0 4.5 4.5 4.5	5.5 6.5 6.0 7.0 7.5	10.0 9.0 14.0 10.5	JULY 5.0 5.0 5.5 5.0 5.5 5.0 6.0	7.5 7.0 8.5 8.0 7.0 7.0 8.0 7.0	15.5 15.0 8.5 11.0	AUGUST 6.5 5.5 7.0 6.5 6.5 6.0 5.5 5.0	10.0 9.5 8.0 8.0 7.5	10.5 12.5 11.5 10.5	4.5 5.5 7.0 8.5 7.0 6.5 6.0 6.0	7.5 8.0 9.0 9.5
1 2 3 4 5 6 7 8 9 10	7.5 9.5 8.0 12.0 12.5 12.5 7.5 7.0 8.5 7.0	JUNE 4.0 4.5 4.5 4.0 4.0 5.0 5.0 4.5 4.5	5.5 6.5 6.0 7.0 7.5 7.5 6.0 5.5 6.0	10.0 9.0 14.0 10.5 9.5	JULY 5.0 5.0 5.0 5.5 5.0 5.0 5.0 5.0 4.5	7.5 7.0 8.5 8.0 7.0 7.0 8.0 7.0 8.5 8.0	15.5 15.0 8.5 11.0 8.5 9.0 11.0 14.0 8.5 12.5	AUGUST 6.5 5.5 7.0 6.5 6.5 6.0 5.5 7.0 6.0	10.0 9.5 8.0 8.0 7.5 7.5 8.0 9.0 7.0	10.5 12.5 11.5 10.5 9.0 8.5 9.0 8.5 9.5	4.5 5.5 7.0 8.5 7.0 6.5 6.0 6.0 5.0 5.5	7.5 8.0 9.0 9.5 8.0 7.5 7.5 7.0 6.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	7.5 9.5 8.0 12.0 12.5 12.5 7.5 7.0 8.5 7.0	JUNE 4.0 4.5 4.0 4.0 5.0 5.0 4.5 4.5 4.5 4.5 4.5 4.5	5.5 6.5 7.0 7.5 7.5 6.0 5.5 6.0 7.0 5.5	10.0 9.0 14.0 10.5 9.5 10.5 11.0 9.0 12.0 11.5 14.0 10.5 8.5	JULY 5.0 5.0 5.0 5.5 5.0 5.5 6.0 5.5 7.0 6.0 6.0	7.5 7.0 8.5 8.0 7.0 8.0 7.0 8.5 8.0 8.5 8.7	15.5 15.0 8.5 11.0 8.5 9.0 11.0 8.5 12.5 13.0 11.5 12.5	AUGUST 6.5 5.5 7.0 6.5 6.5 6.0 5.5 5.0 6.0 6.0 5.5 7.0	10.0 9.5 8.0 7.5 7.5 8.0 9.0 7.0 9.0 8.5 8.5 9.5 8.0	10.5 12.5 11.5 10.5 9.0 8.5 9.0 8.5 9.5 10.0	# 1.5 5.5 7.0 8.5 7.0 6.5 6.0 6.0 5.0 5.5 4.5 7.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	7.5 8.0 9.5 8.0 7.5 7.5 7.0 6.5 7.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	7.5 9.5 8.0 12.0 12.5 12.5 7.5 7.0 8.5 7.0 10.5 12.5 8.5 7.0 9.0	JUNE 4.0 4.5 4.0 5.0 5.0 5.0 4.5 4.5 4.5 4.5 4.5 4.6 4.5 4.5 4.7	5.5 6.5 6.0 7.0 7.5 7.5 6.0 5.5 6.0 7.0 6.0 6.0 8.0 6.0 7.0	10.0 9.0 14.0 10.5 9.5 10.5 11.0 9.0 12.0 11.5 14.0 10.5 8.5 8.0 10.0	JULY 5.0 5.0 5.0 5.5 5.0 5.5 6.0 5.5 6.0 6.0 6.0 6.0 6.0 6.5 5.5	7.5 7.0 8.5 8.0 7.0 7.0 8.5 8.0 7.0 8.5 8.5 7.0 7.0 6.5 8.0 7.0	15.5 15.0 8.5 11.0 8.5 9.0 11.0 8.5 12.5 13.0 11.5 12.0 13.0 10.0	AUGUST 6.5 5.5 7.0 6.5 6.5 6.0 5.5 5.0 6.0 6.0 5.5 7.0 6.0 6.0 5.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	10.0 9.5 8.0 8.0 7.5 7.5 8.0 9.0 7.0 9.0 8.5 8.5 9.5 8.0	10.5 12.5 11.5 10.5 9.0 8.5 9.5 10.0 8.5 8.6 8.0 8.0 9.0 9.5 10.0	\$EPTEMBE 4.5 5.5 7.0 8.5 7.0 6.5 6.0 5.5 4.5 7.0 6.0 5.5 4.5 5.0 6.0 4.5 5.0 6.0 6.0 6.0 6.0 6.0	7.5 8.0 9.5 8.0 7.5 7.5 7.0 6.5 7.5 7.5 7.5 7.5 7.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	7.5 9.5 8.0 12.0 12.5 7.5 7.0 8.5 7.0 10.5 12.5 8.5 7.0 9.0 13.0 8.0 11.0 9.0	JUNE 4.0 4.5 4.0 5.0 5.0 5.0 4.5 4.5 4.5 4.5 4.5 5.0 5.5 5.0	5.5 6.5 6.0 7.0 7.5 7.5 6.0 5.5 6.0 7.0 6.0 7.0 7.0 6.5 6.0 7.0 6.5 6.0 7.0 6.0 7.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	10.0 9.0 14.0 10.5 9.5 11.0 9.0 12.0 11.5 14.0 10.5 8.5 8.0 10.0 8.5 11.0 9.0 9.0	JULY 5.0 5.0 5.0 5.5 5.0 5.5 6.0 5.5 6.0 6.0 6.0 6.0 6.0 6.0 6.5 7.0 6.0 6.0 6.5 7.0	7.5 7.0 8.5 8.0 7.0 8.5 8.0 7.0 8.5 8.5 7.0 7.0 6.5 8.0 7.5 8.0 7.0	15.5 15.0 8.5 11.0 8.5 11.0 8.5 12.5 13.0 11.5 12.0 13.0 10.0 14.0 14.0 13.0 10.0	AUGUST 6.5 5.5 7.0 6.5 6.5 6.0 5.5 7.0 6.0 6.0 5.5 7.5 6.0 6.0 6.0 7.5 7.0 6.0 6.0 6.0 5.5 6.0 6.0 6.5 6.0 7.5	10.0 9.5 8.0 8.0 7.5 7.5 8.0 9.0 7.0 9.0 8.5 8.5 9.5 8.0 9.5 8.5 7.5 8.5	10.5 12.5 11.5 10.5 9.0 8.5 9.5 10.0 8.5 8.0 8.0 8.0 9.0 9.5 10.0 9.0 8.5	\$\frac{4.5}{5.5}\$ \frac{7.0}{6.5}\$ \frac{6.5}{6.0}\$ \frac{5.5}{5.5}\$ \frac{4.5}{5.0}\$ \frac{4.5}{5.0}\$ \frac{4.5}{5.0}\$ \frac{4.5}{5.5}\$ \frac{5.0}{5.5}\$ \frac{4.5}{5.5}\$ \frac{5.5}{5.5}\$ \frac	7.5 8.0 9.5 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 5.5 5.5 5.5

15300300 ILIAMNA RIVER NEAR PEDRO BAY

LOCATION.--Lat $59^{\circ}45'31''$, long $153^{\circ}50'41''$, in $NE^{1}_{/4}$ SE $^{1}_{/4}$ sec. 10, T. 5 S., R. 27 W.(Iliamna D-3 quad), Lake and Peninsula Borough, Hydrologic Unit 19030206, on left bank 100 ft downstream from bridge on road between Pile Bay and Williamsport, 9.2 mi east of Pedro Bay, and 37 mi east of Iliamna.

PERIOD OF RECORD. -- May 1996 to current year.

 ${\tt GAGE.--Water-stage\ recorder.\ Elevation\ of\ gage\ is\ 80\ ft\ above\ sea\ level,\ from\ topographic\ map.}$

REMARKS.--Records are good except for estimated daily discharges which are poor. GOES satellite telemetry at station.

			DISCHA	RGE, in CF		YEAR OC' Y MEAN		1 TO SEPTE	MBER 200	2		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	805 862 799 2790 3200	e340 e320 e320 e300 e300	e230 e220 e220 e220 e210	1650 1490 1110 968 857	e140 e140 e130 e130 e130	e90 e90 e85 e85 e85	e60 e60 e60 e60	1020 807 662 575 531	2240 2000 2230 2480 2380	2210 1880 1920 2010 1990	882 831 809 803 823	592 559 504 463 505
6 7 8 9	2070 1340 1050 1070 1010	e290 e290 e280 e280 e280	e210 e210 e220 e220 e230	734 487 464 e440 e400	e130 e130 e130 e130 e130	e85 e80 e80 e80 e80	e60 e60 e60 e55 e55	588 647 645 651 683	2510 2470 2470 4820 4420	1790 1580 1420 1230 1130	869 780 983 932 867	687 839 688 641 564
11 12 13 14 15	821 713 628 602 575	e270 e270 e260 263 264	e230 e220 e220 e220 e210	e360 e320 e300 e250 e220	e120 e120 e120 e120 e110	e75 e75 e75 e75 e70	e55 e55 e55 e55 e55	688 705 754 845 1020	2830 2310 2170 2190 2550	1210 1420 1410 1340 1320	1300 1100 1060 903 794	547 1010 2860 3390 1930
16 17 18 19 20	513 497 519 449 411	310 338 482 498 424	e210 e200 e200 e200 e190	e200 e190 e180 e180 e180	e110 e110 e110 e110 e100	e70 e70 e70 e70 e70	e55 e55 e55 e50 e50	1120 1260 1530 1970 2330	2910 3000 2980 2720 2140	1150 1110 1360 1340 1460	742 742 730 694 732	1220 1100 1080 860 717
21 22 23 24 25	397 e380 e380 e380 e380	405 317 272 254 e250	e190 e180 e180 e170 496	e170 e170 e170 e160 e160	e100 e100 e100 e100 e95	e65 e65 e65 e65	e50 e60 e75 e90 e120	2550 2680 3380 2840 2750	1800 1810 2010 1920 2080	1370 1490 1570 1850 1520	913 861 929 740 666	622 557 1900 4710 3370
26 27 28 29 30 31	e360 e360 e360 e360 e340 e340	e250 e250 e240 e240 e230	1130 1990 1490 1270 1140 1210	e160 e150 e150 e150 e140 e140	e95 e95 e95 	e65 e65 e60 e60 e60	182 223 296 593 938	2880 3060 2810 2390 2630 2420	1900 2070 1910 1740 2010	1480 1400 1090 984 890 900	602 560 527 508 546 552	2000 1710 2760 2530 1750
TOTAL MEAN MAX MIN AC-FT CFSM IN.	24761 798.7 3200 340 49110 6.24 7.20	9087 302.9 498 230 18020 2.37 2.64	13736 443.1 1990 170 27250 3.46 3.99	12700 409.7 1650 140 25190 3.20 3.69	3230 115.4 140 95 6410 0.90 0.94	2255 72.74 90 60 4470 0.57 0.66	3757 125.2 938 50 7450 0.98 1.09	49421 1594 3380 531 98030 12.5 14.36	73070 2436 4820 1740 144900 19.0 21.24	44824 1446 2210 890 88910 11.3 13.03	24780 799.4 1300 508 49150 6.24 7.20	42665 1422 4710 463 84630 11.1 12.40
STATIST	TICS OF M	ONTHLY MEA	AN DATA	FOR WATER	YEARS 1996	- 2002	, BY WATE	R YEAR (WY	7)#			
MEAN MAX (WY) MIN (WY)	622.8 861 2000 289 1997	406.4 748 1999 161 1997	246.9 443 2002 84.5 1997	208.3 410 2002 75.2 1998	125.9 253 2001 61.6 1998	157.6 407 1998 60.6 1999	252.3 500 1998 87.8 1999	1087 1594 2002 752 2001	2540 3790 1998 1716 1996	1699 2931 2001 788 1997	1177 1631 1999 692 1997	1449 2178 1999 627 1996
SUMMARY	Y STATIST	CICS	FOR	2001 CALE	NDAR YEAR		FOR 2002	WATER YEAR	2	WATER YEAR	RS 1996	- 2002#
LOWEST	MEAN F ANNUAL ANNUAL M	IEAN		366821 1005	T 1 10		304286 833.			867.6 1083 622	T	1998 1997
LOWEST ANNUAL MAXIMUN MAXIMUN ANNUAL	F DAILY ME DAILY ME SEVEN-DA M PEAK FI M PEAK ST RUNOFF (RUNOFF (AN Y MINIMUM OW 'AGE AC-FT)		7460 a150 153 727600 7.8	Apr 10		4820 b50 53 6260 65. 603600	Apr 15 Jun 9 21 Jun 9) ;	12300 c38 40 14800 71.82 628600	Jan Jan Jun 2 Jun	8 1998 5 1997 2 1997 8 1998 8 1998
ANNUAL 10 PERC 50 PERC	RUNOFF (CENT EXCE CENT EXCE CENT EXCE	INCHES) EDS EDS		106.6 2680 411 180			88. 2220 504 70			92.10 2220 460 80		

See Period of Record; partial year used in monthly statistics

From Apr. 12-16 From Apr. 19-21 From Jan. 5-6, 1997 Estimated

15302000 NUYAKUK RIVER NEAR DILLINGHAM

LOCATION.--Lat $59^{\circ}56'08''$, long $158^{\circ}11'16''$, in $NE^{1}/_{4}$ NE $^{1}/_{4}$ sec. 10, T.3 S., R.52 W. (Dillingham D-6 quad), Hydrologic Unit 19030301, on the left bank 350 ft downstream from outlet of Tikchik Lake, about 0.6 mi upstream from unnamed tributary entering from left bank and 62 mi north of Dillingham.

DRAINAGE AREA. -- 1,490 mi², approximately.

PERIOD OF RECORD. -- May 1953 to September 1996 and July to September, 2002.

REVISED RECORDS. -- WRD-Alaska 1972; 1971.

GAGE.--Water-stage recorder. Elevation of gage is 325 ft above sea level from topographic map. Prior to Oct.8, 1983, at site 650 ft downstream at different datum, but datum was 2.00 ft higher from May 1953 to Oct. 1. 1957.

REMARKS.--Records good, except for estimated daily discharges, which are poor. GOES satellite telemetry at station. Discharge affected by storage in Tikchik Lake, Nuyakuk Lake, Lake Chauekuktuli, and other smaller lakes covering over 170 mi² of the basin.

EXTREMES FOR CURRENT PERIOD.--Maximum discharge not determined, maximum daily mean discharge during the period July through September, $18,200~{\rm ft}^3/{\rm s}$, July 1; minimum not determined, occurs during winter.

DISCHARGE, in CFS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1										e18200	9050	5650
2										e17700	8860	5540
3										e17200	8660	5430
4										e16800	8450	5280
5										e16300	8230	5250
3										010000	0230	3230
6										e15800	8100	5250
7										e15400	7980	5200
8										e15000	7830	5160
9										e14600	7630	5070
10										14200	7420	4960
10										11200	7120	1500
11										13700	7260	4820
12										13200	7270	4630
13										12800	7160	4730
14										12500	7000	4840
15										12200	6860	4940
13										12200	0000	1510
16										11900	6700	4900
17										11700	6540	4900
18										11400	6400	4830
19										11100	6290	4760
20										10800	6320	4690
20										10000	0320	4000
21										10600	6290	4600
22										10500	6260	4500
23										10300	6250	4510
24										10300	6170	4730
25										10200	6100	4810
23										10200	0100	4010
26										10000	6040	4990
27										10000	5970	5360
28										9920	5900	5720
29										9760	5780	5890
30										9530	5720	6010
31										9300	5690	
31										2300	3030	
TOTAL										392910	216180	151950
MEAN										12670	6974	5065
MAX										18200	9050	6010
MIN										9300	5690	4500
AC-FT										779300	428800	301400
CFSM										8.51	4.68	3.40
IN.										9.81	5.40	3.79

e Estimated

15302000 NUYAKUK RIVER NEAR DILLINGHAM—Continued

STATIS	TICS OF M	ONTHLY MEAN	DATA	FOR WATER Y	EARS 1953	3 - 2002,	BY WATER	YEAR (WY	7)#			
MEAN MAX (WY)	7761 13350 1992	5015 9192 1980	3209 6500 1984	2454 4005 1984	2077 3200 1963	1826 3041 1963	1784 2692 1993	4491 11320 1978	15360 23290 1969	14010 26220 1977	8999 24190 1977	8180 17070 1989
MIN	3816	2570	1848	1397	1252	990	800	1719	10360	6794	3855	4099
(WY)	1969	1969	1964	1964	1964	1976	1960	1964	1954	1954	1957	1984
SUMMAR	Y STATIST	ICS		WATER YEA	RS 1953 -	- 2002#						
ANNUAL	MEAN			6301								
HIGHES'	T ANNUAL I	MEAN		9470		1977						
	ANNUAL M			4236		1954						
	T DAILY M			32100	Jul 2							
LOWEST	DAILY ME	AN		a770	Apr 16							
		Y MINIMUM		770	Apr 16							
	M PEAK FLO			32200		2 1977						
	M PEAK ST			b10.4		2 1977						
	TANEOUS L			770	Apr 16	5 1960						
	RUNOFF (4565000								
	RUNOFF (4.2	3							
	RUNOFF (57.4	6							
	CENT EXCE			14300								
50 PER	CENT EXCE	EDS		4300								
90 PER	CENT EXCE	EDS		1700								

[#] See Period of Record
a Apr.16-30, 1960
b Site and datum then in use

15303700 TATALINA RIVER NEAR TAKOTNA

LOCATION.--Lat 62°53'06", long 155°56'22", in NW¹/₄ NE¹/₄ sec. 12, T.32 N., R.36 W.(McGrath D-6 quad), Hydrologic Unit 19030405, at downstream side of bridge on right bank, 1.2 mi southeast of Tatalina Airstrip, and 8.1 mi southeast of Taketna

DRAINAGE AREA.--76.9 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1987 to current year (no winter record), except May only in 1989, and annual maximum in water year 1991

GAGE.--Water-stage recorder, non-recording gage, and crest-stage gage. Elevation of gage is 450 ft above sea level, from topographic map. Prior to May 9, 1990 at site 20 ft downstream at same datum.

REMARKS.--Records fair, except for estimated daily discharges, which are poor. Precipitation gage and air temperature recorder at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,170 ft³/s, July 8, 1998, gage-height 10.97 ft; maximum gage height 11.46 ft, 1996, date and time unknown, backwater from ice, discharge not determined, minimum discharge not determined, occurs during winter.

EXTREMES FOR CURRENT PERIOD.-- October 2001 and June to September 2002: maximum discharge during period, 247 ft³/s, September 13, gage height 5.73 ft; maximum observed gage height 10.43 ft, backwater from ice, discharge not determined, date unknown, occurred during winter; minimum discharge not determined, occurs during winter.

DISCHARGE, in CFS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAILY MEAN VALUE DAY OCT NOV JUN JUL AUG SEP DEC JAN FEB MAR APR MAY e91 27 25 1 ---------------------82 e88 36 30 79 86 36 24 aa ___ ___ ___ _ _ _ ___ ___ ___ 39 28 86 ------24 5 102 86 36 61 e32 6 92 ___ ---_ _ _ ___ ---------103 23 86 ---------------------22 80 77 90 e31 8 74 86 e30 62 73 _ _ _ _ _ _ ---------------75 e30 23 52 10 24 e71 69 45 e29 11 e68 _ _ _ _ _ _ _ _ _ ---_ _ _ ------68 e29 24 49 ---12 ------22 137 e66 63 e28 ---22 13 58 190 e60 14 _ _ _ _ _ _ ---------------55 e30 21 126 20 15 53 103 e57 e29 ---___ ---2.0 16 e53 _ _ _ _ _ _ _ _ _ ---51 e29 e90 17 20 e50 ---------49 e28 e80 18 e48 ------------------48 e28 21 e73 ---_ _ _ ------------19 e46 _ _ _ 46 e29 22 e67 20 45 e60 e44 e30 21 e42 ---------------------28 e55 44 40 22 e40 ------------------41 34 51 e50 23 e39 ------------------40 33 42 e46 ---------------------24 e38 41 31 42 e43 --------e35 53 37 e37 26 34 ---27 ------------------55 37 33 e34 e42 ------_ _ _ ------28 e33 ---46 40 3.0 e46 29 29 e32 42 39 e51 30 e31 ---40 32 31 e30 ------------------------29 2.8 TOTAL 1760 1841 1008 848 1947 ---MEAN 56.77 ------------------61.37 32.52 27.35 64.90 MAX 102 103 40 51 190 MIN 30 _ _ _ ------------------40 2.8 20 27 ------------------AC-FT 3490 ---3650 2000 1680 3860 CFSM 0.74 0.80 0.42 0.36 0.84

0.89

0.49

0.41

0.94

0.85

TN

e Estimated

15303700 TATALINA RIVER NEAR TAKOTNA—Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD.-- Water years 1992 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: July 1992 to current year (seasonal).

INSTRUMENTATION.--Electronic water-temperature recorder set for 1-hour recording interval.

REMARKS.--No record June 14 to July 23 due to probe out of water and September 17-30 due to recorder. Records represent water temperature at the sensor within 0.5°C . Temperature at the sensor was compared with the stream average by cross sections on June 3. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF RECORD.-- WATER TEMPERATURE.--Maximum, 16.5°C, July 30 to August 2, and 4, 1997; minimum, 0.0°C, several days in October, May, and September most water years.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum recorded, 14.5°C, August 5, but may have been higher during period of missing record; minimum, 0.0°C, several days in May.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

			SAMPLE		DIS-				
			LOC-		CHARGE,				
			ATION,		INST.				
			CROSS		CUBIC	TEMPER-	TEMPER-	SAM-	
		STREAM	SECTION	GAGE	FEET	ATURE	ATURE	PLING	SAMPLER
DATE	TIME	WIDTH	(FT FM	HEIGHT	PER	WATER	AIR	METHOD,	TYPE
		(FT)	R BK)	(FEET)	SECOND	(DEG C)	(DEG C)	CODES	(CODE)
		(00004)	(72103)	(00065)	(00061)	(00010)	(00020)	(82398)	(84164)
JUN									
03	1600	30.5	3.0	4.15	86	4.0	12.0	10	8010
03	1601	30.5	9.0	4.15	86	4.0	12.0	10	8010
03	1603	30.5	15.0	4.15	86	4.0	12.0	10	8010
03	1605	30.5	21.0	4.15	86	4.0	12.0	10	8010
03	1607	30.5	27.0	4.15	86	4.0	12.0	10	8010

TEMPERATURE, WATER (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	OCTOBER			NC	VEMBER		DE	ECEMBER			JANUARY	
1	1.5	0.5	1.0									
2	2.5	1.5	2.0									
3	2.0	1.5	1.5									
4	3.5	1.5	2.5									
5	4.0	3.5	3.5									
6	3.5	3.0	3.5									
7	3.0	1.0	2.0									
8	1.0	1.0	1.0									
9		0.5										
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
20												
21												
22												
23												
24												
25												
26												
27												
28												
28 29												
30												
31												
MONTH												

SOUTHWEST ALASKA

15303700 TATALINA RIVER NEAR TAKOTNA—Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1												
2												
3 4												
5												
6												
7 8												
9												
10												
11												
12 13												
14												
15												
16												
17												
18 19										0.0	0.0	0.0
20										0.5	0.0	0.0
21										0.5	0.0	0.0
22										0.5	0.0	0.0
23										1.0	0.0	0.5
24										1.5	0.0	0.5
25										2.0	0.0	1.0
26 27										2.0 1.5	0.0	1.0
28										3.0	0.5	1.5
29										3.5	0.5	2.0
30										4.0	1.5	3.0
31										3.5	3.0	3.5
MONTH										===		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN		MIN SEPTEMBE	
		JUNE						AUGUST		i	SEPTEMBE	IR.
DAY 1 2	MAX 4.0 3.5		MEAN 3.0 3.5	MAX 	JULY	MEAN 			MEAN 11.5 12.0			
1 2 3	4.0 3.5 5.0	JUNE 2.0 3.0 2.5	3.0 3.5 3.5		JULY 		13.5 13.5 13.5	10.0 10.0 10.5	11.5 12.0 12.0	8.0 7.0 7.5	SEPTEMBE 6.5 6.0 6.0	7.5 6.5 6.5
1 2 3 4	4.0 3.5 5.0 5.0	JUNE 2.0 3.0 2.5 3.5	3.0 3.5 3.5 4.0		JULY	 	13.5 13.5 13.5 13.5	10.0 10.0 10.5 10.5	11.5 12.0 12.0 12.0	8.0 7.0 7.5 7.5	6.5 6.0 6.0 7.0	7.5 6.5 6.5 7.5
1 2 3	4.0 3.5 5.0	JUNE 2.0 3.0 2.5	3.0 3.5 3.5		JULY 		13.5 13.5 13.5	10.0 10.0 10.5	11.5 12.0 12.0	8.0 7.0 7.5	SEPTEMBE 6.5 6.0 6.0	7.5 6.5 6.5
1 2 3 4 5	4.0 3.5 5.0 5.0 5.0	JUNE 2.0 3.0 2.5 3.5 3.5	3.0 3.5 3.5 4.0 4.0		JULY		13.5 13.5 13.5 13.5 14.5	10.0 10.0 10.5 10.5 11.0	11.5 12.0 12.0 12.0 12.5	8.0 7.0 7.5 7.5 8.0	6.5 6.0 6.0 7.0 7.5	7.5 6.5 6.5 7.5 8.0
1 2 3 4 5	4.0 3.5 5.0 5.0 5.0 4.5 6.5	JUNE 2.0 3.0 2.5 3.5 3.5 4.5	3.0 3.5 3.5 4.0 4.0		JULY		13.5 13.5 13.5 13.5 14.5	10.0 10.0 10.5 10.5 11.0	11.5 12.0 12.0 12.0 12.5	8.0 7.0 7.5 7.5 8.0 8.0	6.5 6.0 6.0 7.0 7.5 7.5	7.5 6.5 6.5 7.5 8.0 7.5 7.0
1 2 3 4 5	4.0 3.5 5.0 5.0 5.0 4.5 6.5 5.5	JUNE 2.0 3.0 2.5 3.5 3.5 4.5 4.5	3.0 3.5 3.5 4.0 4.0 5.0		JULY		13.5 13.5 13.5 14.5 14.0 12.5 11.0	10.0 10.0 10.5 10.5 11.0 12.5 10.0 9.0	11.5 12.0 12.0 12.0 12.5 13.0 11.5 9.5	8.0 7.0 7.5 7.5 8.0 8.0 7.5	6.5 6.0 6.0 7.0 7.5 7.5 7.5	7.5 6.5 6.5 7.5 8.0 7.5 7.0 6.5
1 2 3 4 5	4.0 3.5 5.0 5.0 5.0 4.5 6.5	JUNE 2.0 3.0 2.5 3.5 3.5 4.5	3.0 3.5 3.5 4.0 4.0		JULY		13.5 13.5 13.5 13.5 14.5	10.0 10.0 10.5 10.5 11.0	11.5 12.0 12.0 12.0 12.5	8.0 7.0 7.5 7.5 8.0 8.0	6.5 6.0 6.0 7.0 7.5 7.5	7.5 6.5 6.5 7.5 8.0 7.5 7.0
1 2 3 4 5 6 7 8 9	4.0 3.5 5.0 5.0 5.0 4.5 6.5 5.5 6.0	JUNE 2.0 3.0 2.5 3.5 3.5 4.5 4.5 4.5	3.0 3.5 3.5 4.0 4.0 5.0 5.0		JULY		13.5 13.5 13.5 13.5 14.5 14.0 12.5 11.0 9.5	10.0 10.0 10.5 10.5 11.0 12.5 10.0 9.0 8.5	11.5 12.0 12.0 12.0 12.5 13.0 11.5 9.5 9.0	8.0 7.0 7.5 7.5 8.0 8.0 7.5 7.0 5.5	SEPTEMBE 6.5 6.0 6.0 7.0 7.5 7.5 7.5 4.5	7.5 6.5 6.5 7.5 8.0 7.5 7.0 6.5 5.0
1 2 3 4 5 6 7 8 9 10	4.0 3.5 5.0 5.0 5.0 4.5 6.5 6.5	JUNE 2.0 3.0 2.5 3.5 3.5 4.5 4.5 4.5 5.0	3.0 3.5 3.5 4.0 4.0 5.0 5.0 5.0 5.5		JULY		13.5 13.5 13.5 13.5 14.5 14.0 12.5 11.0 9.5 9.5	10.0 10.0 10.5 10.5 11.0 12.5 10.0 9.0 8.5 7.0	11.5 12.0 12.0 12.0 12.5 13.0 11.5 9.5 9.0 8.5	8.0 7.0 7.5 7.5 8.0 8.0 7.5 7.0 5.5 4.5	6.5 6.0 6.0 7.0 7.5 7.5 7.5 7.5 4.5 3.5	7.5 6.5 6.5 7.5 8.0 7.5 7.0 6.5 5.0 4.0
1 2 3 4 5 6 7 8 9 10	4.0 3.5 5.0 5.0 5.0 4.5 6.5 5.5 6.5 8.0	JUNE 2.0 3.0 2.5 3.5 3.5 4.5 4.5 5.0 5.5 6.5	3.0 3.5 3.5 4.0 4.0 5.0 5.0 5.0 5.0		JULY		13.5 13.5 13.5 14.5 14.0 12.5 11.0 9.5 9.5	10.0 10.0 10.5 10.5 11.0 12.5 10.0 9.0 8.5 7.0	11.5 12.0 12.0 12.0 12.5 13.0 11.5 9.5 9.0 8.5	8.0 7.0 7.5 7.5 8.0 8.0 7.5 7.0 5.5 4.5	6.5 6.0 6.0 7.0 7.5 7.5 7.5 4.5 3.5	7.5 6.5 6.5 7.5 8.0 7.5 5.0 6.5 4.0
1 2 3 4 5 6 7 8 9 10	4.0 3.5 5.0 5.0 5.0 4.5 6.5 6.0 6.5	JUNE 2.0 3.0 2.5 3.5 3.5 4.5 4.5 4.5 5.0	3.0 3.5 3.5 4.0 4.0 5.0 5.0 5.0 5.5		JULY		13.5 13.5 13.5 13.5 14.5 14.0 12.5 11.0 9.5 9.5	10.0 10.0 10.5 10.5 11.0 12.5 10.0 9.0 8.5 7.0	11.5 12.0 12.0 12.0 12.5 13.0 11.5 9.5 9.0 8.5	8.0 7.0 7.5 7.5 8.0 8.0 7.5 7.0 5.5 4.5	6.5 6.0 6.0 7.0 7.5 7.5 7.5 7.5 4.5 3.5	7.5 6.5 6.5 7.5 8.0 7.5 7.0 6.5 5.0 4.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	4.0 3.5 5.0 5.0 5.0 4.5 6.5 5.5 6.0 6.5	JUNE 2.0 3.0 2.5 3.5 3.5 4.5 4.5 4.5 5.0	3.0 3.5 4.0 4.0 5.0 5.0 5.0 5.5		JULY		13.5 13.5 13.5 14.5 14.0 12.5 11.0 9.5 9.5 10.0 9.5 9.5	10.0 10.0 10.5 10.5 11.0 12.5 10.0 9.0 8.5 7.0 7.5 6.5 6.5	11.5 12.0 12.0 12.0 12.5 13.0 11.5 9.5 9.0 8.5 9.0 8.5	8.0 7.0 7.5 7.5 8.0 8.0 7.5 7.0 5.5 4.5 5.5 6.0 5.5	6.5 6.0 6.0 7.0 7.5 7.5 7.5 4.5 3.5 4.0 5.0 5.5	7.5 6.5 7.5 8.0 7.5 7.0 6.5 5.0 4.0 4.5 5.5
1 2 3 4 5 6 7 8 9 10	4.0 3.5 5.0 5.0 5.0 4.5 6.5 5.5 6.5 8.0 8.5	JUNE 2.0 3.0 2.5 3.5 3.5 4.5 4.5 5.0 5.5 6.5	3.0 3.5 3.5 4.0 4.0 5.0 5.0 5.0 5.0 5.0		JULY		13.5 13.5 13.5 13.5 14.5 14.0 12.5 11.0 9.5 9.5	10.0 10.0 10.5 10.5 11.0 12.5 10.0 9.0 8.5 7.0 7.5 8.5 7.5	11.5 12.0 12.0 12.0 12.5 13.0 11.5 9.5 9.0 8.5 9.0 8.0	8.0 7.5 7.5 8.0 8.0 7.5 7.0 5.5 4.5 5.5 5.5 6.0	6.5 6.0 6.0 7.0 7.5 7.5 7.5 7.0 5.5 4.5 3.5	7.5 6.5 6.5 7.5 8.0 7.5 5.0 6.5 5.0 4.5 5.5 5.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	4.0 3.5 5.0 5.0 5.0 4.5 6.5 5.5 6.5 8.0 8.5	JUNE 2.0 3.0 2.5 3.5 3.5 3.5 4.5 4.5 4.5 6.5	3.0 3.5 3.5 4.0 4.0 5.0 5.0 5.0 5.5		JULY		13.5 13.5 13.5 14.5 14.0 12.5 11.0 9.5 9.5 10.0 9.5 9.5	10.0 10.5 10.5 11.0 12.5 10.0 9.0 8.5 7.0 7.5 8.5 6.5 8.5 8.5	11.5 12.0 12.0 12.0 12.5 13.0 11.5 9.5 9.0 8.5 9.0 8.0 8.5	8.0 7.0 7.5 7.5 8.0 8.0 7.5 7.0 5.5 4.5 5.5 6.0 5.5	6.5 6.0 6.0 7.0 7.5 7.5 7.5 3.5 4.0 5.0 5.0 5.5 5.0	7.5 6.5 7.5 8.0 7.5 5.0 6.5 5.0 4.5 5.5 5.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	4.0 3.5 5.0 5.0 5.0 4.5 6.5 5.5 6.0 6.5	JUNE 2.0 3.0 2.5 3.5 3.5 4.5 4.5 4.5 5.0 5.5 6.5	3.0 3.5 4.0 4.0 5.0 5.0 5.0 5.5		JULY		13.5 13.5 13.5 13.5 14.5 14.0 12.5 11.0 9.5 9.5 10.0 10.5 10.0 9.5 9.5	10.0 10.0 10.5 10.5 11.0 12.5 10.0 9.0 8.5 7.0 7.5 8.5 6.5 8.5 8.5 8.5	11.5 12.0 12.0 12.0 12.5 13.0 11.5 9.5 9.0 8.5 9.0 8.0 8.0 8.5 9.0 8.5 9.0 8.5	8.0 7.0 7.5 7.5 8.0 8.0 7.5 7.0 5.5 4.5 5.5 6.0 5.5	6.5 6.0 6.0 7.0 7.5 7.5 7.5 7.5 4.5 3.5 4.0 5.0 5.0 5.0	7.5 6.5 6.5 7.5 8.0 7.5 5.0 4.0 4.5 5.5 5.5 5.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	4.0 3.5 5.0 5.0 5.0 4.5 6.5 5.5 6.5 6.5 8.0 8.5	JUNE 2.0 3.0 2.5 3.5 3.5 4.5 4.5 4.5 5.0 5.5 6.5	3.0 3.5 4.0 4.0 4.0 5.0 5.0 5.5		JULY		13.5 13.5 13.5 13.5 14.5 14.0 12.5 11.0 9.5 9.5 10.0 9.5 9.5	10.0 10.0 10.5 10.5 11.0 12.5 10.0 9.0 8.5 7.0 7.5 8.5 6.5 6.5 8.5 8.5	11.5 12.0 12.0 12.0 12.5 13.0 11.5 9.5 9.0 8.5 9.0 8.0 8.0 8.5 9.0 8.0	8.0 7.0 7.5 8.0 8.0 7.5 7.0 5.5 4.5 5.5 6.0 5.5	6.5 6.0 6.0 7.0 7.5 7.5 7.5 7.0 5.5 3.5 4.0 5.0 5.0 5.0 5.0	7.5 6.5 6.5 7.5 8.0 7.5 7.0 6.5 5.0 4.0 4.5 5.5 5.5 5.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	4.0 3.5 5.0 5.0 5.0 4.5 6.5 5.5 6.0 6.5	JUNE 2.0 3.0 2.5 3.5 3.5 3.5 4.5 4.5 5.0 5.5 6.5	3.0 3.5 4.0 4.0 5.0 5.0 5.0 5.5		JULY		13.5 13.5 13.5 13.5 14.5 14.0 12.5 11.0 9.5 9.5 10.0 10.5 10.0 9.5 9.5 9.5	10.0 10.0 10.5 10.5 11.0 12.5 10.0 9.0 8.5 7.0 7.5 6.5 6.5 6.5 8.5 8.5 6.5	11.5 12.0 12.0 12.0 12.5 13.0 11.5 9.5 9.0 8.5 9.0 8.0 8.0 8.0 8.5 9.0 7.0	8.0 7.0 7.5 7.5 8.0 8.0 7.5 4.5 5.5 5.5 6.0 5.5	6.5 6.0 6.0 7.0 7.5 7.5 7.5 7.5 3.5 4.0 5.0 5.0 5.0 5.0	7.5 6.5 6.5 7.5 8.0 7.5 5.0 4.0 4.5 5.5 5.5 5.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	4.0 3.5 5.0 5.0 5.0 4.5 6.5 6.0 6.5 8.0 8.5	JUNE 2.0 3.0 2.5 3.5 3.5 4.5 4.5 5.0 5.5 6.5	3.0 3.5 4.0 4.0 5.0 5.0 5.5 6.5 7.0		JULY		13.5 13.5 13.5 13.5 14.5 14.0 12.5 11.0 9.5 9.5 10.0 10.5 10.0 9.5 9.5 9.5 9.5	AUGUST 10.0 10.5 10.5 11.0 12.5 10.0 9.0 8.5 7.0 7.5 8.5 7.5 6.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8	11.5 12.0 12.0 12.0 12.5 13.0 11.5 9.5 9.0 8.5 9.0 8.5 9.0 8.0 8.0 8.5 9.0 7.0	8.0 7.5 7.5 8.0 7.5 7.5 8.0 7.5 7.5 4.5 5.5 5.5 6.0 5.5	6.5 6.0 7.0 7.5 7.5 7.5 4.5 3.5 4.0 5.0 5.0 5.0 4.5	7.5 6.5 6.5 7.5 8.0 7.5 7.0 6.5 5.0 4.0 4.5 5.5 5.5 5.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	4.0 3.5 5.0 5.0 5.0 4.5 6.5 5.5 6.0 6.5	JUNE 2.0 3.0 2.5 3.5 3.5 3.5 4.5 4.5 5.0 5.5 6.5	3.0 3.5 4.0 4.0 5.0 5.0 5.0 5.5		JULY		13.5 13.5 13.5 13.5 14.5 14.0 12.5 11.0 9.5 9.5 10.0 10.5 10.0 9.5 9.5 9.5	10.0 10.0 10.5 10.5 11.0 12.5 10.0 9.0 8.5 7.0 7.5 6.5 6.5 6.5 8.5 8.5 6.5	11.5 12.0 12.0 12.0 12.5 13.0 11.5 9.5 9.0 8.5 9.0 8.0 8.0 8.0 8.5 9.0 7.0	8.0 7.0 7.5 7.5 8.0 8.0 7.5 4.5 5.5 5.5 6.0 5.5	6.5 6.0 6.0 7.0 7.5 7.5 7.5 7.5 3.5 4.0 5.0 5.0 5.0 5.0	7.5 6.5 6.5 7.5 8.0 7.5 5.0 4.0 4.5 5.5 5.5 5.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	4.0 3.5 5.0 5.0 5.0 6.5 5.5 6.5 6.5 8.0 8.5	JUNE 2.0 3.0 2.5 3.5 3.5 4.5 4.5 4.5 5.0 5.5 6.5	3.0 3.5 3.5 4.0 4.0 5.0 5.0 5.5 6.5 7.0		JULY		13.5 13.5 13.5 13.5 14.5 14.0 12.5 11.0 9.5 9.5 10.0 10.5 10.0 9.5 9.5 9.5	AUGUST 10.0 10.5 10.5 11.0 12.5 10.0 9.0 8.5 7.0 7.5 8.5 6.5 6.5 8.5 6.5 6.5 6.5	11.5 12.0 12.0 12.0 12.5 13.0 11.5 9.5 9.0 8.5 9.0 8.5 9.0 8.0 8.0 8.7 7.0 7.0	8.0 7.0 7.5 7.5 8.0 8.0 7.5 7.0 5.5 4.5 5.5 5.5 6.0 5.5	6.5 6.0 6.0 7.0 7.5 7.5 7.5 4.5 3.5 4.0 5.0 5.0 5.0 5.0	7.5 6.5 6.5 7.5 8.0 7.5 7.0 6.5 5.0 4.0 4.5 5.5 5.5 5.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	4.0 3.5 5.0 5.0 5.0 4.5 6.5 5.5 6.0 6.5 8.0 8.5	JUNE 2.0 3.0 2.5 3.5 3.5 3.5 4.5 4.5 5.0 5.5 6.5	3.0 3.5 4.0 4.0 5.0 5.0 5.5 6.5 7.0		JULY		13.5 13.5 13.5 13.5 14.5 14.0 12.5 11.0 9.5 9.5 10.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	AUGUST 10.0 10.5 10.5 11.0 12.5 10.0 9.0 8.5 7.0 7.5 8.5 6.5 6.5 8.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.6 6.5	11.5 12.0 12.0 12.0 12.5 13.0 11.5 9.5 9.0 8.5 9.0 8.0 8.5 9.0 8.0 7.0 7.0 7.0 7.0 7.0 7.0	8.0 7.0 7.5 7.5 8.0 8.0 7.5 4.5 5.5 5.5 6.0 5.5	6.5 6.0 6.0 7.0 7.5 7.5 7.5 7.5 3.5 4.0 5.0 5.0 5.0 4.5	7.5 6.5 6.5 7.5 8.0 7.5 5.0 4.0 4.5 5.5 5.5 5.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	4.0 3.5 5.0 5.0 5.0 5.0 4.5 6.5 5.5 6.0 6.5	JUNE 2.0 3.0 2.5 3.5 3.5 4.5 4.5 5.0 5.5 6.5	3.0 3.5 3.5 4.0 4.0 5.0 5.0 5.0 5.5 6.5 7.0		JULY		13.5 13.5 13.5 13.5 14.5 14.0 12.5 11.0 9.5 9.5 10.0 10.5 10.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	AUGUST 10.0 10.5 10.5 11.0 12.5 10.0 9.0 8.5 7.0 7.5 8.5 6.5 6.5 8.5 8.5 6.5 6.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5	11.5 12.0 12.0 12.0 12.5 13.0 11.5 9.0 8.5 9.0 8.5 9.0 8.0 8.0 7.0 7.0 7.0 7.0 7.0 7.5 7.0 6.5	8.0 7.5 7.5 8.0 8.0 7.5 7.5 4.5 5.5 5.5 5.5 5.5 6.0 5.5	SEPTEMBE 6.5 6.0 7.0 7.5 7.5 7.5 7.0 5.5 4.5 3.5 4.0 5.0 5.0 5.0 4.5	7.5 6.5 6.5 7.5 8.0 7.5 7.0 6.5 5.0 4.0 4.5 5.5 5.5 5.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	4.0 3.5 5.0 5.0 5.0 4.5 6.5 5.5 6.0 6.5 8.0 8.5	JUNE 2.0 3.0 2.5 3.5 3.5 3.5 4.5 4.5 5.0 5.5 6.5	3.0 3.5 4.0 4.0 5.0 5.0 5.5 6.5 7.0		JULY		13.5 13.5 13.5 13.5 14.5 14.0 12.5 11.0 9.5 9.5 10.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	AUGUST 10.0 10.5 10.5 11.0 12.5 10.0 9.0 8.5 7.0 7.5 8.5 6.5 6.5 8.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.6 6.5	11.5 12.0 12.0 12.0 12.5 13.0 11.5 9.5 9.0 8.5 9.0 8.0 8.5 9.0 8.0 7.0 7.0 7.0 7.0 7.0 7.0	8.0 7.0 7.5 7.5 8.0 8.0 7.5 4.5 5.5 5.5 6.0 5.5	6.5 6.0 6.0 7.0 7.5 7.5 7.5 7.5 3.5 4.0 5.0 5.0 5.0 4.5	7.5 6.5 6.5 7.5 8.0 7.5 5.0 4.0 4.5 5.5 5.5 5.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30	4.0 3.5 5.0 5.0 5.0 6.5 6.5 6.5 6.5 8.0 8.5	JUNE 2.0 3.0 2.5 3.5 3.5 4.5 4.5 5.0 5.5 6.5	3.0 3.5 4.0 4.0 4.0 5.0 5.0 5.5 6.5 7.0		JULY		13.5 13.5 13.5 14.5 14.0 12.5 11.0 9.5 9.5 10.0 10.5 9.5 9.5 9.5 9.5 9.5 8.0 7.5 9.0 8.0 7.5	AUGUST 10.0 10.5 11.0 12.5 10.0 9.0 8.5 7.0 7.5 8.5 6.5 8.5 6.5 8.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6	11.5 12.0 12.0 12.0 12.5 13.0 11.5 9.0 8.5 9.0 8.5 9.0 8.0 8.5 9.0 7.0 7.0 7.0 7.0 7.0 7.0 7.5 6.5 6.5 7.0	8.0 7.5 7.5 8.0 8.0 7.5 7.0 5.5 4.5 5.5 5.5 5.5 6.0 5.5	SEPTEMBE 6.5 6.0 7.0 7.5 7.5 7.5 7.0 5.5 4.5 3.5 4.0 5.0 5.0 5.0 4.5	7.5 6.5 6.5 7.5 8.0 7.5 7.0 4.0 4.5 5.5 5.5 5.5 5.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	4.0 3.5 5.0 5.0 5.0 6.5 6.5 6.0 6.5 8.0 8.5	JUNE 2.0 3.0 2.5 3.5 3.5 3.5 4.5 4.5 5.0 5.5 6.5	3.0 3.5 4.0 4.0 5.0 5.0 5.5 6.5 7.0		JULY		13.5 13.5 13.5 13.5 14.5 14.0 12.5 11.0 9.5 9.5 10.0 9.5 9.5 9.0 9.5 9.5 9.0 9.5 8.0 7.5 7.0 8.0 7.5 7.0 8.0	AUGUST 10.0 10.5 11.0 12.5 10.0 9.0 8.5 7.0 7.5 8.5 6.5 8.5 8.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6	11.5 12.0 12.0 12.0 12.5 13.0 11.5 9.5 9.0 8.5 9.0 8.0 8.5 9.0 8.0 7.0 7.0 7.0 7.0 8.0 7.5 7.0 6.5 6.5 6.5	8.0 7.0 7.5 7.5 8.0 8.0 7.5 4.5 5.5 5.5 5.5 6.0 5.5	6.5 6.0 6.0 7.0 7.5 7.5 7.5 7.5 4.5 3.5 4.0 5.0 5.0 5.5 5.0	7.5 6.5 6.5 7.5 8.0 7.5 7.0 6.5 5.0 4.0 4.5 5.5 5.5 5.5

15303900 KUSKOKWIM RIVER AT LISKYS CROSSING NEAR STONY RIVER

LOCATION.--Lat $62^{\circ}03'07''$, long $156^{\circ}12'38''$, in $SW^{1}_{/4}$ $NE^{1}_{/4}$ $SE^{1}_{/4}$ sec. 27, T. 23 N., R. 38 W. (Iditarod A-1 quad), Hydrologic Unit 19030405, on the downstream point of the first channel island located 0.25 mi above Lisky's house site (historic, house since destroyed), 22 mi northeast of the village of Stony River.

DRAINAGE AREA.--15,600 mi², approximately.

PERIOD OF RECORD.--May 1996 to current year (no winter record).

GAGE.--Water-stage recorder. Elevation of gage is 250 ft above sea level from topographic map.

REMARKS.-- GOES satellite telemetry at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed 33.80 ft, July 11, 1998, but may have been higher during a period of missing record. Minimum gage height observed 22.94 ft, October 11, 1997, but may have been lower during a period of missing record.

EXTREMES FOR CURRENT PERIOD.--October 1-14, 2001, June 5-10, and June 19 to September 30, 2002; Maximum gage height 28.20 ft, September 16 and 17; minimum gage height 25.20 ft, October 3.

GAGE HEIGHT FROM DCP, in FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

1 25.33	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
3 25.24 25.99 26.14 25.60 4 25.54 5 25.37 27.69 26.15 25.95 25.62 5 25.37 27.69 26.15 25.95 25.62 6 25.37 27.69 26.15 25.95 25.62 6 2 25.37 27.69 26.15 25.95 25.62 6 2 25.54 2 27.69 26.10 25.91 25.62 8 25.45 27.53 26.94 26.00 25.73 9 25.52 27.53 26.94 26.00 25.73 9 25.52 27.79 26.70 26.66 26.25 10 25.62 27.79 26.70 26.66 26.73 11 25.62 26.61 28.03 26.94 12 25.52 26.61 28.03 26.94 14 25.33 26.61 28.03 26.94 14 25.33 26.58 27.60 26.94 14 25.33 26.42 26.20 28.13 17 26.42 26.55 27.63 16 26.42 26.55 27.63 17 26.42 26.55 27.63 17 26.42 26.55 27.63 18 26.42 26.20 28.13 18 26.42 26.20 28.13 18 26.42 26.20 28.13 18 26.42 26.20 28.13 18 26.42 26.20 28.13 18 26.42 26.20 28.13 18 26.42 26.20 28.13 18 26.42 26.20 28.13 18 26.42 26.20 28.13 18 26.42 25.57 27.63 18 26.42 26.20 28.13 18 26.42 25.50 26.20 28.13 18 26.42 25.50 26.20 28.13 18 26.42 25.50 26.20 28.13 18 26.42 25.50 26.20 28.13 18 26.42 25.50 26.20 28.13 18 26.42 25.50 26.20 28.13 18 26.42 25.20 28.13 18 26.42 25.50 28.80 26.60 26.20 28.13 18 26.42 26.20 28.13 18 26.42 26.20 28.13 18 26.42 26.20 28.13 18 26.42 26.20 28.13 18 26.42 26.20 28.20 28.20 28.20 28.20 28.20 28.20 28.20 28.20 28.20 28.20 28.20 28.2	1	25.33									26.44	26.56	25.91
4 25.31 27.69 26.15 25.95 25.62 6 25.42 27.66 26.15 25.95 25.62 6 25.42 27.74 26.40 25.92 25.64 7 25.51 27.53 26.94 26.00 25.73 9 25.52 27.55 26.91 26.25 10 25.62 27.55 26.91 26.25 11 25.66 27.79 26.70 26.66 26.73 11 25.66 26.61 28.03 26.94 13 25.38 26.51 28.03 26.94 13 25.38 26.58 27.60 26.94 14 25.33 26.54 27.00 27.10 15 26.54 27.00 27.10 15 26.54 27.00 27.10 16 26.54 27.00 27.10 17 26.54 27.00 27.10 18 26.42 26.55 27.63 19 26.42 26.55 27.63 20 26.31 28.13 20 26.31 28.13 21 26.31 28.13 21 26.31 25.30 26.42 23 26.31 25.59 27.05 21 26.31 26.11 28.59 24 26.88 26.37 25.67 26.23 24 26.88 26.19 25.60 26.42 23 26.88 26.19 25.60 26.42 24 26.88 26.19 25.60 26.42 24 26.88 26.19 25.60 26.42 25 26.88 26.19 25.60 26.42 26 26.98 26.36 26.27 25.72 27 26.98 26.36 26.53 25.80 29 26.98 26.36 26.53 25.80 30 26.98 26.36 26.53 25.82 29 26.99 26.80 26.54 25.98 30 26.70 26.40 26.30 26.43 31 26.90 26.80 26.54 25.94 30 26.98 26.36 26.25 25.82 30 26.94 26.36 26.23 25.82 29 26.98 26.36 26.25 25.82 29 26.98 26.36 26.25 25.82 29 26.94 26.30 26.43 31 26.98 26.36 26.25 25.82 31 26.98 26.36 26.25 25.82 31	2	25.28									26.14	26.34	25.73
5 25.37 27.69 26.15 25.95 25.62 6 25.42 27.74 26.40 25.92 25.64 7 25.51 27.53 26.94 26.00 25.73 9 25.52 27.55 26.91 26.19 26.25 10 25.62 27.55 26.91 26.19 26.25 11 25.66 27.55 26.91 26.19 26.25 12 25.52 26.61 28.03 26.94 14 25.33 26.54 27.00 27.10 15 26.54 27.00 27.10 16 26.54 26.20 28.13 17 26.42 26.55 27.63 18 26.42 26.55 27.63 29 26.42 26.55 27.63 20 26.42 26.55 27.63 21 26.42 26.55 27.63 21 26.42 26.55 27.63 22 26.42 26.55 27.05 24 26.42 26.20 28.13 24 26.45 26.01 25.59 27.05 25 26.45 26.01 25.59 27.05 26 27.35 26.20 26.04 25.85 26 27.35 26.20 26.04 25.85 26 27.35 26.20 26.04 25.85 26 27.35 26.20 26.04 25.85 26 27.35 26.20 26.04 25.85 27 27.35 26.20 26.04 25.85 28 26.98 26.36 26.63 25.82 29 26.77 26.12 MEAN 26.40 26.30 26.43 MAX 26.49 28.30 28.13	3	25.24									25.99	26.14	25.60
6 25.42 27.74 26.40 25.92 25.64 7 25.51 27.66 26.60 25.91 25.62 8 25.45 27.53 26.94 26.00 25.73 9 25.52 27.55 26.91 26.19 26.25 10 25.62 27.79 26.70 26.66 26.73 11 25.66 26.63 27.66 26.91 12 25.52 26.61 28.03 26.94 13 25.38 26.58 27.60 26.94 14 25.33 26.58 27.60 26.94 15 26.42 26.55 27.63 16 26.42 26.55 27.63 16 26.42 26.55 27.63 17 26.42 26.55 27.63 18 26.42 26.55 27.63 19 26.42 26.55 27.63 20 26.61 26.12 25.74 21 26.61 26.12 25.74 22 26.61 26.12 25.74 23 26.88 26.19 25.60 26.42 23 26.15 26.01 25.59 27.05 21 26.42 26.55 27.63 26 26.42 26.55 27.63 26 26.42 26.55 27.63 27 26.42 26.55 27.63 28 26.45 26.04 25.88 26.70 27 26.45 26.04 25.88 26.70 27 27.35 26.20 26.04 25.85 26 27.35 26.20 26.04 25.85 26 27.35 26.20 26.04 25.85 26 26.77 26.12 MEAN 26.49 26.30 26.43 MAX 26.49 28.30 28.13	4	25.31									26.01	26.03	25.54
7 25.51 27.56 26.00 25.91 25.62 8 25.45 27.53 26.94 26.00 25.73 9 25.52 27.55 26.91 26.19 26.25 10 25.62 27.79 26.70 26.66 26.73 11 25.66 26.61 28.03 27.66 26.91 12 25.52 26.61 28.03 26.94 13 25.38 26.58 27.60 26.94 14 25.33 26.58 27.60 26.94 14 25.33 26.54 27.00 27.10 15 26.42 26.55 27.63 16 26.42 26.55 27.63 16 26.42 26.55 27.63 17 26.42 26.55 27.63 18 26.42 26.55 27.63 18 26.42 26.50 28.13 17 26.42 26.20 28.13 18 26.01 25.99 27.82 19 26.01 25.99 27.82 19 26.01 25.99 27.05 21 26.01 25.99 27.05 21 26.01 25.99 27.05 21 26.01 25.99 27.05 21 26.01 25.99 27.05 21 26.98 26.31 25.80 26.42 23 26.98 26.31 25.80 26.06 25 26.98 26.31 26.31 26.33 31 27.35 26.20 26.04 25.85 29 29 26.98 26.30 26.31 26.13 31 26.98 26.30 26.31 26.13 31 26.99 26.90 26.90 26.31 26.13 31 26.99 26.90 26.30 26.43 29 26.99 26.90 26.30 26.43 29 26.90 26.90 26.30 26.43 29 26.90 26.90 26.90 26.31 26.13 31 26.90 26.90 26.90 26.31 26.13 31 26.90 26.90 26.30 26.43 29 26.90 26.90 26.30 26.43 29 26.90 26.90 26.90 26.31 26.13 31 26.90 26.90 26.90 26.31 26.13 31 26.90 26.90 26.90 26.31 26.13 31 26.90 26.90 26.90 26.31 26.13 31 26.90 26.90 26.90 26.31 26.13 31 26.90 26.90 26.90 26.90 26.43 29 26.90 26	5	25.37								27.69	26.15	25.95	25.62
7 25.51 27.56 26.00 25.91 25.62 8 25.45 27.53 26.94 26.00 25.73 9 25.52 27.55 26.91 26.19 26.25 10 25.62 27.79 26.70 26.66 26.73 11 25.66 26.61 28.03 27.66 26.91 12 25.52 26.61 28.03 26.94 13 25.38 26.58 27.60 26.94 14 25.33 26.58 27.60 26.94 14 25.33 26.54 27.00 27.10 15 26.42 26.55 27.63 16 26.42 26.55 27.63 16 26.42 26.55 27.63 17 26.42 26.55 27.63 18 26.42 26.55 27.63 18 26.42 26.50 28.13 17 26.42 26.20 28.13 18 26.01 25.99 27.82 19 26.01 25.99 27.82 19 26.01 25.99 27.05 21 26.01 25.99 27.05 21 26.01 25.99 27.05 21 26.01 25.99 27.05 21 26.01 25.99 27.05 21 26.98 26.31 25.80 26.42 23 26.98 26.31 25.80 26.06 25 26.98 26.31 26.31 26.33 31 27.35 26.20 26.04 25.85 29 29 26.98 26.30 26.31 26.13 31 26.98 26.30 26.31 26.13 31 26.99 26.90 26.90 26.31 26.13 31 26.99 26.90 26.30 26.43 29 26.99 26.90 26.30 26.43 29 26.90 26.90 26.30 26.43 29 26.90 26.90 26.90 26.31 26.13 31 26.90 26.90 26.90 26.31 26.13 31 26.90 26.90 26.30 26.43 29 26.90 26.90 26.30 26.43 29 26.90 26.90 26.90 26.31 26.13 31 26.90 26.90 26.90 26.31 26.13 31 26.90 26.90 26.90 26.31 26.13 31 26.90 26.90 26.90 26.31 26.13 31 26.90 26.90 26.90 26.31 26.13 31 26.90 26.90 26.90 26.90 26.43 29 26.90 26													
8	6	25.42								27.74	26.40	25.92	25.64
9 25.52 27.55 26.91 26.19 26.25 10 25.62 27.79 26.70 26.66 26.73 11 25.66 26.63 27.66 26.91 12 25.52 26.61 28.03 26.94 13 25.38 26.58 27.60 26.94 14 25.33 26.54 27.00 27.10 15 26.42 26.55 27.63 16 26.42 26.55 27.63 17 26.42 26.55 27.63 18 26.42 26.50 28.13 18 26.28 25.98 27.82 19 26.28 25.98 27.82 20 26.45 26.01 25.59 27.05 21 26.45 26.01 25.59 27.05 21 26.88 26.19 25.60 26.42 22 26.88 26.19 25.60 26.42 23 27.37 26.37 25.67 26.23 24 27.35 26.20 26.04 25.88 25 27.35 26.20 26.04 25.82 26 27.35 26.20 26.04 25.82 27 27.35 26.20 26.04 25.82 28 27.35 26.20 26.04 25.82 29 26.90 26.80 26.54 25.92 30 26.90 26.80 26.54 25.92 31 26.90 26.80 26.31 26.13 31 26.90 26.80 26.31 26.13 31 26.90 26.80 26.54 25.92 31 26.90 26.80 26.54 25.92 26 26.90 26.80 26.54 25.92 31 26.90 26.80 26.54 25.92 27 26.90 26.80 26.54 25.94 30 26.90 26.80 26.54 25.94 30 26.90 26.80 26.54 25.94 30 26.90 26.80 26.54 25.94 30 26.90 26.80 26.54 25.94 30 26.90 26.80 26.54 25.94 30 26.90 26.80 26.54 25.94 30 26.90 26.80 26.54 25.94 30 26.94 26.31 26.13 31	7	25.51								27.66	26.60	25.91	25.62
9 25.52 27.55 26.91 26.19 26.25 10 25.62 27.79 26.70 26.66 26.73 11 25.66 26.63 27.66 26.91 12 25.52 26.61 28.03 26.94 13 25.38 26.58 27.60 26.94 14 25.33 26.54 27.00 27.10 15 26.42 26.55 27.63 16 26.42 26.55 27.63 17 26.42 26.55 27.63 18 26.42 26.50 28.13 18 26.28 25.98 27.82 19 26.28 25.98 27.82 20 26.45 26.01 25.59 27.05 21 26.45 26.01 25.59 27.05 21 26.88 26.19 25.60 26.42 22 26.88 26.19 25.60 26.42 23 27.37 26.37 25.67 26.23 24 27.35 26.20 26.04 25.88 25 27.35 26.20 26.04 25.82 26 27.35 26.20 26.04 25.82 27 27.35 26.20 26.04 25.82 28 27.35 26.20 26.04 25.82 29 26.90 26.80 26.54 25.92 30 26.90 26.80 26.54 25.92 31 26.90 26.80 26.31 26.13 31 26.90 26.80 26.31 26.13 31 26.90 26.80 26.54 25.92 31 26.90 26.80 26.54 25.92 26 26.90 26.80 26.54 25.92 31 26.90 26.80 26.54 25.92 27 26.90 26.80 26.54 25.94 30 26.90 26.80 26.54 25.94 30 26.90 26.80 26.54 25.94 30 26.90 26.80 26.54 25.94 30 26.90 26.80 26.54 25.94 30 26.90 26.80 26.54 25.94 30 26.90 26.80 26.54 25.94 30 26.90 26.80 26.54 25.94 30 26.94 26.31 26.13 31	8	25.45								27.53	26.94	26.00	25.73
10	9	25.52								27.55		26.19	26.25
11	10									27.79			
12													
12	11	25 66									26 63	27 66	26 91
13													
14													
15													
16													
17 26.42 26.20 28.13 18 26.28 25.98 27.82 19 26.01 26.12 25.74 27.43 20 26.15 26.01 25.59 27.05 21 26.15 26.01 25.59 27.05 21 26.15 26.01 25.59 27.05 22 26.88 26.19 25.60 26.42 23 26.88 26.19 25.60 26.42 23 24 27.37 26.37 25.67 26.23 24 27.35 26.30 26.06 25 27.35 26.20 26.04 25.85 26 27.35 26.20 26.04 25.85 27 27.36 26.36 26.30 26.36 28 27.35 26.20 26.04 25.85 28 27.26 26.08 26.27 25.72 29 26.98 26.36 26.63 25.82 29 26.98 26.36 26.63 25.82 29 26.98 26.36 26.54 25.94 30 26.98 26.36 26.54 25.94 31 26.77 26.12 MEAN 26.40 26.30 26.43 MAX 26.99 28.03 28.13	13										20.12	20.55	27.05
17 26.42 26.20 28.13 18 26.28 25.98 27.82 19 26.01 26.12 25.74 27.43 20 26.15 26.01 25.59 27.05 21 26.15 26.01 25.59 27.05 21 26.15 26.01 25.59 27.05 22 26.88 26.19 25.60 26.42 23 26.88 26.19 25.60 26.42 23 24 27.37 26.37 25.67 26.23 24 27.35 26.30 26.06 25 27.35 26.20 26.04 25.85 26 27.35 26.20 26.04 25.85 27 27.36 26.36 26.30 26.36 28 27.35 26.20 26.04 25.85 28 27.26 26.08 26.27 25.72 29 26.98 26.36 26.63 25.82 29 26.98 26.36 26.63 25.82 29 26.98 26.36 26.54 25.94 30 26.98 26.36 26.54 25.94 31 26.77 26.12 MEAN 26.40 26.30 26.43 MAX 26.99 28.03 28.13	16										26 20	26 21	20 12
18 26.28 25.98 27.82 19 26.01 26.12 25.74 27.43 20 26.15 26.01 25.59 27.05 21 26.45 26.04 25.58 26.70 22 26.88 26.19 25.67 26.23 24 27.37 26.37 25.67 26.23 24 27.52 26.35 25.80 26.06 25 27.52 26.35 25.80 26.06 25 27.35 26.20 26.04 25.85 26 27.36 26.08 26.27 25.72 27 27.37 26.37 25.67 28 27.36 26.08 26.27 25.72 28 27.26 26.08 26.27 25.72 29 27.26 26.36 26.36 25.82 29 26.98 26.36 26.36 26.54 25.94 30 26.98 26.36 26.54 25.94 31 26.77 26.12 MEAN 26.40 26.30 26.43 MAX 26.94 28.03 28.13													
19 26.01 26.12 25.74 27.43 20 26.15 26.01 25.59 27.05 21 26.45 26.01 25.59 27.05 22 26.88 26.19 25.60 26.42 23 27.37 26.37 25.67 26.23 24 27.52 26.35 25.80 26.06 25 27.35 26.20 26.04 25.85 26 27.35 26.20 26.04 25.85 26 27.35 26.20 26.04 25.85 27 27.13 26.11 26.49 25.72 28 27.13 26.11 26.49 25.72 28 29 26.98 26.36 26.63 25.82 29 26.98 26.36 26.54 25.94 28.03 28.13 MEAN 26.76 26.94 26.31 26.13 31 26.76 26.94 26.31 26.13													
20 26.15 26.01 25.59 27.05 21 26.45 26.04 25.58 26.70 22 26.88 26.19 25.60 26.42 23 27.37 26.37 25.67 26.23 24 27.52 26.35 25.80 26.06 25 27.35 26.20 26.04 25.85 26 27.26 26.08 26.27 25.72 27 27.13 26.11 26.49 25.72 28 27.13 26.11 26.49 25.72 28 26.98 26.36 26.63 25.82 29 26.98 26.36 26.63 25.82 29 26.90 26.80 26.54 25.94 30 26.90 26.80 26.54 25.94 31 26.77 26.12 MEAN 26.90 26.80 26.30 26.43 MAX 26.90 28.30 26.43													
21 26.45 26.04 25.58 26.70 22 26.88 26.19 25.60 26.42 23 27.37 26.37 25.67 26.23 24 27.52 26.35 25.80 26.06 25 27.52 26.35 25.80 26.06 25 27.35 26.20 26.04 25.85 26 27.26 26.08 26.27 25.72 27 27.13 26.11 26.49 25.72 28 27.13 26.11 26.49 25.72 28 27.13 26.11 26.49 25.72 28 26.98 26.36 26.63 25.82 29 26.98 26.36 26.63 25.82 29 26.98 26.36 26.54 25.94 30 26.96 26.80 26.54 25.94 31 26.77 26.12 MEAN 26.40 26.30 26.43 MAX 26.94 28.03 28.13													
22 26.88 26.19 25.60 26.42 23 27.37 26.37 25.67 26.23 24 27.52 26.35 25.80 26.06 25 27.35 26.20 26.04 25.85 26 27.35 26.20 26.04 25.85 26 27.35 26.20 26.04 25.85 26 27.35 26.20 26.04 25.85 26 27.35 26.20 26.04 25.85 26 27.35 26.20 26.04 25.85 27 25.72 28 27.13 26.11 26.49 25.72 28 29 26.98 26.36 26.63 25.82 29 26.98 26.36 26.54 25.94 29 30 26.90 26.80 26.54 25.94 21 31 31 26.90 26.80 26.54 25.94 28.03 28.13 26.11	20									20.13	20.01	25.59	27.05
22 26.88 26.19 25.60 26.42 23 27.37 26.37 25.67 26.23 24 27.52 26.35 25.80 26.06 25 27.35 26.20 26.04 25.85 26 27.35 26.20 26.04 25.85 26 27.35 26.20 26.04 25.85 26 27.35 26.20 26.04 25.85 26 27.35 26.20 26.04 25.85 26 27.35 26.20 26.04 25.85 27 25.72 28 27.13 26.11 26.49 25.72 28 29 26.98 26.36 26.63 25.82 29 26.98 26.36 26.54 25.94 29 30 26.90 26.80 26.54 25.94 21 31 31 26.90 26.80 26.54 25.94 28.03 28.13 26.11	21									26.45	26.04	25 50	26 70
23 27.37 26.37 25.67 26.23 24 27.52 26.35 25.80 26.06 25 27.52 26.35 25.80 26.06 25 25 27.35 26.20 26.04 25.85 26 27 25.85 26 27 27.26 26.08 26.27 25.72 28 27.13 26.11 26.49 25.72 28 29 26.98 26.36 26.63 25.82 29 26.98 26.36 26.54 25.94 30 29.31 29.31 29.31 29.31 29.33 29.33 29.33 29.33 29.33 29.33 29.33 29.33 29.33 29.33 29.33 29.33 29.33 29.33 29.33 29.33													
24 27.52 26.35 25.80 26.06 25 27.35 26.20 26.04 25.85 26 27.26 26.08 26.27 25.72 27 27.13 26.11 26.49 25.72 28 26.98 26.36 26.63 25.82 29 26.90 26.80 26.54 25.94 30 26.76 26.94 26.31 26.13 31 26.77 26.12 MEAN 26.94 28.03 28.13													
25 27.35 26.20 26.04 25.85 26 27.26 26.08 26.27 25.72 27 27.13 26.11 26.49 25.72 28 26.98 26.36 26.63 25.82 29 26.98 26.36 26.63 25.82 29 26.90 26.80 26.54 25.94 30 26.76 26.94 26.31 26.13 31 26.77 26.12 MEAN 26.40 26.30 26.43 MAX 26.94 28.03 28.13													
26 27.26 26.08 26.27 25.72 27 27.13 26.11 26.49 25.72 28 26.98 26.36 26.63 25.82 29 26.90 26.80 26.54 25.94 30 26.76 26.94 26.31 26.13 31 26.77 26.12 MEAN 26.40 26.30 26.43 MAX 26.94 28.03 28.13													
27 27.13 26.11 26.49 25.72 28 26.98 26.36 26.63 25.82 29 26.98 26.36 26.80 26.54 25.94 30 26.76 26.94 26.31 26.13 31 26.77 26.12 MEAN 26.40 26.30 26.43 MAX 26.94 28.03 28.13	25									27.35	26.20	26.04	25.65
27 27.13 26.11 26.49 25.72 28 26.98 26.36 26.63 25.82 29 26.98 26.36 26.80 26.54 25.94 30 26.76 26.94 26.31 26.13 31 26.77 26.12 MEAN 26.40 26.30 26.43 MAX 26.94 28.03 28.13	26									27 26	26.00	26 27	25 72
28 26.98 26.36 26.63 25.82 29 26.90 26.80 26.54 25.94 30 26.76 26.94 26.31 25.94 31 26.76 26.94 26.31 26.13 31 26.77 26.12 MEAN 26.40 26.30 26.43 MAX 26.94 28.03 28.13													
29 26.90 26.80 26.54 25.94 30 26.76 26.94 26.31 26.13 31 26.77 26.12 MEAN 26.40 26.30 26.43 MAX 26.94 28.03 28.13													
30 26.76 26.94 26.31 26.13 31 26.77 26.12 MEAN 26.40 26.30 26.43 MAX 26.94 28.03 28.13													
MEAN 26.77 26.12 MEAN 26.40 26.30 26.43 MAX 26.94 28.03 28.13													
MEAN 26.40 26.30 26.43 MAX 26.94 28.03 28.13													
MAX 26.94 28.03 28.13	31										26.77	26.12	
MAX 26.94 28.03 28.13													
MIN 25.99 25.58 25.54													
	MIN										25.99	25.58	25.54

15304000 KUSKOKWIM RIVER AT CROOKED CREEK

LOCATION.--Lat $61^{\circ}52'16''$, long $158^{\circ}06'03''$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec. 32, T. 21 N., R. 48 W. (Sleetmute D-6 quad), Hydrologic Unit 19030501, on right bank at village of Crooked Creek, 0.1 mi upstream from Crooked Creek.

DRAINAGE AREA.--31,100 mi², approximately.

PERIOD OF RECORD. -- June 1951 to September 1994, October 1995 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 200 ft above sea level, from topographic map. Prior to August 6, 1977, non-recording gage at site 1,600 ft upstream at same datum. From August 6, 1977, to September 30, 1991, water-stage recorder at site 2,300 ft upstream at same datum. From October 1, 1991 to September 30, 1994, and October 1, 1995 to August 7, 1997 non-recording gage.

REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

DISCHARGE, in CFS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	40700	e27000	e17000	e11000	e9400	e8800	e8200	e16000	e120000	59000	52500	52300
2	40000	e27000	e16000	e11000	e9400	e8800	e8200	e18000	e116000	57300	50200	52400
3	40400	e26000	e16000	e11000	e9400	e8800	e8200	e20000	e112000	56700	48500	53100
4 5	41200 40700	e26000 e25000	e16000 e16000	e10500 e10500	e9400 e9400	e8800 e8800	e8200 e8200	e23000 e26000	e110000 108000	56000 56000	47000 46000	51900 49800
6	41700	e25000	e15000	e10500	e9400	e8800	e8200	e30000	105000	56800	46700	49300
7	44200	e24000	e15000	e10500	e9400	e8800	e8200	e35000	104000	56400	46800	50600
8 9	49100 51500	e24000 e23000	e14500 e14500	e10500 e10500	e9200 e9200	e8800 e8600	e8200 e8200	e44000 e55000	103000 102000	55100 55600	48900 56700	53200 55200
10	50900	e23000	e14500	e10500	e9200	e8600	e8200	e70000	98500	55500	59800	56500
11	49100	e23000	e14000	e10000	e9200	e8600	e8200	e90000	93800	54200	59500	57300
12 13	48800 47200	e22000 e22000	e14000 e13500	e10000 e10000	e9200 e9200	e8600 e8600	e8200 e8200	e104000 e114000	90600 87800	53900 52900	60400 60800	59700 62700
14	44900	e21000	e13500	e10000	e9200	e8600	e8000	e114000 e125000	84100	52000	59600	68400
15	42900	e21000	e13000	e10000	e9200	e8600	e8000	e140000	79200	51300	58200	71800
16	42100	e21000	e13000	e9800	e9000	e8600	e8000	e170000	74100	50500	55900	73100
17	41500	e22000	e12500	e9800	e9000	e8600	e8000	e165000	70600	49800	52200	74300
18 19	39300 39400	e22000 e22000	e12500 e12000	e9800 e9800	e9000 e9000	e8400 e8400	e8000 e8000	161000 156000	68900 68100	49500 49400	50200 47800	72400 69000
20	38000	e21000	e12000	e9800	e9000	e8400	e8000	154000	68500	48500	46400	64800
21	35900	e21000	e12000	e9800	e9000	e8400	e8000	151000	69900	49000	45600	61300
22	33500	e20000	e12000	e9600	e9000	e8400	e8000	149000	69800	49300	47700	58000
23 24	31600 31300	e20000 e19000	e11500 e11500	e9600 e9600	e9000 e9000	e8400 e8400	e8000 e8000	146000 142000	69000 69400	48700 48600	51900 56900	55800 54100
25	30800	e19000 e19000	e11500	e9600	e9000	e8400	e8500	138000	69300	49000	60400	53300
26	e29500	e18000	e11500	e9600	e8800	e8400	e9000	136000	67700	50700	61700	54100
27	e29000	e18000	e11000	e9600	e8800	e8400	e10000	135000	66600	52900	60800	54300
28 29	e28000 e28000	e18000 e17000	e11000 e11000	e9600 e9600	e8800 	e8400 e8200	e11000 e12000	134000 133000	65700 63100	53900 54300	58400 56700	55000 56800
30	e28000	e17000	e11000	e9600		e8200	e12000 e14000	e130000	60400	54900	54800	61500
31	e28000		e11000	e9400		e8200		e124000		54400	53400	
moma r	1000000	654000			055000		050100		0505100	1640100		1860000
MEAN	1207200 38940	654000 21800	409000 13190	311100 10040	255800 9136	264800 8542	259100 8637	3234000 104300	2535100 84500	1642100 52970	1662400 53630	1762000 58730
MAX	51500	27000	17000	110040	9400	8800	14000	170000	120000	59000	61700	74300
MIN	28000	17000	11000	9400	8800	8200	8000	16000	60400	48500	45600	49300
	2394000	1297000	811300	617100	507400	525200	513900	6415000	5028000	3257000	3297000	3495000
CFSM	1.25	0.70	0.42	0.32	0.29	0.27	0.28	3.35	2.72	1.70	1.72	1.89
IN.	1.44	0.78	0.49	0.37	0.31	0.32	0.31	3.87	3.03	1.96	1.99	2.11
STATI	STICS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 19	51 - 2002,	, BY WATE	R YEAR (W	Y)#			
MEAN	44240	21310	15240	12960	11590	10680	14380	80370	82890	67880	75830	69220
MAX											, 5 5 5 0	
1.17.77.7	102000	36400	25000	22450	20710	19550	41000	161700	235100	119500	169800	150900
(WY)		36400 1991 12730	25000 1962 10000	22450 1991 8400	20710 1991 6900	19550 1991 6100	41000 1967 8600	161700 1957 22130	235100 1964 33880	119500 1980 40910	169800 1963	150900 1951 30550

1966

1966

1953

1964

1997

1957

1954

1976

1957

1966

(WY)

1979

1981

[#] See Period of Record, partial years used in monthly statistics

e Estimated

SOUTHWEST ALASKA

15304000 KUSKOKWIM RIVER AT CROOKED CREEK—Continued

SUMMARY STATISTICS	FOR 2001 CALEN	DAR YEAR	FOR 2002 WAT	TER YEAR	WATER YEARS	1951	- 2002‡
ANNUAL TOTAL	15964800		14196600				
ANNUAL MEAN	43740		38890		42230		
HIGHEST ANNUAL MEAN					62120		1963
LOWEST ANNUAL MEAN					28600		1997
HIGHEST DAILY MEAN	124000	May 22	170000	May 16	391000	Jun	5 1964
LOWEST DAILY MEAN	a9000	Apr 1	b8000	Apr 14	c6100	Mar	1 1966
ANNUAL SEVEN-DAY MINIMUM	9140	Mar 30	8000	Apr 14	6100	Mar	1 1966
MAXIMUM PEAK FLOW			d181000	May 16	392000	Jun	5 1964
MAXIMUM PEAK STAGE			d15.66	May 16			
MAXIMUM PEAK STAGE			f22.61	May 14	g25.74	Jun	5 1964
ANNUAL RUNOFF (AC-FT)	31670000		28160000		30590000		
ANNUAL RUNOFF (CFSM)	1.41		1.25		1.36		
ANNUAL RUNOFF (INCHES)	19.10		16.98		18.45		
10 PERCENT EXCEEDS	102000		76300		93700		
50 PERCENT EXCEEDS	27000		26000		26000		
90 PERCENT EXCEEDS	10000		8400		10000		

See Period of Record, partial years used in monthly computations
Apr. 1-5
Apr. 14-24
Mar. 1-31, 1966
Maximum observed, but may have been higher during period of missing record.
From floodmarks, backwater from ice
From floodmarks, backwater from ice, at different site, same datum # a b c d f

15304060 KUSKOKWIM RIVER AT ANIAK

LOCATION.--Lat $61^{\circ}35'14''$, long $159^{\circ}32'54''$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ sec. 2, T. 17 N., R. 57 W. (Russian Mission C-2 quad), Hydrologic unit 19030502, on the left bank near the NW corner of the west end of the runway in the village of Aniak.

WATER-STAGE RECORDS

PERIOD OF RECORD. -- May 1996 to present (no winter record).

GAGE.--Water-stage recorder. A supplementary stage gage was installed April 23, 1998 approximately 1 mi upstream from gage of record. This gage records water elevation at the Aniak city dike system during ice break-up events. Elevation of the gage is 75 ft above sea level from topographic map.

REMARKS.--GOES satellite telemetry at station. Supplementary stage records are available from the computer files of the Alaska District.

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed 26.97 ft, May 18,2002, but may have been higher during periods of missing record. Minimum gage height observed 14.37 ft, October 27, 2000, but may have been lower during periods of missing record.

EXTREMES FOR CURRENT PERIOD.--October 1-20, 2001 and May 18 to September 30, 2002: Maximum gage height observed 26.97 ft, May 18, but may have been higher during periods of missing record. Minimum gage height observed 16.28 ft, Oct. 20, but may have been lower during periods of missing record.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAILI MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	16.73								23.40	18.75	17.88	17.92
2	16.67								23.13	18.58	17.72	17.83
3	16.79								22.95	18.50	17.50	17.86
4	16.77								22.68	18.47	17.36	17.86
5	17.04								22.68	18.45	17.21	17.77
6	17.30								22.59	18.42	17.14	17.73
7	17.70								22.29	18.39	17.10	17.77
8	18.02								22.19	18.31	17.18	17.90
9	18.24								22.08	18.24	17.45	18.03
10	18.16								22.09	18.36	18.08	18.16
11	18.02								21.88	18.22	18.21	18.28
12	17.87								21.65	18.13	18.19	18.46
13	17.81								21.44	18.09	18.31	18.80
14	17.39								21.15	17.94	18.34	19.21
15	17.34								20.78	17.94	18.26	19.50
16	17.08								20.40	17.95	18.13	19.59
17	17.08								20.40	17.90	17.91	19.63
18	17.02							26.26	19.81	17.64	17.69	19.58
19	16.72							25.85	19.68	17.64	17.51	19.38
20	16.72							25.96	19.65	17.65	17.32	19.30
20	10.00							23.30	19.05	17.04	17.32	19.10
21								25.85	19.62	17.54	17.19	18.79
22								25.68	19.62	17.58	17.28	18.51
23								25.54	19.51	17.49	17.56	18.25
24								25.37	19.44	17.44	18.01	18.09
25								24.99	19.43	17.49	18.41	17.98
26								24.85	19.39	17.62	18.62	17.88
27								24.53	19.28	17.84	18.64	17.96
28								24.47	19.16	18.06	18.49	18.07
29								24.32	19.02	18.03	18.31	18.26
30								23.90	18.88	18.00	18.16	18.56
31								23.67		17.99	18.02	
MEAN									20.86	18.02	17.84	18.42
MAX									23.40	18.75	18.64	19.63
MIN									18.88	17.44	17.10	17.73

15304060 KUSKOKWIM RIVER AT ANIAK—Continued

River ice break-up hydrograph for Kuskokwim River at Dike (supplementary gage) at Aniak, 2002

15304060 KUSKOKWIM RIVER AT ANIAK—Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Water years 1998 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: May 1998 to current year (seasonal).

INSTRUMENTATION.--Electronic water temperature recorder set for 1-hour recording interval on left bank.

REMARKS.--Records represent water temperature from sensor within 0.5°C. No water temperature record October 1-June 6 due to probe failure. No record from August 4-6 except for minimums was due to low water over probe. Temperature at the sensor was compared with the stream average by cross section on September 19 which found a variation of 1.0°C. The variation found between mean stream temperature and sensor temperature was usually less than 0.5°C.

EXTREMES FOR PERIOD OF RECORD. --

WATER TEMPERATURE: Maximum recorded, 16.0°C, July 18, 2002, may have been higher during periods of missing record; minimum, 0.0°C, May 14-15, 1999.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum recorded, 16.0°C, July 18, may have been higher during periods of missing record; minimum recorded, 5.0°C, September 22-23.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

			SAMPLE			
			LOC-			
			ATION,			
			CROSS		TEMPER-	SAM-
		STREAM	SECTION	GAGE	ATURE	PLING
DATE	TIME	WIDTH (FT)	(FT FM L BANK)	HEIGHT (FEET)	WATER (DEG C)	METHOD, CODES
		(00004)	(00009)	(00065)	(00010)	(82398)
SEP						
19	1431	2000	5.0	19.31	6.5	10
19	1432	2000	400	19.31	7.5	10
19	1433	2000	800	19.31	7.5	10
19	1434	2000	1200	19.31	7.5	10
19	1435	2000	1600	19.31	7.5	10

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	R
1 2 3 4 5	 	 	 	10.5 10.5 10.0 9.0 9.0	10.0 10.0 9.0 8.5 8.5	10.0 10.5 9.5 9.0 8.5	15.0 15.0 14.5 	13.5 13.5 13.0 12.5 12.5	14.0 14.0 14.0 	11.5 11.0 10.5 10.0	10.0 10.0 9.5 9.5 10.0	10.5 10.5 10.0 10.0
6 7 8 9 10	8.5 9.0 8.5 8.5	8.5 7.5 7.0	8.5 8.0 7.5	10.0 10.0 10.0 10.0	9.0 10.0 9.5 9.5 9.5	9.5 10.0 9.5 10.0	13.5 13.5 12.5 12.5	13.5 12.5 11.5 11.5	13.0 12.5 12.0 12.0	10.5 10.5 10.0 9.5 8.5	10.0 9.5 9.5 8.5 8.5	10.0 10.0 10.0 9.0 8.5
11 12 13 14 15	8.5 9.0 10.0 11.0 11.5	8.0 8.0 9.0 10.0 10.5	8.5 8.5 9.5 10.5	10.5 11.0 11.0 11.0	10.0 10.5 10.5 10.5	10.0 10.5 11.0 10.5	12.0 12.5 12.5 13.0 13.0	11.0 11.0 11.0 11.0	11.5 12.0 12.0 12.0	8.5 8.5 9.0 9.0	8.0 8.5 8.5 8.0	8.5 8.5 8.5 8.5
16 17 18 19 20	12.5 13.0 13.0 12.0 11.0	11.5 12.0 12.0 11.0 9.5	12.0 12.5 12.5 11.5 10.0	12.0 13.5 16.0 15.0 14.5	10.5 11.0 12.5 14.0 13.0	11.0 12.0 13.5 14.5 14.0	12.0 11.5 12.0 12.0 11.0	11.0 10.5 11.0 10.0	11.5 11.0 11.5 11.0	8.0 8.0 7.5 6.5	7.0 7.0 6.5 6.0 5.5	7.5 7.5 7.0 6.5 6.0
21 22 23 24 25	10.0 10.5 11.0 11.0	9.5 9.5 10.0 10.0	10.0 10.0 10.5 10.5	14.0 14.5 14.5 13.5 13.0	12.5 12.5 13.5 12.5 12.0	13.5 13.5 14.0 13.0 12.5	10.0 10.5 11.5 12.0 12.5	9.0 9.5 10.0 10.5 11.0	9.5 10.0 10.5 11.5 12.0	6.0 6.5 8.0 8.0	5.0 5.5 6.5 7.5	5.5 5.5 6.0 7.0 7.5
26 27 28 29 30 31	11.0 11.5 11.5 11.0 10.5	10.0 10.5 10.5 10.5	10.5 10.5 11.0 11.0	12.5 12.5 12.5 13.5 14.0 14.5	11.5 11.5 11.0 11.5 12.0 12.5	12.0 12.0 12.0 12.5 13.0 13.5	12.0 12.0 11.5 11.0 10.5 11.5	11.0 11.0 11.0 10.0 10.0	11.5 11.5 11.5 10.5 10.5	8.0 7.5 8.0 8.0 7.5	7.5 7.5 7.0 7.5 7.0	7.5 7.5 7.5 7.5 7.0
MONTH				16.0	8.5	11.5		9.0		11.5	5.0	8.1

YUKON ALASKA

15356000 YUKON RIVER AT EAGLE (International Gaging Station)

LOCATION.--Lat $64^{\circ}47'22''$, long $141^{\circ}11'52''$, in $NW^{1}/_{4}$ sec. 31, T. 1 S., R. 33 E. (Eagle D-1 quad), Hydrologic Unit 19040401, on left bank at Eagle, 0.1 mi upstream from Mission Creek, 1.1 mi downstream from Castalia Creek, and 11 mi downstream from the international boundary.

DRAINAGE AREA. -- 113,500 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--January 1911 to December 1913, June 1950 to current year. Monthly discharge only for some periods, published in WSP 1372.

GAGE.--Water-stage recorder. Elevation of gage is 850 ft above sea level, from topographic map. See WSP 1936 for history of changes prior to October 1, 1963. Nonrecording gage prior to June 26, 1982 at same site and datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

DISCHARGE,	in	CFS,	WATER	YEAR	OCTOBER	2001	TO	SEPTEMBER	2002
			DΛT	T.V ME	AM WALITE	C			

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	107000 104000 102000 99600	e52000 e51000 e50000 e49000	e33000 e33000 e32000 e32000	e25000 e25000 e25000 e24000	e21000 e20000 e20000 e20000	e18000 e18000 e17000 e17000	e16000 e16000 e16000 e16000	e17000 e18000 e24000 e32000	180000 182000 172000 165000	127000 126000 125000 127000	194000 185000 171000 154000	205000 203000 202000 201000
5	97900	e48000	e32000	e24000	e20000	e17000	e15000	e43000	157000	131000	142000	198000
6 7 8 9 10	96800 95700 94800 93900 92100	e48000 e47000 e46000 e45000 e44000	e31000 e31000 e31000 e30000	e24000 e24000 e24000 e24000 e23000	e20000 e20000 e20000 e20000 e20000	e17000 e17000 e17000 e17000 e17000	e15000 e15000 e15000 e15000 e15000	e62000 e100000 e150000 e220000 e260000	152000 157000 171000 177000 178000	133000 132000 125000 121000 125000	134000 130000 130000 132000 133000	193000 186000 183000 182000 177000
11 12 13 14 15	90200 88200 87900 85500 81700	e44000 e43000 e42000 e41000	e30000 e29000 e29000 e29000 e29000	e23000 e23000 e23000 e23000 e23000	e20000 e19000 e19000 e19000 e19000	e17000 e17000 e17000 e16000 e16000	e15000 e15000 e15000 e15000 e15000	e280000 e300000 e310000 e300000 e290000	184000 223000 223000 205000 193000	131000 130000 131000 135000 138000	133000 133000 134000 140000 149000	178000 173000 164000 155000 147000
16 17 18 19 20	77900 76300 e75000 e73000 e71000	e40000 e39000 e39000 e38000 e38000	e28000 e28000 e28000 e28000 e27000	e23000 e22000 e22000 e22000 e22000	e19000 e19000 e19000 e19000 e19000	e16000 e16000 e16000 e16000 e16000	e15000 e15000 e15000 e15000 e15000	e280000 e250000 e220000 e200000 e190000	182000 171000 160000 153000 148000	135000 136000 136000 134000 138000	151000 153000 155000 159000 163000	140000 135000 130000 126000 124000
21 22 23 24 25	e69000 e67000 e65000 e63000 e62000	e37000 e37000 e36000 e36000 e36000	e27000 e27000 e27000 e26000 e26000	e22000 e22000 e22000 e22000 e21000	e18000 e18000 e18000 e18000 e18000	e16000 e16000 e16000 e16000 e16000	e15000 e16000 e16000 e16000 e16000	e180000 e170000 173000 173000 175000	147000 147000 143000 139000 137000	141000 136000 131000 128000 127000	169000 182000 201000 208000 215000	121000 119000 116000 113000 111000
26 27 28 29 30 31	e60000 e59000 e57000 e56000 e54000 e53000	e35000 e35000 e34000 e34000 e33000	e26000 e26000 e26000 e25000 e25000 e25000	e21000 e21000 e21000 e21000 e21000 e21000	e18000 e18000 e18000	e16000 e16000 e16000 e16000 e16000	e16000 e16000 e16000 e16000 e17000	174000 171000 167000 161000 160000 177000	136000 136000 135000 131000 128000	134000 157000 160000 170000 199000 200000	221000 223000 226000 225000 218000 209000	109000 107000 104000 102000 101000
TOTAL MEAN MAX MIN	2455500 79210 107000 53000 4870000 0.70 0.80	1238000 41270 52000 33000 2456000 0.36 0.41	886000 28580 33000 25000 1757000 0.25 0.29	703000 22680 25000 21000 1394000 0.20 0.23	536000 19140 21000 18000 1063000 0.17 0.18	511000 16480 18000 16000 1014000 0.15 0.17	464000 15470 17000 15000	5427000 175100 310000 17000 10760000 1.54 1.78	4912000 163700 223000 128000 9743000 1.44 1.61	4299000 138700 200000 121000	5272000 170100 226000 130000 10460000 1.50 1.73	4505000 150200 205000 101000 8936000 1.32 1.48
						50 - 2002,				1.11	1.75	1.10
										100200	144000	112002
MEAN MAX (WY) MIN (WY)	74590 133300 2001 45870 1959	38130 62500 1953 24000 1959	25710 38870 2001 13000 1951	21040 30390 2001 9000 1951	18790 28000 1977 7200 1951	17200 25480 1977 7800 1956	19260 41530 1990 8650 1956	125000 201500 1993 61770 1964	224000 456800 1964 120900 1953	182300 269500 1992 108900 1998	144900 200400 2000 88710 1998	112900 187900 2000 70690 1998

See Period of Record; partial years used in monthly statistics

Estimated

15356000 YUKON RIVER AT EAGLE—Continued (International Gaging Station)

SUMMARY STATISTICS	FOR 2001 CALEN	DAR YEAR	FOR 2002 W	ATER YEAR	WATER YEARS	1950 - 2002#
ANNUAL TOTAL	34890500		31208500			
ANNUAL MEAN	95590		85500		84260	
HIGHEST ANNUAL MEAN					110900	1964
LOWEST ANNUAL MEAN					61020	1958
HIGHEST DAILY MEAN	360000	Jun 18	310000	May 13	545000	Jun 12 1964
LOWEST DAILY MEAN	a21000	Mar 30	b15000	Apr 5	c7200	Feb 1 1951
ANNUAL SEVEN-DAY MINIMUM	21000	Mar 30	15000	Apr 5	7200	Feb 1 1951
MAXIMUM PEAK FLOW			d		545000	Jun 12 1964
MAXIMUM PEAK STAGE			f29.09	May 13	33.85	Jun 12 1964
ANNUAL RUNOFF (AC-FT)	69210000		61900000		61040000	
ANNUAL RUNOFF (CFSM)	0.84		0.75	5	0.74	
ANNUAL RUNOFF (INCHES)	11.44		10.23	3	10.09	
10 PERCENT EXCEEDS	228000		184000		199000	
50 PERCENT EXCEEDS	47000		49000		44000	
90 PERCENT EXCEEDS	22000		16000		16000	

See Period of Record; partial years used in monthly statistics From Mar. 30 - Apr. 21 From Apr. 5 - Apr. 21 Feb. 1-28, 1951 Not determined, see highest daily mean Observed, backwater from ice

15356000 YUKON RIVER AT EAGLE—Continued (International Gaging Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1950-57, 1962-70, 1974-76, 1978-79, and 2001 to current year.

PERIOD OF DAILY RECORD.--SUSPENDED SEDIMENT: 1962 TO 1966.

Date	Time	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	
MAR										
21	0930	200			7.6	. 0	765	9.2		
21	1022	460			7.6	. 0	765	9.2		
21	1034	365			7.6	. 0	765	9.2		
21	1054	550			7.6	. 0	765	9.2		
21	1115	665			7.6	. 0	765	9.3		
MAY										
22	1415		340.0	158	8.2	7.5	755	11.7	99	
22	1417		560.0	156	8.1	7.7	755	11.7	99	
22	1418		770.0	154	8.1	7.7	755	11.8	99	
22	1419		930.0	153	8.1	7.7	755	11.8	99	
22	1421		1120	153	8.1	7.7	755	11.8	100	
JUN										
11	1516		480.0	182	8.1	13.0	750	9.6	93	
11	1518		650.0	182	8.1	12.9	750	9.5	92	
11	1519		800.0	181	8.1	12.9	750	9.7	93	
11	1520		1130	181	8.1	13.0	750	9.6	93	
11	1521		980.0	181	8.1	13.0	750	9.7	94	
JUL	1000		450.0	005	0 0	16.0	EE2			
10	1220		470.0	225	8.2	16.8	753			
10	1224		650.0	222	8.2	16.9	753	8.8	92	
10	1227		810.0	221	8.2	16.9	753	9.2 9.0	96 94	
10	1229		950.0	221	8.2	16.9	753	9.0	94	
10 AUG	1231		1130	221	8.2	16.9	753			
01	1240		1120	188	8.0	13.2	765	9.8	94	
01	1242		930.0	188	8.1	13.2	765	9.8	94	
01	1244		770.0	189	8.1	13.2	765	9.8	93	
01	1244		560.0	190	8.1	13.2	765	9.8	94	
01	1250		340.0	192	8.1	13.2	765	9.8	93	
28	1311		1200	205	7.8	10.5	744	11.4	105	
28	1313		950.0	205	7.9	10.5	744	11.2	103	
28	1315		800.0	205	7.9	10.5	744	11.4	105	
28	1317		650.0	208	8.0	10.5	744	11.3	104	
28	1320		440.0	211	8.0	10.5	744	11.3	104	
SEP	1520		110.0		0.0	10.5	,	11.5	101	
25	1400		470.0	222	8.0	6.6	747	11.6	97	
25	1401		650.0	222	8.0	6.6	747	11.6	97	
25	1402		800.0	222	8.0	6.5	747	11.7	97	
25	1403		970.0	221	8.0	6.6	747	11.7	97	
25	1404		1150	221	8.1	6.5	747	11.7	97	
					DIS- CHARGE, INST.		AS	UALITY SSUR- ANCE	SPE CIF	

						DIS-			QUALITY			PH	
						CHARGE,			ASSUR-		SPE-	WATER	
						INST.			ANCE		CIFIC	WHOLE	
						CUBIC	SAM-		DATA	REP-	CON-	FIELD	TEMPER-
		Medium	Sample	STREAM	GAGE	FEET	PLING	SAMPLER	INDICA-	LICATE	DUCT-	(STAND-	ATURE
Date	Time	code	type	WIDTH	HEIGHT	PER	METHOD	TYPE	TOR	TYPE	ANCE	ARD	AIR
				(FT)	(FEET)	SECOND	CODES	(CODE)	CODE	(CODE)	(US/CM)	UNITS)	(DEG C)
				(00004)	(00065)	(00061)	(82398)	(84164)	(99111)	(99105)	(00095)	(00400)	(00020)
MAR													
21	1020	9	7	1060		16100	20	3060	100		265	7.7	-7.0
MAY													
22	1420	9	9	1370	17.40	177000	20	3055	30		154	8.1	
JUN													
11	1410	9	9	1480	17.78	183000	20	3055	30		182	8.1	
JUL													
10	1120	9	9	1360	13.89	126000	20	3055	30		222	8.2	
AUG													
01	1150	9	7	1500	18.50	195000	20	3055	30	10.00	189	8.1	
28	1240	9	9		20.30	226000	20	3055	30		205	7.9	
SEP													
25	1000	9	9		12.71	111000	20	3055	100		222	8.0	9.5

YUKON ALASKA

15356000 YUKON RIVER AT EAGLE—Continued

Date	TEMPER- ATURE WATER (DEG C) (00010)	TURBID- - ITY LAB HACH 2100AN (NTU) (99872)	254 NM, WTR FLT (UNITS /CM)	ANCE	BARO- METRIC PRES- , SURE (MM OF HG) (00025)		OXYGEN, DIS- SOLVED, (PER- CENT SATUR- ATION) (00301)	(MG/L	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	DIS-	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
MAR 21	0	1.3	.036	.026	765	9.2	63	130	36.1	9.81	2.73	109	1.11
MAY	8.0	110	.537	.407	755	11.7	100	77	20.9	5.90	1.62	53	1.15
JUN	13.0	83	.228	.170	750	9.6	93	89	24.1	7.06	2.10	62	.98
JUL 10.	16.9	230			753	8.9	93	110	29.1	8.34	2.69	80	1.46
AUG 01.	13.2	390	.317	.237	765	9.8	94	94	26.0	6.96	2.36	65	1.32
SEP	10.5	150	.212	.156	744	11.3	104	100	27.4	7.97	2.02	70	.93
25.	6.5	16			747	11.7	97	110	30.7	8.80	2.33	78	1.01
Date	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	TOT IT FIELD	FIX END FIELD	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)			SUM OF	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)
MAR 21.	133	. 0	109	110	31.6	.45	.1	6.98	166	155	<.002	.096	<.015
	64	. 0	53		20.8	.36	E.10	4.73	116	87	.003	.013	<.015
	76	. 0	62		26.4	.42	E.08	6.09	124	105	<.002	.037	<.015
	95	.0	78		33.1	.62	E.11	5.79	129	128	<.002	.024	<.015
	79 86	.0	64 70	 	26.0 33.8	.40	.16 E.10	7.35 6.57	125 131	110 122	E.002	.036	<.015 <.015
SEP	101	. 0	78		32.5	.69	.12	6.84	140	133	<.002	.030	<.015
	NITROGEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	GEN,	PHOS- PHORUS SEDI- MENT SUSP. PERCENT		AS AL)	AN- TIMONY SED. SUSP. (UG/G) (29816)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC SED. SUSP. (UG/G) (29818)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)
MAR 21.	E.08	<.10	E.003	E.002	<.007				2		.18		. 4
	75	.41	.49	.010	<.007	.12	.100	6.5	49	1.7	.11	14	.5
	38	.17	.35	.005	<.007	<.10	.100	6.8	30	1 /	1.0	10	.5
	18								50	1.4	.16	10	
		E.08	.40	< .004	<.007	<.10	.100	6.9	23	2.1	.22	13	.5
SEP	47	.23	1.22	E.004	<.007	<.10	.100	6.9	23 31	2.1	.22	13 11	.5
	47	.23 .17	1.22	E.004 E.003	<.007 <.007	<.10 <.10	.100 .100 .100	6.9 6.3 6.3	23 31 36	2.1 1.4 1.4	.22 .18 .20	13 11 9.8	.5
	47	.23	1.22	E.004	<.007	<.10	.100	6.9	23 31	2.1	.22	13 11	.5
25. Date	47	.23 .17 .11 BARIUM, DIS- SOLVED (UG/L AS BA)	1.22	E.004 E.003 E.002 BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	<.007 <.007	<.10 <.10 <.10 CADMIUM SED. SUSP. (UG/G)	.100 .100 .100	6.9 6.3 6.3	23 31 36	2.1 1.4 1.4	.22 .18 .20	13 11 9.8	.5
25. Date MAR	BARIUM SED. SUSP. (UG/G) (29820)	.23 .17 .11 BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	1.22 .69 .089 BERYL- LIUM SED. SUSP. (UG/G) (29822)	E.004 E.003 E.002 BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	<.007 <.007 <.007 BORON, DIS- SOLVED (UG/L AS B) (01020)	<.10 <.10 <.10 CADMIUM SED. SUSP. (UG/G) (29826)	.100 .100 .100 .090 CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	6.9 6.3 6.3 6.7 CHRO-MIUM SED. SUSP. (UG/G) (29829)	23 31 36 17 CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	2.1 1.4 1.4 1.2 COBALT SEDI- MENT SUSP. (UG/G) (35031)	.22 .18 .20 .21 COBALT, DIS- SOLVED (UG/L AS CO) (01035)	13 11 9.8 7.5 COPPER SED. SUSP. (UG/G) (29832)	.5 .6 .6 .4 COPPER, DIS- SOLVED (UG/L AS CU) (01040)
Date MAR 21	BARIUM SED. SUSP. (UG/G) (29820)	.23 .17 .11 BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	1.22 .69 .089 BERYL- LIUM SED. SUSP. (UG/G) (29822)	E.004 E.003 E.002 BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	<.007 <.007 <.007 <.007 BORON, DIS- SOLVED (UG/L AS B) (01020)	<.10 <.10 <.10 CADMIUM SED. SUSP. (UG/G) (29826)	.100 .100 .100 .090 CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	6.9 6.3 6.3 6.7 CHRO- MIUM SED. SUSP. (UG/G) (29829)	23 31 36 17 CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) <.8	2.1 1.4 1.4 1.2 COBALT SEDI- MENT SUSP. (UG/G) (35031)	.22 .18 .20 .21 COBALT, DIS- SOLVED (UG/L AS CO) (01035)	13 11 9.8 7.5 COPPER SED. SUSP. (UG/G) (29832)	.5 .6 .6 .4 COPPER, DIS- SOLVED (UG/L AS CU) (01040)
Date MAR 21 MAY 22 JUN	BARIUM SED. SUSP. (UG/G) (29820)	.23 .17 .11 BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	1.22 .69 .089 BERYL- LIUM SED. SUSP. (UG/G) (29822)	E.004 E.003 E.002 BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	<.007 <.007 <.007 BORON, DIS- SOLVED (UG/L AS B) (01020)	<.10 <.10 <.10 CADMIUM SED. SUSP. (UG/G) (29826)	.100 .100 .100 .090 CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	6.9 6.3 6.3 6.7 CHRO-MIUM SED. SUSP. (UG/G) (29829)	23 31 36 17 CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	2.1 1.4 1.4 1.2 COBALT SEDI- MENT SUSP. (UG/G) (35031)	.22 .18 .20 .21 COBALT, DIS- SOLVED (UG/L AS CO) (01035)	13 11 9.8 7.5 COPPER SED. SUSP. (UG/G) (29832)	.5 .6 .6 .4 COPPER, DIS- SOLVED (UG/L AS CU) (01040)
Date MAR 21 MAY 22 JUN 11 JUL 10	BARIUM SED. SUSP. (UG/G) (29820)	.23 .17 .11 BARIUM, DIS- SOLVED (UG/L AS BA) (01005) 55	1.22 .69 .089 BERYL- LIUM SED. SUSP. (UG/G) (29822)	E.004 E.003 E.002 BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06	<.007 <.007 <.007 BORON, DIS- SOLVED (UG/L AS B) (01020) 11 E7	<.10 <.10 <.10 CADMIUM SED. SUSP. (UG/G) (29826)	.100 .100 .100 .090 CADMIUM DIS- SOLVED (UG/L AS CD) (01025) E.02	6.9 6.3 6.3 6.7 CHRO- MIUM SED. SUSP. (UG/G) (29829)	23 31 36 17 CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) <.8 <.8	2.1 1.4 1.4 1.2 COBALT SEDI- MENT SUSP. (UG/G) (35031)	.22 .18 .20 .21 COBALT, DIS- SOLVED (UG/L AS (CO) (01035)	13 11 9.8 7.5 COPPER SED. SUSP. (UG/G) (29832)	.5 .6 .6 .4 COPPER, DIS- SOLVED (UG/L AS CU) (01040)
Date MAR 21 MAY 22 JUN 11 JUL 10 AUG 01	BARIUM SED. SUSP. (UG/G) (29820) 1300 870 690 610	.23 .17 .11 BARIUM, DIS- SOLVED (UG/L AS BA) (01005) 55 37 37 41	1.22 .69 .089 BERYL- LIUM SED. SUSP. (UG/G) (29822)	E.004 E.003 E.002 BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06	<.007 <.007 <.007 BORON, DIS- SOLVED (UG/L AS B) (01020) 11 E7 E5 12	<.10 <.10 <.10 CADMIUM SED. SUSP. (UG/G) (29826) 1.1 .5 .3	.100 .100 .100 .090 CADMIUM DIS- SOLVED (UG/L AS CD) (01025) E.02 .06 E.02 <.04 E.02	6.9 6.3 6.3 6.7 CHRO- MIUM SED. SUSP. (UG/G) (29829) 100 98 94 91	23 31 36 17 CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8	2.1 1.4 1.2 COBALT SEDI- MENT SUSP. (UG/G) (35031) 15 16 18 15	.22 .18 .20 .21 COBALT, DIS- SOLVED (UG/L AS CO) (01035) .07 .18 .10	13 11 9.8 7.5 COPPER SED. SUSP. (UG/G) (29832)	.5 .6 .6 .4 COPPER, DIS- SOLVED (UG/L AS CU) (01040) 1.0 3.8 2.2 1.4 3.5
Date MAR 21 MAY 22 JUN 11 JUL 10 AUG 01 28 SEP	BARIUM SED. SUSP. (UG/G) (29820)1300 870 690	.23 .17 .11 BARIUM, DIS- SOLVED (UG/L AS BA) (01005) 55 37 37	1.22 .69 .089 BERYL- LIUM SED. SUSP. (UG/G) (29822)	E.004 E.003 E.002 BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06	<.007 <.007 <.007 <.007 BORON, DIS- SOLVED (UG/L AS B) (01020) 11 E7 E5	<.10 <.10 <.10 CADMIUM SED. SUSP. (UG/G) (29826)	.100 .100 .100 .090 CADMIUM DIS- SOLVED (UG/L AS CD) (01025) E.02 .06 E.02 <.04	6.9 6.3 6.3 6.7 CHRO- MIUM SED. SUSP. (UG/G) (29829)	23 31 36 17 CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8	2.1 1.4 1.2 COBALT SEDI- MENT SUSP. (UG/G) (35031)	.22 .18 .20 .21 COBALT, DIS- SOLVED (UG/L AS CO) (01035) .07 .18 .10	13 11 9.8 7.5 COPPER SED. SUSP. (UG/G) (29832)	.5 .6 .6 .4 COPPER, DIS- SOLVED (UG/L AS CU) (01040) 1.0 3.8 2.2 1.4

YUKON ALASKA

15356000 YUKON RIVER AT EAGLE—Continued

	IRON SEDI- MENT SUSP. PERCENT (30269)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD SED. SUSP. (UG/G) (29836)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM SEDI- MENT SUSP. (UG/G) (35050)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MAN- GANESE SED. SUSP. (UG/G) (29839)	MANGA NESE, DIS- SOLVE (UG/I AS MN (01056	MERCUR' D SED. SUSP. (UG/G)	SED. SUSP (UG/G)	M DIS- SOLVE . (UG/I) AS MC	NICKEL D SED. SUSP. (UG/G)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)
		E8		<.08		2.4		1.7			1.4		1.16
	. 3.6	127	14	.12	29	1.9	860	18.8	.08	3	.7	53	3.33
JUN 11	. 3.9	43	13	<.08	24	2.0	840	3.4	.05	3	.8	48	2.02
JUL 10	. 4.4	<10	12	<.08	29	3.2	770	. 8	.04	2	1.5	45	1.45
AUG 01	. 3.9	48	12	<.08	22	2.4	670	5.3	.03	2	1.1	38	2.12
	. 3.7	40	11	E.05	23	2.4	760	8.2		2	1.0	44	1.88
	. 3.3	26	17	<.08	21	2.6	740	3.9	.13	10	1.1	90	1.26
	SELE- NIUM SED. SUSP. (UG/G) (29847)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER SED. SUSP. (UG/G) (29850)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM SEDI- MENT SUSP. (UG/G) (35040)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	THAL- LIUM SUS SEI (UG/G) (49955)	TITA NIUM SEDI- MENT SUSP. PERCEN (30317	VANA- DIUM SED. SUSP.	VANA DIUM, DIS- SOLVE (UG/I AS V)	ZINC SED SED. L SUSP.	AS ZN)	SUSP.
		.6		<1		163				<.2		3	
	. M	. 4	<.5	<1	300	96.0	<50	.420	140	. 4	170	4	<50
	. M	E.3	<.5	<1	340	111	<50	.460	120	1.0	110	3	<50
	. M	. 4	М	<1	350	139	<50	.450	130	.8	97	<1	<50
AUG 01	. M	E.3	<.5	<1	340	109	<50	.430		.7	75	1	<50
28 SEP	. 1	. 7	<.5	<1	340	128	<50	.440	130	.5	100	3	<50
25	. M	E.3	M	<1	460	133	<50	.430	110	.3	120	6	<50
Date	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	DIS- SOLVED (MG/L AS C)	GANIC PARTIC TOTAL (MG/L AS C)	ORGAN: PARTIC ULATE TOTAI (MG/I	IC INORG C- ORGAN PARTI TOTA (MG/	G + NIC IC. CARBO AL SED AL SUSP C) PERC	ORG ON SU . PEN . TO ENT PER	BON, GI ANIC TI S- WI DED, S TAL CENT I	EN, PAR I ICULTE S AT FLT I SUSP TI (MG/L CI AS N) (I	SEDI- MENT SUSP., FLOW- HROUGH ENTRIF MG/L) 50279)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
	. 1.17	1.6	<.1	.2	.2	2 -	_		<.02		2.0	86.9	
	69	13.6	.2	5.6	5.8	3 2.	0 1	. 4	.41	391	603 28	8000	74
	74	6.4	. 4	3.5	3.8	3 1.	8	.9	.12	299	282 13	9000	62
	87					2.	8	.5		422	399 13	6000	86
AUG 01		9.2	12.8	7.8	20.6			. 7				7000	77
28 SEP	82	6.3	2.1	9.6	11.7	2.:	2	.9	.38	670	695 42	4000	60
25	96	3.8	<.1	.3	.3	3 2.	0	.9	.03	99	116 3	4800	33

15388960 PORCUPINE RIVER NEAR INTERNATIONAL BOUNDARY (International Gaging Station)

LOCATION.--Lat 67°25'27", long 140°53'28", 3.1 mi upstream from old townsite of Ramparts House, at Alaska-Yukon Territory Boundary.

DRAINAGE AREA.--23,100 mi², approximately.

PERIOD OF RECORD. -- October 1987 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 600 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Differences between data published herein and corresponding data in the reports of the Water Survey of Canada are due to variations in automated program techniques. After December 1978, data published in reports of the Water Survey of Canada are in International System (SI) units, and have been converted to inch-pound units for this report. Because the Water Survey of Canada computes discharge records by calandar year, data reported here are one year prior to those reported for U.S. gages.

COOPERATION.--Discharge records furnished by the Water Survey of Canada.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001
DAILY MEAN VALUES

					DAI	LY MEAN V	ALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e3850	e1710	e1220	e1060	e1020	e900	e847	e819	e12600	11800	10200	8900
2	e3670	e1680	e1210	e1060	e1020	e897	e847	e823	e21800	10300	16700	8400
3	e3570	e1660	e1200	e1060	e1010	e893	e851	e826	e32800	9320	19800	8050
4	e3570	e1630	e1190	e1060	e1010	e886	e851	e826	e56500	8790	17800	7910
5	e3530	e1620	e1180	e1070	e1000	e876	e847	e833	e81200	8370	15300	8020
3	65550	CIOZO	CIIOO	01070	01000	6070	6017	6033	COIZOO	0370	13300	0020
6	e3430	e1600	e1170	e1070	e999	e876	e847	e833	96000	8230	13600	8930
7	e3370	e1580	e1170	e1070	e996	e872	e844	e837	106000	8720	11900	14600
8	e3300	e1560	e1170	e1070	e992	e865	e840	e844	108000	18500	10500	23800
9	e3060	e1550	e1160	e1060	e989	e876	e833	e844	103000	37800	9680	24400
10	e3020	e1510	e1160	e1060	e978	e876	e826	e851	91500	37400	9180	21800
11	e2930	e1480	e1150	e1060	e978	e876	e819	e855	78000	32600	8790	21200
12	e2860	e1460	e1140	e1060	e967	e876	e819	e858	73800	28300	8860	24400
13	e2780	e1450	e1140	e1060	e964	e876	e819	e862	74500	23900	14200	23400
14	e2680	e1430	e1130	e1050	e964	e876	e816	e876	73800	20500	27200	20300
15	e2590	e1420	e1130	e1050	e960	e876	e816	e890	73400	18700	32600	17300
16	e2500	e1400	e1120	e1050	e957	e869	e816	e907	72400	16800	35300	14800
	e2410	e1390	e1110	e1050	e953	e869	e816	e922	69600	14900	37800	12900
17 18	e2410 e2360	e1390 e1370	e1110	e1050	e953	e869	e816	e922 e936	67100	15200	55100	11700
19	e2310	e1360	e1110	e1050	e946	e876	e816	e950	58300	14000	63200	10900
20	e2240	e1340	e1100	e1050	e943	e872	e812	e982	47300	12200	53000	9990
21	e2180	e1330	e1100	e1050	e936	e869	e812	e1010	39200	10500	39200	9250
22	e2140	e1310	e1090	e1050	e936	e865	e812	e1040	33300	9180	30000	8620
23	e2090	e1300	e1090	e1050	e932	e858	e809	e1070	28700	8260	24400	8090
24	e2040	e1290	e1080	e1040	e929	e858	e809	e1150	25500	7590	20500	7660
25	e1990	e1290	e1080	e1040	e925	e858	e812	e1220	23300	7270	17400	7270
23	01000	CIZJO	CIOOO	01010	6525	6050	COIL	CIZZO	23300	7270	17100	7270
26	e1950	e1270	e1070	e1030	e929	e858	e812	e1430	23900	e6960	15000	6890
27	e1920	e1260	e1070	e1020	e929	e858	e816	e1730	23000	e6850	13100	6600
28	e1880	e1250	e1070	e1020	e922	e855	e816	e2080	19800	e6780	11800	6360
29	e1830	e1240	e1070	e1020		e847	e816	e2500	16600	e6810	10800	6140
30	e1790	e1230	e1060	e1020		e851	e819	e4380	13900	6810	9960	6000
31	e1750		e1060	e1020		e855		e7450		7340	9360	
TOTAL	81590	42970	34910	32530	27034	26984	24731	42434	1644800	440680	672230	374580
MEAN	2632	1432	1126	1049	965.5	870.5	824.4	1369	54830	14220	21680	12490
MAX	3850	1710	1220	1070	1020	900	851	7450	108000	37800	63200	24400
MIN	1750	1230	1060	1020	922	847	809	819	12600	6780	8790	6000
AC-FT	161800	85230	69240	64520	53620	53520	49050	84170	3262000	874100	1333000	743000
CFSM	0.11	0.06	0.05	0.05	0.04	0.04	0.04	0.06	2.37	0.62	0.94	0.54
IN.	0.13	0.07	0.06	0.05	0.04	0.04	0.04	0.07	2.65	0.71	1.08	0.60
STATIS	TICS OF	MONTHLY ME	AN DATA	FOR WATER	YEARS 198	8 - 2001,	BY WATER	YEAR (W	Y)#			
MEAN	4507	1756	1067	806.9	682.7	647.9	772.4	34760	44590	14970	18830	16820
MAX	8241	3161	1479	1049	966	870	1711	63160	86470	29580	37940	34320
(WY)	1996	1999	1999	2001	2001	2001	1998	1990	1992	1994	1991	1995
MIN	2571	1122	870	551	398	383	562	1369	20410	6041	10090	7697
(WY)	2000	1997	2000	1997	1997	1997	1997	2001	1999	1999	1994	2000

15388960 PORCUPINE RIVER NEAR INTERNATIONAL BOUNDARY—Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 WA	TER YEAR	WATER YEARS	1988	-	2001
ANNUAL TOTAL	4312431		3445473					
ANNUAL MEAN	11780		9440		11720			
HIGHEST ANNUAL MEAN					16090			1995
LOWEST ANNUAL MEAN					6569			1999
HIGHEST DAILY MEAN	96400	Jun 11	108000	Jun 8	248000	Jun	1	1992
LOWEST DAILY MEAN	a717	Mar 30	b809	Apr 23	c367	Mar	3	1997
ANNUAL SEVEN-DAY MINIMUM	718	Mar 28	811	Apr 20	369	Mar	1	1997
MAXIMUM PEAK FLOW			110000	Jun 8	250000	Jun	1	1992
MAXIMUM PEAK STAGE			40.05	Jun 8	50.76	Jun	1	1992
INSTANTANEOUS LOW FLOW					470	Mar	19	1990
ANNUAL RUNOFF (AC-FT)	8554000		6834000		8490000			
ANNUAL RUNOFF (CFSM)	0.51		0.41		0.51			
ANNUAL RUNOFF (INCHES)	6.94		5.55		6.89			
10 PERCENT EXCEEDS	34100		24400		33400			
50 PERCENT EXCEEDS	1440		1290		1900			
90 PERCENT EXCEEDS	727		847		632			

a From Mar. 30 to Apr.3 b From Apr.23 to 24 c From Mar. 3 to 6, 1997 e Estimated

15453500 YUKON RIVER NEAR STEVENS VILLAGE

LOCATION.--Lat $65^{\circ}52'32''$, long $149^{\circ}43'04''$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ sec. 7, T. 12 N., R. 10 W. (Livengood D-6 quad), Hydrologic Unit 19040404, on right bank, 115 ft upstream from bridge at MP 56.0 on Dalton Highway, 0.5 mi downstream from Woodcamp Creek, 2.5 mi upstream from Ray River, and 21 mi southwest of Stevens Village.

DRAINAGE AREA. -- 196,300 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1976 to current year.

GAGE.--Water-stage recorder and supplementary water-stage recorder on bridge pier at same site and datum. Datum of gage is 240.00 ft above sea level.

REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge observed, 950,000 ft³/s, June 15-16, 1964, "at Rampart" (station 15468000), drainage area, 199,400 mi², approximately.

> DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
2 3 4	134000 132000 129000 126000 123000	e75000 e74000 e73000 e72000 e71000	e50000 e50000 e49000 e49000 e48000	e37000 e37000 e37000 e37000 e36000	e29000 e29000 e29000 e28000 e28000	e23000 e23000 e23000 e23000 e23000	e20000 e20000 e20000 e20000 e20000	e20000 e20000 e20000	313000 278000 256000 249000 246000	208000 203000 200000 198000 196000	193000 206000 224000 231000 227000	279000 274000 265000 256000 249000
7 8 9	121000 119000 117000 115000 113000	e70000 e68000 e67000 e66000 e65000	e48000 e47000 e47000 e46000 e46000	e36000 e36000 e36000 e35000	e28000 e28000 e27000 e27000	e22000 e22000 e22000 e22000 e22000	e20000 e20000 e20000 e20000	e23000 e25000	241000 234000 228000 224000 223000	191000 189000 193000 199000 203000	217000 204000 189000 174000 163000	244000 240000 237000 234000 230000
12 13 14	112000 112000 111000 109000 106000	e64000 e63000 e62000 e61000	e45000 e45000 e44000 e44000 e43000	e35000 e35000 e34000 e34000 e34000	e27000 e27000 e26000 e26000 e26000	e22000 e21000 e21000 e21000 e21000	e19000	e45000 e57000 e72000	228000 238000 244000 251000 274000	203000 198000 193000 193000 195000	157000 154000 155000 159000 162000	229000 231000 233000 233000 231000
17 ∈ 18 19	103000 e100000 e98000 e96000 e94000	e60000 e59000 e58000 e58000 e57000	e43000 e43000 e42000 e42000 e42000	e33000 e33000 e33000 e33000 e32000	e26000 e26000 e25000 e25000 e25000	e21000 e21000 e21000 e20000 e20000		210000 330000 366000	298000 299000 293000 283000 270000	192000 185000 182000 180000 179000	162000 166000 177000 192000 218000	226000 217000 207000 199000 194000
22 23 24	e93000 e91000 e89000 e87000 e86000	e56000 e56000 e55000 e54000 e53000	e41000 e41000 e40000 e40000 e40000	e32000 e32000 e32000 e31000 e31000	e25000 e25000 e24000 e24000 e24000	e20000 e20000 e20000 e20000 e20000	e19000 e19000 e19000 e19000	425000 434000 445000	255000 241000 230000 225000 224000	178000 176000 175000 176000 177000	253000 265000 264000 265000 270000	187000 180000 173000 167000 162000
27 28 29 30	e84000 e82000 e81000 e79000 e78000 e77000	e53000 e52000 e52000 e51000 e51000	e39000 e39000 e39000 e38000 e38000	e30000	e24000 e24000 e23000 	e20000 e20000 e20000 e20000 e20000		456000 445000 429000	227000 228000 224000 219000 213000	175000 171000 167000 164000 167000 181000	279000 287000 289000 289000 286000 282000	157000 153000 148000 145000 142000
MEAN MAX MIN	3197000 103100 134000 77000 5341000 0.53 0.61	61230 75000 51000	1346000 43420 50000 38000 2670000 0.22 0.26	33420 37000 29000	732000 26140 29000 23000 1452000 0.13 0.14	654000 21100 23000 20000 1297000 0.11 0.12	19430 20000 19000	212800 461000 20000 13090000 1.08	248500 313000 213000 14790000	186700 208000 164000 11480000	13410000	210700 279000 142000 12540000 1.07
STATIST	rics of	MONTHLY M	IEAN DATA	FOR WATER	YEARS 19	77 - 2002	2, BY WAT	ER YEAR (V	VY)#			
MEAN MAX (WY) MIN (WY)	99620 164500 2001 75340 1993	50310 69670 1978 34530 1990	36570 48450 1983 26770 1990	29880 37680 1977 23550 1996	25450 32140 1981 19320 1999	22490 28970 1981 16000 1999	1981 14800	373000 1991	339200 614100 1992 226800 1995		200300 255100 2000 142400 1989	164900 229500 2000 116500 1989
					ENDAR YEA	R	FOR 2002	WATER YEA	AR	WATER Y	EARS 1977	- 2002
ANNUAL ANNUAL HIGHEST LOWEST HIGHEST ANNUAL MAXIMUM ANNUAL ANNUAL ANNUAL 10 PERC 90 PERC	TOTAL MEAN F ANNUAL ANNUAL DAILY DAILY DAILY M PEAK F RUNOFF RUNOFF RUNOFF CENT EXC	MEAN MEAN MEAN EAN AY MINIMU LOW TAGE (AC-FT) (CFSM) (INCHES) EEDS EEDS EEDS	М	48382000 132600 552000 a23000 554000 50. 95970000 0. 9. 323000 62000 23500	Jun 1. Mar 2. Mar 2. Jun 1. 17 Jun 1. 68	3 9 9 3 3 3	42307000 115900 461000 b19000 19000 466000 683920000 8 256000 20000	May 2 Apr 5 Apr 5 May 2 .62 May 2	26 22 12 16 26	119700 144400 93910 823000 c14000 827000 59 86690000 0 8 278000 57000 22000	Jun : Apr : Jun : 60 Jun :	1992 1996 11 1992 14 1997 14 1997 11 1992 11 1992

From Mar. 29 to Apr. 22 From Apr. 12 to Apr. 28 From Apr. 14 to 25 Estimated

15453500 YUKON RIVER NEAR STEVENS VILLAGE—Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1970-72, 1978, and 2001 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

PH

SAMPLE

Date		Time	LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	WATER WHOLE FIELD (STAND- ARD UNITS)	WATER (DEG C	DIS- SOLVI) (MG/1	ED L)					
MAR													
19		1700	600.0	288	7.1	. 0	8.8						
19		1950	925.0	287		. 0							
19 JUN	•	1957	250.0	289	7.2	.0							
04		1743	395.0	171	8.0	13.4	9.0						
04		1744	775.0	173	8.0	13.4	9.0						
04		1746	1090	172	8.1	13.4	9.1						
04		1748	1375	173	8.1	13.3	9.1						
04		1751	1715	173	8.1	13.3	9.1						
24 24		1210 1230	350.0 700.0	195 195	8.1 8.1	13.2 13.1	12.9						
24		1240	1030	193	8.1	13.1	12.9						
24		1250	1370	195	8.1	13.1	12.7						
24		1300	1700	195	8.1	13.1	12.2						
JUL													
18		1509	300.0	212	8.1	19.4	7.9						
18		1511	680.0	212	8.1	19.3	7.9						
18 18		1513 1514	1000 1300	212 212	8.1 8.1	19.3 19.3	7.9 7.9						
18		1515	1680	213	8.1	19.3	7.9						
30		1610	1680	231	8.1	18.3	9.1						
30		1612	1300	231	8.1	18.3	9.1						
30		1614	1000	231	8.1	18.3	9.1						
30		1616	680.0	232	8.1	18.3	9.1						
30 AUG		1618	300.0	231	8.1	18.4	9.1						
23		1553	1700	211	7.9	10.0	11.1						
23		1555	1350	212	8.0	10.0	11.1						
23		1558	1000	212	8.0	10.0	11.1						
23		1600	650.0	212	8.0	10.0	11.1						
23		1602	350.0	211	8.0	10.1	11.1						
SEP		1504	1700	213	7.7	11 2							
04 04		1524 1526	1700 1350	213	7.7	11.3 11.3							
04		1528	1050	213	7.8	11.3							
04		1533	500.0	213	7.9	11.3	9.8						
04		1538	350.0	212	7.9	11.3	9.9						
Date	Time	Medium code	Sample type	STREAM WIDTH (FT) (00004)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)		QUALITY ASSUR- ANCE DATA INDICA- TOR CODE (99111)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)
				(00004)	(60000)	(0000I)	(02330)	(04T04)	()) 1 1 1 1	(00000)	(00400)	(00020)	(00010)
MAR													
19	1930	9	9	1850		20600	20	3060	30	297	7.2	-5.0	.0
JUN	1.626	•	•	0.040	25 5:	052002	0.0	2055	100	1.00	0 0		12 4
04 24	1630 1330	9 9	9 9	2040	35.74 34.15	253000 223000	20 20	3055 3055	100 100	172 195	8.0 8.1		13.4 13.1
∠4 JUL	1000	9	9		34.13	223000	∠∪	2022	100	133	0.1		13.1
18	1400	9	9	1930	31.17	180000	20	3055	30	212	8.1		19.3
30	1510	9	9	1980	30.16	167000	20	3055	30	231	8.1		18.5
AUG			_										
23 SEP	1440	9	7	2040	36.57	263000	20	3055	30	212	7.9	10.0	10.0
04	1450	9	9	2020	35.97	253000	20	3055	30	213	7.8		11.3
01	1150	,	,	2020	55.57	233000	20	5055	55	213	,		11.5

YUKON ALASKA

15453500 YUKON RIVER NEAR STEVENS VILLAGE—Continued

Date	HACH 2100AN (NTU)	UV ABSORB- ANCE 254 NM, WTR FLT (UNITS /CM) (50624)	UV ABSORB- ANCE 280 NM, WTR FLT (UNITS /CM) (61726)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L)	CENT	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	DIS-	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)
MAR 19	7.0	.041	.029	780	8.8	59	130	36.4	9.30	2.42	120	1.05	146
JUN	88	.281	.210	757	9.0	87	84	24.0	5.73	1.67	62	1.06	76
	73	.220	.162	758	12.6	121	99	27.8	7.07	2.12	66	.84	80
18.	320	.136	.100	766 777	7.9 9.1	85 95	100 120	28.0 32.4	7.37 8.28	2.42	75 78	1.38	91 95
AUG	210	.242	.180	761	11.1	98	100	28.4	7.43	2.70	75	.95	87
SEP		.242		766	9.9	90		29.2				.87	84
04.	110	.206	.152	766	9.9	90	110	29.2	8.16	2.09	71	.87	84
Date	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	TOT IT FIELD	FIX END FIELD CAC03 (MG/L)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)
MAR 19	0	120	120	32.6	.57	.1	6.45	178	161	<.002	.103	<.015	E.10
JUN	0	62		22.4	.84	.15	4.41	128	98	E.002	.025	<.015	.57
	0	66		27.5	.49	<.10	5.12	125	111	<.002	.033	<.015	.32
18.	0	74 78	 	30.5 32.8	.53 1.08	E.07	5.30 5.73	129 140	120 132	<.002 <.002	.027	<.015 <.015	.28
AUG	0	72		32.0	1.10	.14	5.10	145	121	<.002	.061	<.015	.57
SEP	0	69		34.2	.52	E.09	6.20	140	123	<.002	.053	<.015	.32
04.	0	69		34.2	.52	E.09	6.20	140	123	<.002	.053	<.015	. 32
Date	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO-PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671)	GEN, TOTAL, SEDIMNT SUSP, (WEIGHT PERCNT)	PHOS-	INUM SED,SUS	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	AN- TIMONY SED. SUSP. (UG/G) (29816)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC SED. SUSP. (UG/G) (29818)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM SED. SUSP. (UG/G) (29820)
MAR 19.	E.09	.010	<.004	<.007		.100	6.5	3	1.8	.16	16	. 4	960
JUN	24	.37	.007	<.007	.11	.100	6.3	24	1.8	.19	10	.5	960
	20	.20	.005	<.007	<.10	.090	6.5	22	1.4	.17	11	.5	920
18.	E.09 11	.39 .35	E.002 E.002	<.007 <.007	<.10 <.10	.090 .100	7.1 6.9	26 19	2.1 2.2	.24	14 14	.7 .6	710 720
	18	.46	.004	<.007	.13	.100	6.5	20	1.5	.22	11	.5	810
	17	.26	E.003	<.007	.14	.100	6.7	32	2.0	.22	15	.5	1100

15453500 YUKON RIVER NEAR STEVENS VILLAGE—Continued

Date	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM SED. SUSP. (UG/G) (29822)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM SED. SUSP. (UG/G) (29826)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM SED. SUSP. (UG/G) (29829)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT SEDI- MENT SUSP. (UG/G) (35031)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER SED. SUSP. (UG/G) (29832)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON SEDI- MENT SUSP. PERCENT (30269)
	. 61	2	<.06	9	1.4	E.03	110	<.8	19	.09	56	1.3	4.3
JUN 04 24		1 1	<.06 <.06	E7 E6	3.3	E.02	97 91	1.0	15 16	.11	32 31	3.3	3.5 3.7
JUL 18 30		2 2	<.06 <.06	12 11	.4	<.04 <.04	150 100	<.8	20 20	.09	43 43	2.2	4.7 4.6
AUG 23		2	<.06	8	.5	<.04 E.02	110	<.8	15	.10	35	2.3	3.9
SEP	. 44	2	<.06	9	.7	E.02	110	<.8	17	.09	40	2.4	4.0
Date	IRON, DIS- SOLVEI (UG/L AS FE) (01046)		LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM SEDI- MENT SUSP. (UG/G) (35050)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MAN- GANESE SED. SUSP. (UG/G) (29839)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY SED. SUSP. (UG/G) (29841)	MOLYB- DENUM SED. SUSP. (UG/G) (29843)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL SED. SUSP. (UG/G) (29845)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM SED. SUSP. (UG/G) (29847)
MAR 19	. E8	20	.16	31	2.7	1900	13.7	.13	4	1.2	68	1.30	1
	. 75 . 48	26 16	.21	28 28	2.1	740 750	6.1 4.0	.06	3 2	.5	48 47	2.28 1.72	1 M
30	. 11 . E7	15 14	<.08	35 32	3.3	780 810	2.5	.04	8	1.3 1.2	74 53	.95 .85	M M
AUG 23 SEP	. 55	13	E.07	34	3.2	730	4.4	.17	2	.6	51	2.02	М
	. 45	14	<.08	32	3.0	860	3.1	.08	3	.9	62	1.47	1
	SELE- NIUM, DIS- SOLVEI (UG/L AS SE) (01145)	SILVER SED. SUSP. (UG/G) (29850)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM SEDI- MENT SUSP. (UG/G) (35040)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	THAL- LIUM SUS SED (UG/G) (49955)	TITA- NIUM SEDI- MENT SUSP. PERCENT (30317)	VANA- DIUM SED. SUSP. (UG/G) (29853)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC SED. SUSP. (UG/G) (29855)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	URANIUM SEDI- MENT SUSP. (UG/G) (35046)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)
	6	<.5	<1	300	150	<50	.450	140	<.2	180	4	<50	1.01
	5 . E.3	<.5 <.5	<1 <1	290 300	94.1 105	<50 <50	.430	130 130	.9 1.0	120 120	6 2	<50 <50	.58 .63
JUL 18	5	<.5	<1	300	118	< 50	.440	130	. 7	100	<1	<50	.68
AUG	5	<.5	<1 <1	310 270	126 114	<50 <50	.440	130 140	.7	110 110	2 7	<50 <50	. 77
SEP 04	6	<.5	<1	280	125	<50	.420	140	.6	150	6	<50	.79
Date		CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, INOR- GANIC, PARTIC. TOTAL (MG/L AS C) (00688)	CARBON, ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	CARBON SED. SUSP. PERCENT (30244)	CARBON, ORGANIC SUS- PENDED, TOTAL PERCENT (50465)	TICULTE WAT FLT SUSP (MG/L AS N)	MENT SUSP., FLOW- THROUGH CENTRIN	, SEDI- MENT, H SUS- F PENDE (MG/I	CHARG SUS ED PENI L) (T/DA	7, SU 5- SIE 5- FI 5- FI DED TH	SP. VE AM. NER AN MM
MAR 19		1.9	<.1	<.1	<.1	3.7		<.02	7	8.0) 445	86	
JUN 04 24		7.9 6.5	.7	4.4	5.1 2.5	2.3	1.5 1.3	.29	386 239	388 223	265000 134000	63 60	
JUL 18 30		4.0	5.0 4.4	3.6 4.3	8.5 8.7	2.7	.8	.18	375 408	381 403	185000 182000	85 85	
AUG 23		7.3	3.8	5.7	9.4	2.5	1.3	.40	438	468	332000	74	
SEP 04		6.2	. 4	2.6	3.0	2.2	1.3	.14	229	236	161000	73	

15477730 LIESE CREEK NEAR BIG DELTA

 $\texttt{LOCATION.--Lat~64°26'53'',~long~144°52'59'',~in~SW}^{1}/_{4}~\texttt{sec.25},~\texttt{T.5}~\texttt{S.,}~\texttt{R.14}~\texttt{E.,}~\texttt{(Big~Delta~B-2~quad),~Hydrologic~Unit}}$ 19040503, on right bank, 1.7 mi upstream from mouth, 1.5 mi east of Teck Cominco Corp, Pogo Mine Camp site, and 34 mi northeast of Big Delta.

DRAINAGE AREA.--1.08 mi².

PERIOD OF RECORD.--October 1999 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 2200 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges and the period August 19 to September 30 which are poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAILY MEAN VALUES											
OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
e0.30 e0.29 e0.30 e0.31 e0.34	e0.09 e0.09 e0.09 e0.08 e0.08	e0.06 e0.05 e0.05 e0.05 e0.04	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e1.3 e0.66 e0.48 e0.34 e0.36	4.9 1.8 1.0 0.72 0.64	0.35 0.51 5.0 3.8 1.7	0.54 0.50 0.44 0.43 0.42	1.3 1.6 2.1 2.1
e0.48 e0.42 e0.38 e0.36 e0.34	e0.08 e0.08 e0.08 e0.08 e0.08	e0.04 e0.04 e0.03 e0.03 e0.03	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.54 e0.96 e1.8 e2.2 e2.2	2.2 1.1 0.69 0.53 0.49	2.8 1.8 1.3 0.94 0.87	0.42 0.44 1.3 3.2 3.0	2.5 2.5 1.6 1.5
e0.34 e0.32 e0.30 e0.28 e0.26	e0.07 e0.07 e0.07 e0.07 e0.07	e0.03 e0.03 e0.02 e0.02 e0.02	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e2.4 e2.8 e3.3 e4.0 e3.0	4.6 3.6 2.0 1.5 1.1	0.75 0.63 0.60 0.58 0.52	2.2 1.8 2.1 1.9	1.2 1.1 1.1 1.0 0.91
e0.24 e0.23 e0.21 e0.20 e0.18	e0.07 e0.07 e0.07 e0.07 e0.07	e0.02 e0.02 e0.02 e0.02 e0.02	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e2.1 e2.2 e2.4 e2.2 e2.0	0.74 0.52 0.42 0.34 0.58	0.46 0.50 0.47 0.44 0.59	1.9 5.8 5.9 6.8 4.2	0.86 0.84 0.82 0.92 0.89
e0.16 e0.15 e0.14 e0.13 e0.12	e0.07 e0.07 e0.07 e0.07 e0.06	e0.02 e0.02 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e1.7 e1.4 e1.2 e0.96 e0.80	0.87 0.76 0.54 0.41 0.44	0.61 0.53 0.43 0.46 0.89	3.8 4.2 3.8 3.4 2.8	0.88 0.82 0.78 0.71 0.66
e0.12 e0.11 e0.11 e0.10 e0.10	e0.06 e0.06 e0.06 e0.06	e0.01 e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.02 e0.03 e0.05 e0.33	e0.68 e0.56 e0.52 e0.48 e0.51	0.47 0.44 0.34 0.30 0.30	1.0 0.71 0.68 0.71 0.67 0.56	2.1 1.7 1.6 1.3 1.1	0.51 0.46 0.45 0.46 0.46
7.42 0.24 0.48 0.10 0.24 15 0.22 0.26	2.17 0.072 0.09 0.06 0.07 4.3 0.07 0.07	0.77 0.025 0.06 0.01 0.02 1.5 0.02 0.03	0.31 0.010 0.01 0.01 0.01 0.6 0.01 0.01	0.28 0.010 0.01 0.01 0.01 0.6 0.01 0.01	0.31 0.010 0.01 0.01 0.01 0.6 0.01 0.01	0.69 0.023 0.33 0.01 0.01 1.4 0.02 0.02	47.35 1.53 4.0 0.34 1.3 94 1.41 1.63	34.34 1.14 4.9 0.30 0.67 68 1.06 1.18	31.86 1.03 5.0 0.35 0.63 63 0.95 1.10	71.59 2.31 6.8 0.42 1.9 142 2.14 2.47	34.33 1.14 2.5 0.45 0.91 68 1.06 1.18
CS OF M	ONTHLY ME	AN DATA F	OR WATER	YEARS 2000	- 2002,	, BY WATER	YEAR (WY)	#			
0.22 0.37 2001 0.032 2000	0.052 0.083 2001 0.000 2000	0.008 0.025 2002 0.000 2000	0.003 0.010 2002 0.000 2000	0.003 0.010 2002 0.000 2000	0.003 0.010 2002 0.000 2000	0.022 0.042 2001 0.000 2000	1.49 1.62 2000 1.32 2001	1.41 2.31 2000 0.79 2001	0.92 1.34 2001 0.39 2000	1.82 2.31 2002 0.98 2001	1.00 1.43 2000 0.43 2001
SUMMARY STATISTICS FOR 2001 CALENDAR YEAR						FOR 2002 W	ATER YEAR		WATER YEAR	S 2000 -	2002
ANNUAL M. DAILY ME. SEVEN-DA PEAK FL PEAK ST. PEAK ST. RUNOFF (; R	EAN EAN AN Y MINIMUM DW AGE AGE AC-FT) CFSM) LINCHES) EDS EDS		0.4 6.6 a0.0 0.0 319 0.4 5.5 1.1	May 23 0 Jan 1 0 Jan 1		0.66 6.8 b0.0 0.00 9.6 20.3 459 0.5 7.9 2.1 0.1	Aug 19 1 Dec 23 1 Dec 23 Aug 19 8 Aug 19 7		0.66 0.45 7.0 c0.00 9.6 20.39 d22.8 422 0.54 7.33 1.8	May 22 Oct 30 Oct 30 Aug 13 Aug 13 May 18	1999 1999 2000 2000
	e0.30 e0.29 e0.30 e0.31 e0.34 e0.34 e0.42 e0.38 e0.36 e0.32 e0.32 e0.30 e0.32 e0.31 e0.31 e0.38 e0.36 e0.31 e0.31 e0.31 e0.32 e0.30 e0.28 e0.26 e0.21 e0.20 e0.11 e0.10 e0.10 e0.11 e0.10	e0.30 e0.09 e0.29 e0.09 e0.30 e0.09 e0.31 e0.08 e0.34 e0.08 e0.34 e0.08 e0.38 e0.08 e0.36 e0.08 e0.36 e0.08 e0.37 e0.07 e0.20 e0.07 e0.21 e0.07 e0.22 e0.07 e0.21 e0.07 e0.21 e0.07 e0.21 e0.07 e0.21 e0.07 e0.21 e0.07 e0.12 e0.07 e0.15 e0.07 e0.16 e0.07 e0.11 e0.07 e0.15 e0.07 e0.11 e0.06 e0.10 e0.66 e0.11 e0.06 e0.11 e0.06 e0.11 e0.06 e0.11 e0.06 e0.10 e0.06 e0.11 e0.06 e0.10	e0.30 e0.09 e0.06 e0.29 e0.09 e0.05 e0.30 e0.09 e0.05 e0.31 e0.08 e0.05 e0.31 e0.08 e0.04 e0.48 e0.08 e0.04 e0.42 e0.08 e0.04 e0.38 e0.08 e0.03 e0.36 e0.08 e0.03 e0.36 e0.08 e0.03 e0.37 e0.00 e0.02 e0.20 e0.07 e0.02 e0.21 e0.07 e0.02 e0.22 e0.07 e0.02 e0.23 e0.07 e0.02 e0.24 e0.07 e0.02 e0.25 e0.07 e0.02 e0.16 e0.07 e0.02 e0.11 e0.07 e0.02 e0.16 e0.07 e0.02 e0.16 e0.07 e0.02 e0.16 e0.07 e0.02 e0.17 e0.01 e0.19 e0.06 e0.01 e0.11 e0.06 e0.01 e0.10 e0.06 e0.01	e0.30 e0.09 e0.06 e0.01 e0.29 e0.09 e0.05 e0.01 e0.31 e0.08 e0.05 e0.01 e0.31 e0.08 e0.05 e0.01 e0.34 e0.08 e0.04 e0.01 e0.42 e0.08 e0.04 e0.01 e0.36 e0.08 e0.04 e0.01 e0.36 e0.08 e0.03 e0.01 e0.37 e0.08 e0.03 e0.01 e0.38 e0.08 e0.03 e0.01 e0.39 e0.09 e0.05 e0.01 e0.30 e0.09 e0.05 e0.01 e0.48 e0.08 e0.04 e0.01 e0.36 e0.08 e0.03 e0.01 e0.37 e0.08 e0.09 e0.00 e0.01 e0.39 e0.07 e0.03 e0.01 e0.30 e0.07 e0.03 e0.01 e0.30 e0.07 e0.02 e0.01 e0.28 e0.07 e0.02 e0.01 e0.28 e0.07 e0.02 e0.01 e0.21 e0.07 e0.02 e0.01 e0.22 e0.07 e0.02 e0.01 e0.21 e0.07 e0.02 e0.01 e0.12 e0.07 e0.02 e0.01 e0.11 e0.07 e0.02 e0.01 e0.12 e0.06 e0.01 e0.01 e0.11 e0.06 e0.01 e0.01 e0.11 e0.06 e0.01 e0.01 e0.11 e0.06 e0.01 e0.01 e0.11 e0.06 e0.01 e0.01 e0.10 e0.06 e0.01 e0.01 e0.11 e0.06 e0.01 e0.01 e0.10 e0.06 e0.01 e0.01 e0.11 e0.06 e0.01 e0.01 e0.10 e0.06 e0.01 e0.01 e0.10 e0.06 e0.01 e0.01 e0.11 e0.06 e0.01 e0.01 e0.10 e0.06 e0.01 e0.01 e0.00	OCT NOV DEC JAN FEB e0.30 e0.09 e0.06 e0.01 e0.01 e0.29 e0.09 e0.05 e0.01 e0.01 e0.31 e0.08 e0.05 e0.01 e0.01 e0.33 e0.08 e0.05 e0.01 e0.01 e0.48 e0.08 e0.04 e0.01 e0.01 e0.48 e0.08 e0.04 e0.01 e0.01 e0.34 e0.08 e0.03 e0.01 e0.01 e0.35 e0.08 e0.03 e0.01 e0.01 e0.36 e0.08 e0.03 e0.01 e0.01 e0.37 e0.08 e0.03 e0.01 e0.01 e0.38 e0.08 e0.03 e0.01 e0.01 e0.39 e0.09 e0.05 e0.01 e0.01 e0.30 e0.09 e0.05 e0.00 e0.01 e0.30 e0.09 e0.05 e0.00 e0.01 e0.31 e0.08 e0.04 e0.01 e0.01 e0.32 e0.08 e0.03 e0.01 e0.01 e0.34 e0.08 e0.03 e0.01 e0.01 e0.35 e0.08 e0.03 e0.01 e0.01 e0.36 e0.08 e0.03 e0.01 e0.01 e0.37 e0.02 e0.01 e0.01 e0.28 e0.07 e0.02 e0.01 e0.01 e0.28 e0.07 e0.02 e0.01 e0.01 e0.29 e0.01 e0.01 e0.20 e0.07 e0.02 e0.01 e0.01 e0.21 e0.07 e0.02 e0.01 e0.01 e0.18 e0.07 e0.02 e0.01 e0.01 e0.18 e0.07 e0.02 e0.01 e0.01 e0.16 e0.07 e0.02 e0.01 e0.01 e0.17 e0.01 e0.01 e0.18 e0.07 e0.02 e0.01 e0.01 e0.19 e0.10 e0.01 e0.11 e0.06 e0.01 e0.01 e0.01 e0.10 e0.06 e0.01 e0.01 e0.01 e0.11 e0.06 e0.01 e0.01 e0.01 e0.10 e0.06 e0.01 e0.01 e0.01 e0.11 e0.06 e0.01 e0.01 e0.01 e0.11 e0.06 e0.01 e0.01 e0.01 e0.10 e0.06 e0.01 e0.01 e0.01 e0.11 e0.06 e0.01 e0.01 e0.01 e0.10 e0.06 e0.01 e0.01 e0.01 e0.11 e0.06 e0.01 e0.01 e0.01 e0.10 e0.06 e0.01 e0.01 e0.01 e0.11 e0.06 e0.01 e0.01 e0.01 e0.10 e0.06 e0.01 e0.01 e0.01 e0.11 e0.06 e0.01 e0.01 e0.01 e0.10 e0.06 e0.01 e0.01 e0.01 e0.11 e0.06 e0.01 e0.01 e0.01 e0.12 e0.06 e0.01 e0.01 e0.01 e0.13 e0.07 e0.02 e0.01 e0.01 e0.14 e0.06 e0.01 e0.01 e0.01 e0.15 e0.07 e0.02 e0.07 e0.10 e0.06 e0.01 e0.01 e0.01 e0.11 e0.06 e0.01 e0.01 e0.01 e0.12 e0.06 e0.01 e0.01 e0.01 e0.14 e0.06 e0.01 e0.01 e0.01 e0.15 e0.07 e0.02 e0.07 e0.02 e0.07 e0.	OCT NOV DEC JAN FEB MAR e0.30 e0.09 e0.06 e0.01 e0.01 e0.01 e0.29 e0.09 e0.05 e0.01 e0.01 e0.01 e0.31 e0.08 e0.05 e0.01 e0.01 e0.01 e0.33 e0.09 e0.05 e0.01 e0.01 e0.01 e0.34 e0.08 e0.04 e0.01 e0.01 e0.01 e0.34 e0.08 e0.04 e0.01 e0.01 e0.01 e0.35 e0.09 e0.05 e0.01 e0.01 e0.01 e0.36 e0.09 e0.05 e0.01 e0.01 e0.01 e0.37 e0.09 e0.05 e0.01 e0.01 e0.01 e0.38 e0.08 e0.04 e0.01 e0.01 e0.01 e0.39 e0.09 e0.05 e0.01 e0.01 e0.01 e0.30 e0.09 e0.03 e0.01 e0.01 e0.01 e0.34 e0.08 e0.03 e0.01 e0.01 e0.01 e0.34 e0.08 e0.03 e0.01 e0.01 e0.01 e0.34 e0.08 e0.03 e0.01 e0.01 e0.01 e0.34 e0.07 e0.03 e0.01 e0.01 e0.01 e0.32 e0.07 e0.02 e0.01 e0.01 e0.01 e0.28 e0.07 e0.02 e0.01 e0.01 e0.01 e0.28 e0.07 e0.02 e0.01 e0.01 e0.01 e0.21 e0.07 e0.02 e0.01 e0.01 e0.01 e0.22 e0.01 e0.01 e0.01 e0.23 e0.07 e0.02 e0.01 e0.01 e0.01 e0.21 e0.07 e0.02 e0.01 e0.01 e0.01 e0.21 e0.07 e0.02 e0.01 e0.01 e0.01 e0.11 e0.01 e0.01 e0.01 e0.15 e0.07 e0.02 e0.01 e0.01 e0.01 e0.16 e0.07 e0.02 e0.01 e0.01 e0.01 e0.17 e0.01 e0.01 e0.01 e0.01 e0.18 e0.07 e0.02 e0.01 e0.01 e0.01 e0.19 e0.10 e0.01 e0.01 e0.01 e0.11 e0.06 e0.01 e0.01 e0.01 e0.01 e0.12 e0.06 e0.01 e0.01 e0.01 e0.01 e0.15 e0.07 e0.02 e0.01 e0.01 e0.01 e0.15 e0.07 e0.02 e0.01 e0.01 e0.01 e0.15 e0.07 e0.02 e0.01 e0.01 e0.01 e0.15 e0.07 e0.00 e0.01 e0.01 e0.01 e0.16 e0.07 e0.00 e0.01 e0.01 e0.01 e0.17 e0.06 e0.01 e0.01 e0.01 e0.01 e0.19 e0.06 e0.01 e0.01 e0.01 e0.01 e0.11 e0.06 e0.01 e0.01 e0.01 e0.01 e0.12 e0.06 e0.01 e0.01 e0.01 e0.01 e0.11 e0.06 e0.01 e0.01 e0.01 e0.01 e0.12 e0.06 e0.01 e0.01 e0.01 e0.01 e0.15 e0.07 e0.00 e0.00 e0.00 e0.00 e0.00 e0.22 0.07 0.02 0.00 e0.00 e0.00 e0.00 e0.24 0.07 0.02 0.00 e0.00 e0.00 e0.00 e0.25 0.07 0.03 0.00 0.00 0.00 0.00 e0.26 0.07 0.03 0.00 0.00 0.00 0.00 e0.27 0.05 0.00 0.00 0.00 0.00 0.00 e0.08 EEM STAGE EEM STAGE UNOFF (CFSM) UNOFF (CFSM) UNOFF (CFSM)	OCT NOV DEC JAN FEB MAR APR ### APP ### APA ### APP ### APA ### ### APA ### AP	OCT NOV DEC JAN FEB MAR APR MAY e0.30 e0.09 e0.06 e0.01 e0.01 e0.01 e0.01 e0.01 e1.3 e0.29 e0.09 e0.05 e0.01 e0.01 e0.01 e0.01 e0.01 e0.66 e0.30 e0.09 e0.05 e0.01 e0.01 e0.01 e0.01 e0.01 e0.48 e0.31 e0.08 e0.04 e0.05 e0.01 e0.01 e0.01 e0.01 e0.34 e0.34 e0.08 e0.04 e0.01 e0.01 e0.01 e0.01 e0.01 e0.36 e0.48 e0.08 e0.04 e0.01 e0.01 e0.01 e0.01 e0.01 e0.36 e0.48 e0.08 e0.04 e0.01 e0.01 e0.01 e0.01 e0.01 e0.36 e0.48 e0.08 e0.04 e0.01 e0.01 e0.01 e0.01 e0.01 e0.36 e0.48 e0.08 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e0.96 e0.34 e0.08 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e0.96 e0.34 e0.08 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e2.2 e0.34 e0.08 e0.03 e0.01 e0.01 e0.01 e0.01 e2.2 e0.34 e0.07 e0.03 e0.01 e0.01 e0.01 e0.01 e2.2 e0.34 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e2.2 e0.34 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e2.8 e0.36 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e2.8 e0.28 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e3.3 e0.28 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e2.2 e0.24 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e2.2 e0.25 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e2.2 e0.26 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e2.2 e0.27 e0.02 e0.01 e0.01 e0.01 e0.01 e2.2 e0.28 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e2.2 e0.29 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e2.2 e0.21 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e2.2 e0.18 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e2.2 e0.18 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e2.2 e0.18 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e2.2 e0.18 e0.07 e0.02 e0.01 e	CCT NOV DEC JAN FEB MAR AFR MAY JUN 00.30 e0.09 e0.06 e0.01 e0.01 e0.01 e0.01 e1.3 4.9 00.29 e0.09 e0.05 e0.01 e0.01 e0.01 e0.01 e0.66 1.8 00.30 e0.09 e0.05 e0.01 e0.01 e0.01 e0.01 e0.01 e0.48 1.0 00.31 e0.08 e0.05 e0.01 e0.01 e0.01 e0.01 e0.01 e0.48 1.0 00.31 e0.08 e0.05 e0.01 e0.01 e0.01 e0.01 e0.01 e0.34 0.72 e0.34 e0.08 e0.05 e0.01 e0.01 e0.01 e0.01 e0.01 e0.34 0.72 e0.42 e0.08 e0.04 e0.01 e0.01 e0.01 e0.01 e0.01 e0.66 0.66 e0.43 e0.08 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e0.54 2.2 e0.48 e0.08 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e0.56 0.66 e0.36 e0.08 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e0.66 1.8 e0.38 e0.08 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e0.66 1.8 e0.38 e0.09 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.31 e0.07 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e2.2 0.53 e0.34 e0.07 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e2.2 0.59 e0.32 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e2.8 3.6 e0.32 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e1.8 e0.28 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e1.8 e0.26 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e1.01 e1.5 e0.26 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e2.0 0.1 e1.5 e0.27 e0.09 e0.00 e0.01 e0.01 e0.01 e0.01 e1.0 0.01 e1.5 e0.28 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e1.0 0.01 e1.5 e0.29 e0.09 e0.00 e0.01 e0.01 e0.01 e0.01 e1.0 0.01 e1.5 e0.20 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e1.0 0.01 e1.0 0.01 e0.21 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e1.0 0.01 e1.0 0.01 e0.21 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e1.0 0.01 e1.0 0.01 e0.21 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e2.2 0.52 e0.16 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e2.2 0.52 e0.16 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e2.2 0.52 e0.16 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e1.7 0.87 e0.14 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e2.2 0.52 e0.16 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.11 e0.06 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.11 e0.06 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.11 e0.06 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.12	CCT NOV DEC JAN FEB MAR APR MAY JUN JUL 60.30 e0.05 e0.06 e0.01 e0.01 e0.01 e0.01 e1.3 4.9 0.15 e0.29 e0.05 e0.05 e0.011 e0.01 e0.01 e0.01 e1.3 4.9 0.15 e0.30 e0.09 e0.05 e0.011 e0.01 e0.01 e0.01 e0.66 1.8 0.51 e0.31 e0.09 e0.05 e0.011 e0.01 e0.01 e0.01 e0.68 1.0 5.0 e0.34 e0.08 e0.04 e0.01 e0.01 e0.01 e0.01 e0.34 e0.72 3.8 e0.34 e0.08 e0.04 e0.01 e0.01 e0.01 e0.01 e0.34 e0.64 1.7 e0.34 e0.08 e0.05 e0.01 e0.01 e0.01 e0.01 e0.34 e0.64 1.7 e0.35 e0.36 e0.08 e0.03 e0.01 e0.01 e0.01 e0.01 e0.36 0.64 1.7 e0.36 e0.08 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.36 e0.08 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.38 e0.08 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.69 1.1 e0.39 e0.39 e0.09 e0.00 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.34 e0.09 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.34 e0.09 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.34 e0.09 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.34 e0.09 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e0.00 e0.34 e0.09 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e0.00 e0.34 e0.09 e0.00 e0.01 e0.01 e0.01 e0.01 e0.01 e0.00 e0.34 e0.09 e0.00 e0.01 e0.01 e0.01 e0.01 e0.01 e0.00 e0.34 e0.00 e0.00 e0.01 e0.01 e0.01 e0.01 e0.01 e0.00 e0.34 e0.00 e0.00 e0.01 e0.01 e0.01 e0.01 e0.01 e0.00 e0.34 e0.00 e0.00 e0.01 e0.01 e0.01 e0.01 e0.01 e0.00 e0.34 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.00 e0.35 e0.26 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.00 e0.36 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.00 e0.28 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.00 e0.29 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.20 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.21 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.21 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.21 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.22 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.24 e0.07 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.25 e0.05	COT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 60.30 c0.09 c0.06 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 c1.3 4.9 0.55 0.54 60.30 c0.09 c0.05 c0.01 c0.01 c0.01 c0.01 c0.01 c0.06 18 0.51 60.31 c0.08 c0.05 c0.01 c0.01 c0.01 c0.01 c0.01 c0.04 1.3 0.5 0.50 60.34 c0.08 c0.05 c0.01 c0.01 c0.01 c0.01 c0.04 0.34 0.72 3.8 60.34 c0.08 c0.04 c0.01 c0.01 c0.01 c0.01 c0.34 0.72 3.8 60.38 c0.08 c0.04 c0.01 c0.01 c0.01 c0.01 c0.54 2.2 2.8 60.38 c0.08 c0.04 c0.01 c0.01 c0.01 c0.01 c0.54 2.2 2.8 60.38 c0.08 c0.04 c0.01 c0.01 c0.01 c0.01 c0.55 0.59 0.42 60.34 c0.08 c0.03 c0.01 c0.01 c0.01 c0.01 c0.01 c0.55 0.8 60.34 c0.08 c0.03 c0.01 c0.01 c0.01 c0.01 c0.02 0.8 60.34 c0.08 c0.03 c0.01 c0.01 c0.01 c0.01 c0.01 c0.95 0.8 60.34 c0.08 c0.03 c0.01 c0.01 c0.01 c0.01 c0.01 c0.02 0.8 60.34 c0.08 c0.03 c0.01 c0.01 c0.01 c0.01 c0.01 c0.00 0.8 60.35 c0.07 c0.03 c0.01 c0.01 c0.01 c0.01 c0.01 c0.00 0.2 0.8 60.32 c0.07 c0.03 c0.01 c0.01 c0.01 c0.01 c0.01 c0.00 0.2 0.8 60.32 c0.07 c0.03 c0.01 c0.01 c0.01 c0.01 c0.01 c0.00 0.2 0.8 60.32 c0.07 c0.03 c0.01 c0.01 c0.01 c0.01 c0.01 c0.8 60.35 c0.07 c0.02 c0.01 c0.01 c0.01 c0.01 c0.01 c0.8 60.36 c0.07 c0.02 c0.01 c0.01 c0.01 c0.01 c0.01 c0.8 60.36 c0.07 c0.02 c0.01 c0.01 c0.01 c0.01 c0.01 c0.8 60.36 c0.07 c0.02 c0.01 c0.01 c0.01 c0.01 c0.01 c0.8 60.36 c0.07 c0.02 c0.01 c0.01 c0.01 c0.01 c0.01 c0.8 60.36 c0.07 c0.02 c0.01 c0.01 c0.01 c0.01 c0.01 c0.8 60.26 c0.07 c0.02 c0.01 c0.01 c0.01 c0.01 c0.01 c0.8 60.27 c0.07 c0.02 c0.01 c0.01 c0.01 c0.01 c0.01 c0.8 60.28 c0.07 c0.02 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 c0.8 60.29 c0.07 c0.02 c0.01 c0.0

Jan. 1 to Apr. 21 Dec. 23 to Apr 26 Oct. 30, 1999 to May 7, 2000 and Nov. 30, 2000 to Apr. 21, 2001 Backwater from ice Estimated

15477740 GOODPASTER RIVER NEAR BIG DELTA

LOCATION.--Lat $64^{\circ}27'02''$, long $144^{\circ}56'32''$, in $SE^{1}/_{4}$ sec.27, T.5 S., R.14 E., (Big Delta B-2 quad), Hydrologic Unit 19040503, on left bank, 0.2 mi northwest of Pogo Mine Camp site, 7 mi upstream from Central Creek, and 34 mi northeast of Big Delta.

DRAINAGE AREA.--677 mi².

PERIOD OF RECORD. -- August 1997 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1350 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are poor.GOES satellite telemetry at station.

	DISCHARGE,	CUBIC F	EET PER		WATER Y MEAN	YEAR OCTOBE	R 2001 T	O SEPTEM	BER 2002		
DAY OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 367 2 364 3 330 4 354 5 350	e170 e160 e160	e90 e88 e86	e68 e66 e66 e66	e52 e52 e52 e52 e52	e46 e46 e46 e44 e44	e38 e38 e38 e38 e38	e500 e400 e320 e280 e240	1420 1080 879 715 683	519 483 1600 4740 1930	490 454 439 407 385	1040 1070 1110 1050 938
6 476 7 727 8 610 9 508 10 460	e140 e140 e140	e80 e80 e80	e66 e66 e66 e64	e52 e50 e50 e50 e50	e44 e44 e44 e42	e38 e38 e38 e38 e38	e220 e260 e400 e540 e700	1010 996 834 666 586	2120 1770 1150 877 842	379 397 503 876 1160	1020 1880 1720 1450 1350
11 445 12 388 13 298 14 236 15 e200	e130 e130 e120	e78 e76 e74	e64 e64 e64 e62	e50 e50 e50 e50 e50	e42 e42 e42 e42 e42	e38 e38 e38 e38 e38	e1000 e1300 e1600 e2000 e2200	2370 2860 1640 1320 1020	824 714 657 613 563	1050 905 852 856 754	1250 1140 1040 973 918
16 e230 17 e240 18 e230 19 e220 20 e210	e120 e120 e120	e72 e72 e70	e62 e62 e60 e60 e60	e50 e50 e50 e50 e50	e40 e40 e40 e40 e38	e38 e38 e38 e40 e40	1990 1890 2210 3100 3490	778 636 536 465 562	519 514 496 466 581	807 3720 4950 4830 3610	860 825 795 782 762
21 e210 22 e200 23 e190 24 e190 25 e180	e110 e110 e110	e70 e70 e68	e58 e58 e56 e56 e56	e50 e50 e50 e48 e48	e38 e38 e38 e38 e38	e40 e40 e40 e42	4360 3570 2950 2360 1890	1240 1250 955 702 618	988 731 593 529 659	2440 2620 2260 2030 1800	729 682 657 634 622
26 e180 27 e180 28 e180 29 e170 30 e170 31 e170	e100 e100 e98 e94	e68 e68 e68 e68	e54 e54 e54 e54 e52 e52	e48 e48 e46 	e38 e38 e38 e38 e38	e46 e70 e100 e150 e250	1670 1520 916 643 559 1060	589 517 464 424 429	1030 831 741 692 604 544	1620 1420 1240 1110 1070 1020	604 628 643 611 595
TOTAL 9263 MEAN 298.8 MAX 727 MIN 170 AC-FT 18370 CFSM 0.44 IN. 0.51	126.1 75 170 94 7500 4 0.19 0 0.21 0	.16 60 92 68 620 3 .11 0	68 52 3740).09).10	1400 50.00 52 46 2780 0.07 0.08	1270 40.97 46 38 2520 0.06 0.07	1582 52.73 250 38 3140 0.08 0.09	46138 1488 4360 220 91510 2.20 2.54	28244 941.5 2860 424 56020 1.39 1.55	29920 965.2 4740 466 59350 1.43 1.64	46454 1499 4950 379 92140 2.21 2.55	28378 945.9 1880 595 56290 1.40 1.56
MEAN 234.1 MAX 374 (WY) 2001 MIN 149 (WY) 2000	109.6 76 143 2001 2 90.1 5	.90 56 109 9 001 2 7.5 2		ARS 1997 44.22 82.2 2001 13.6 1999	- 2002 39.91 76.4 2001 10.5 1999	97.65 155 1998 52.7 2002	961.7 1488 2002 635 2001	981.4 1993 2000 468 1998	781.1 1092 2001 419 1999	1069 1651 2000 590 1999	654.2 985 2000 421 1999
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL ME LOWEST ANNUAL ME LOWEST DAILY MEAN ANNUAL SEVEN-DAY MAXIMUM PEAK FLOW MAXIMUM PEAK STAC ANNUAL RUNOFF (AC ANNUAL RUNOFF (CE ANNUAL RUNOFF (IN 10 PERCENT EXCEEL 50 PERCENT EXCEEL	CAN AN IN I MINIMUM I GEFT) GSM) ICHES) SS	299	122 414.0 8600 a68 68	Jul 30 Dec 24 Dec 24		FOR 2002 WA 200645 549.7 4950 b38 38 6470 16.70 398000 0.81 11.03 1430 170 40	Aug 18 Mar 20 Mar 20 Jul 4 Jul 4		WATER YEARS 435.0 595 272 7500 c10 10 10100 19.49 315200 0.64 8.73 1040 150 36	Aug 14 Mar 8 Mar 8	2000 1999 2000 3 1999 3 1999 2000

See Period of Record; partial years used in monthly statistics From Dec. 24 to Dec. 31 From Mar. 20 to Apr. 18 From Mar. 8 to 24, 1999 Estimated

15477761 UPPER WEST CREEK NEAR BIG DELTA

LOCATION.--Lat $64^{\circ}25'01''$, long $144^{\circ}50'55''$, in $SW^{1}/_{4}$ sec.6, T.6 S., R.15 E., (Big Delta B-2 quad), Hydrologic Unit 19040503, on right bank, 5.1 mi upstream from mouth, 3.4 mi southeast of Pogo Mine Camp site, and 31 mi northeast of Big Delta.

DRAINAGE AREA.--1.64 mi².

248

PERIOD OF RECORD. -- October 1999 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1,900 ft above sea level, from topographic map.

			-	IC FEET	PER SECOND,	WATER	YEAR OCTOR	-	O SEPTEM	MBER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0.83 0.83 0.82 0.82 0.82	e0.54 e0.54 e0.52 e0.52 e0.52	e0.42 e0.40 e0.40 e0.38 e0.38	e0.28 e0.28 e0.28 e0.28 e0.28	e0.24 e0.22 e0.22 e0.22 e0.22	e0.20 e0.20 e0.20 e0.20 e0.20	e0.18 e0.18 e0.18 e0.18 e0.18	e1.0 e0.50 e0.40 e0.30 e0.30	1.2 0.78 0.71 0.68 0.68	0.86 0.89 1.3 1.1	1.1 1.1 1.0 1.0	2.1 2.1 2.1 2.1 2.1
6 7 8 9 10	0.92 0.88 0.86 0.84 0.83	e0.52 e0.50 e0.50 e0.50 e0.50	e0.36 e0.36 e0.34 e0.34	e0.28 e0.28 e0.28 e0.28 e0.28	e0.22 e0.22 e0.22 e0.22 e0.22	e0.18 e0.18 e0.18 e0.18 e0.18	e0.18 e0.18 e0.18 e0.18 e0.18	e0.40 e0.60 e1.0 e2.0 e2.0	0.71 0.71 0.69 0.67 0.73	1.1 1.0 0.99 0.96 0.96	1.0 1.0 1.2 1.3	2.4 2.5 2.4 2.4 2.3
11 12 13 14 15	0.82 0.80 0.79 e0.76 e0.76	e0.50 e0.50 e0.50 e0.50 e0.50	e0.32 e0.32 e0.32 e0.32 e0.30	e0.28 e0.28 e0.28 e0.28 e0.28	e0.20	e0.18 e0.18 e0.18 e0.18 e0.18	e0.18 e0.18 e0.18 e0.18 e0.18	e2.0 e2.4 e2.8 e3.6 e2.3	1.8 1.3 0.98 0.94 e0.87	0.96 0.94 0.95 0.94 0.94	1.3 1.3 1.3 1.2	2.2 2.1 2.1 2.1 2.1
16 17 18 19 20	e0.74 e0.74 e0.72 e0.72 e0.70	e0.48 e0.48 e0.48 e0.48 e0.48	e0.30 e0.30 e0.30 e0.30 e0.30	e0.28 e0.28 e0.28 e0.28 e0.28	e0.20 e0.20 e0.20 e0.20 e0.20	e0.18 e0.18 e0.18 e0.18 e0.18	e0.18 e0.18 e0.18 e0.18 e0.18	1.7 1.8 2.1 1.9	e0.84 e0.82 e0.81 e0.80 e1.1	0.95 0.96 0.96 0.98 1.1	1.2 1.9 2.3 2.8 2.2	2.0 2.0 2.0 2.1 2.1
21 22 23 24 25	e0.70 e0.68 e0.66 e0.64 e0.62	e0.48 e0.48 e0.48 e0.46 e0.46	e0.30 e0.29 e0.28 e0.28 e0.28	e0.28 e0.26 e0.26 e0.26 e0.26		e0.18 e0.18 e0.18 e0.18 e0.18	e0.18 e0.18 e0.18 e0.18 e0.18	1.4 1.0 0.86 0.72 0.61	e1.1 e1.0 e0.90 e0.86 e0.94	1.0 1.0 1.0 1.1	1.8 1.8 1.9 2.1 2.1	2.0 2.0 1.9 1.9
26 27 28 29 30 31	e0.62 e0.60 e0.58 e0.56 e0.56	e0.46 e0.44 e0.42 e0.42	e0.28 e0.28 e0.28 e0.28 e0.28 e0.28	e0.26 e0.26 e0.24 e0.24 e0.24	e0.20 e0.20 e0.20	e0.18 e0.18 e0.18 e0.18 e0.18	e0.20 e0.22 e0.26 e0.40 e0.80	0.51 0.44 0.41 0.41 0.42 0.70	0.83 0.81 0.79 0.79 0.83	1.2 1.1 1.1 1.1 1.1	2.2 2.2 2.1 2.1 2.1 2.1	1.8 1.7 1.7 1.7
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	22.76 0.734 0.92 0.54 0.74 45 0.45	14.60 0.487 0.54 0.42 0.49 29 0.30 0.33	9.91 0.320 0.42 0.28 0.30 20 0.19 0.22	8.40 0.271 0.28 0.24 0.28 17 0.17	5.80 0.207 0.24 0.20 0.20 1.2 0.13 0.13	5.68 0.183 0.20 0.18 0.18 0.11 0.11	6.38 0.213 0.80 0.18 0.18 13 0.13	38.28 1.235 3.6 0.30 1.0 76 0.75 0.87	26.67 0.889 1.8 0.67 0.82 53 0.54 0.60	32.04 1.034 1.4 0.86 1.0 64 0.63 0.73	50.3 1.623 2.8 1.0 1.4 100 0.99 1.14	61.6 2.053 2.5 1.7 2.1 122 1.25 1.40
STATIST	TICS OF M	ONTHLY ME	AN DATA F	OR WATER	YEARS 2000	- 2002	2, BY WATER	YEAR (WY) #			
MEAN MAX (WY) MIN (WY)	1.068 1.92 2001 0.55 2000	0.740 1.33 2001 0.41 2000	0.450 0.69 2001 0.32 2002	0.332 0.44 2001 0.27 2002	0.258 0.32 2001 0.21 2002	0.225 0.26 2001 0.18 2002	0.256 0.30 2001 0.21 2002	0.912 1.23 2002 0.50 2001	1.039 1.67 2000 0.56 2001	1.155 1.45 2000 0.98 2001	1.954 2.83 2000 1.41 2001	2.043 3.06 2000 1.02 2001
SUMMARY	STATIST	ICS	FOR	2001 CAL	ENDAR YEAR		FOR 2002 W	ATER YEAR		WATER YEAR	RS 2000 -	2002
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS				223. 0. a1. b0. 0.	613 6 Jul 29 24 Mar 24 24 Mar 24		282.4 0.7 3.6 c0.1 4.6 d20.9 560 0.4 6.4 2.0 0.5	74 May 14 8 Mar 6 8 Mar 6 May 14 3 May 14		0.8 1.00 0.7 4.6 c0.14 0.18 5.0 20.98 632 0.55 7.22 1.9 0.55		2000 2002 2002 2000 5 2002 5 2002 0 2000 0 2000

From Jul. 29 to Aug. 1 From Mar. 24 to Apr. 14 From Mar. 6 to Apr. 25 From floodmarks

b c d Estimated

15477768 SONORA CREEK ABOVE TRIBUTARY NEAR BIG DELTA

LOCATION.--Lat $64^{\circ}23'22''$, long $144^{\circ}46'40''$, in $SW^{1}/_{4}$ sec.16, T.6 S., R.15 E. (Big Delta B-2 quad), Hydrologic Unit 19040503, on right bank, 2.5 miles upstream from mouth, 6.3 miles southeast of Pogo Mine Camp site, and 35 miles northeast of Big Delta.

DRAINAGE AREA.--6.05 mi².

PERIOD OF RECORD.--May, 2000 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1650 ft above sea level, from topographic map.

		DISCHA	RGE, CUBI	C FEET PE		WATER Y	YEAR OCTOBE VALUES	ER 2001 TO	SEPTEM	BER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.1 3.0 2.8 3.1 3.1	2.0 2.0 2.0 2.0 2.0	1.4 1.4 1.3 1.3	1.1 1.1 1.1 1.1	1.2 1.2 1.2 1.1	1.1 1.1 1.1 1.2 1.2	1.1 1.1 1.1 1.1	9.0 4.0 2.5 2.0	7.4 4.3 3.2 2.7 2.5	1.7 1.9 7.9 9.6 5.1	2.6 2.6 2.4 2.4 2.4	e7.2 e7.4 e7.8 e7.4 e7.2
6 7 8 9 10	4.3 4.1 3.9 3.7 3.6	2.0 1.9 1.9 1.7	1.3 1.3 1.3 1.3	1.1 1.1 1.1 1.1	1.2 1.2 1.2 1.2	1.2 1.2 1.2 1.2	1.1 1.0 1.0 1.0	2.6 4.0 9.2 17	2.6 2.9 2.4 2.1 2.6	6.1 4.2 3.4 2.9 2.8	2.4 2.5 3.5 6.2 5.8	e8.0 e11 e10 e9.4 e8.8
11 12 13 14 15	3.5 2.8 2.3 e2.3 2.6	1.6 1.6 1.6 1.6	1.2 1.2 1.1 1.1	1.1 1.1 1.1 1.1	1.1 1.1 1.2 1.1	1.2 1.2 1.2 1.2	1.0 1.0 1.0 0.98 0.99	17 20 23 30 26	9.4 6.6 4.7 4.6 3.8	2.6 2.5 2.4 2.3 2.2	4.9 e4.4 e4.3 e3.9 e3.7	e8.4 e8.0 e7.6 e7.4 e7.2
16 17 18 19 20	3.0 3.1 e3.0 2.7 2.6	1.6 1.6 1.6 1.6	1.1 1.1 1.1 1.1	1.1 1.1 1.1 1.1	1.2 1.2 1.2 1.2 1.2	1.1 1.1 1.1 1.1	0.99 0.98 0.95 0.95 0.94	19 19 20 18 13	2.8 2.4 2.1 2.1 2.9	2.2 2.4 2.8 2.5 3.4	e4.2 e22 e24 e32 e15	e7.0 e7.0 e7.4 e7.8 e8.0
21 22 23 24 25	2.5 2.6 2.4 2.4 2.3	1.6 1.6 1.5 1.6	1.0 1.0 1.0 1.1	1.1 1.2 1.2 1.2	1.2 1.2 1.2 1.2	1.1 1.1 1.1 1.1	0.95 0.95 0.95 0.95 0.95	10 8.3 7.0 6.0 5.2	2.9 2.7 2.3 2.1 2.1	3.8 3.0 2.6 2.7 6.6	e11 e12 e10 e9.2 e8.6	e7.8 e7.4 e7.0 e6.6 6.4
26 27 28 29 30 31	2.3 2.3 2.2 2.1 2.1	1.5 1.5 1.4 1.4	1.0 0.99 1.0 1.1 1.1	1.2 1.2 1.2 1.1 1.1	1.1 1.1 1.1 	1.1 1.1 1.1 1.1 1.1	0.94 0.95 0.95 1.2 7.7	4.7 4.1 3.5 3.1 2.8 3.7	2.1 2.0 1.8 1.7 1.6	5.4 3.9 3.5 3.2 3.0 2.8	e8.2 e7.8 e7.6 e7.4 e7.2 e7.0	6.4 e6.3 e6.2 e6.2 e6.3
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	87.9 2.84 4.3 2.1 2.7 174 0.47 0.54	50.2 1.67 2.0 1.4 1.6 100 0.28 0.31	35.89 1.16 1.4 0.99 1.1 71 0.19	34.8 1.12 1.2 1.1 1.1 69 0.19 0.21	32.6 1.16 1.2 1.1 1.2 65 0.19 0.20	35.3 1.14 1.2 1.1 1.1 70 0.19 0.22	36.87 1.23 7.7 0.94 1.0 73 0.20	332.7 10.7 30 2.0 8.3 660 1.77 2.05	95.4 3.18 9.4 1.6 2.6 189 0.53 0.59	111.4 3.59 9.6 1.7 2.9 221 0.59 0.68	247.2 7.97 32 2.4 6.2 490 1.32 1.52	226.6 7.55 11 6.2 7.4 449 1.25 1.39
STATIST	TICS OF MO	NTHLY MEA	N DATA FO	R WATER Y	EARS 2000	- 2002	, BY WATER	YEAR (WY)	#			
MEAN MAX (WY) MIN (WY)	MAX 6.03 3.89 2. (WY) 2001 2001 20 MIN 2.84 1.67 1. (WY) 2002 2002 20			1.58 2.03 2001 1.12 2002	1.42 1.68 2001 1.16 2002	1.31 1.49 2001 1.14 2002	1.63 2.03 2001 1.23 2002	7.99 10.7 2002 4.30 2001	3.32 3.95 2000 2.84 2001	3.59 4.58 2001 2.58 2000	6.87 7.97 2002 4.79 2001	6.88 9.42 2000 3.68 2001
	SUMMARY STATISTICS FOR 2001 CALENDAR YE					1	FOR 2002 WA			WATER YEAR	RS 2000 -	2002#
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS				1010.19 2.77 12 0.99 1.0 2000 0.46 6.21 4.7 2.3 1.4	May 23 Dec 27 Dec 21		1326.86 3.64 e32 a0.94 0.95 b49 b21.56 0.86 2630 0.60 8.16 7.9 2.0	Aug 19 Apr 20 Apr 20 May 14 May 14 Apr 24		3.49 3.63 3.31 e32 0.94 0.99 b49 b21.56 c0.58 2530 0.51 7.88 6.66 2.55	Aug 19 Aug 19 Apr 20 Apr 20 May 14 May 14 Mar 21	2002 2001 2002 2002 2002 2002 2002 2002

See Period of Record; partial years used in monthly statistics Apr. 20 and 26 May have been higher during period of missing record, Aug. 19,2002 Minimum observed outside Period of Record, result of discharge measurement Estimated

15477770 SONORA CREEK NEAR BIG DELTA

 $\texttt{LOCATION.--Lat } \ 64^{\circ}22'40'', \ \texttt{long } \ 144^{\circ}48'41'', \ \texttt{in } \ \texttt{SE}^{1}/_{4} \ \texttt{sec.20}, \ \texttt{T.6 S., R.15 E.} \ (\texttt{Big Delta B-2 quad}), \ \texttt{Hydrologic Unit } \ \texttt{Hydrologic Unit }$ 19040503, on left bank, 1.2 mi upstream from mouth, 6.5 mi southeast of Pogo Mine Camp site, and 34 mi northeast of Big Delta.

DRAINAGE AREA.--10.5 mi².

PERIOD OF RECORD. -- August 1997 to current year.

REVISED RECORDS. -- WDR AK-00-1: 1998 (M). WDR AK-01-1: 2000.

GAGE.--Water-stage recorder. Elevation of gage is 1450 ft above sea level, from topographic map.

		DISCHARO	E, CUBIC	FEET PEF			YEAR OCTOB	ER 2001 TO	O SEPTEM	MBER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.0 4.5 5.0 5.0 7.5	e3.3 e3.2 e3.2 e3.1 e3.0	e2.2 e2.1 e2.1 e2.0 e2.0	e1.4 e1.4 e1.4 e1.4	e1.5 e1.5 e1.5 e1.5	e1.5 e1.5 e1.5 e1.5	e1.4 e1.4	e12 e7.0 e5.0 e3.0 e3.0	15 9.0 6.0 4.7 4.3	7.5	2.8	e8.8 e9.2 e9.6 e9.0 e8.8
6 7 8 9 10	7.3 6.8 6.3 5.9 5.7	e3.0 e2.8 e2.7 e2.6 e2.6	e2.0 e2.0 e1.9 e1.9	e1.4 e1.4 e1.4 e1.4	e1.5 e1.5 e1.5 e1.5	e1.5 e1.5 e1.5 e1.5	e1.4 e1.4	e4.0 e7.0 e14 e19 e20	4.3 4.4 3.7 3.1 4.0	8.7 5.6 4.1 3.4 3.0	2.8 3.0 4.6 9.4 9.2	e10 e15 e14 e13 e12
11 12 13 14 15	4.4 3.4 3.8 e4.0 e4.4	e2.5 e2.5 e2.5 e2.4 e2.4	e1.8 e1.8 e1.8 e1.7	e1.4 e1.4 e1.4 e1.4	e1.5 e1.5 e1.5 e1.5 e1.5	e1.5 e1.5 e1.5 e1.5	e1.4 e1.4 e1.3 e1.3	e20 e19 e25 e30 e40 e33	19 13 8.9 7.8 5.7	2.7 2.6 2.5 2.3 2.2	7.4 6.3 6.1 5.5 5.0	e11 e10 e9.8 e9.4 e9.0
16 17 18 19 20	e4.8 e4.8 e4.6 e4.4 e4.2	e2.4 e2.4 e2.4 e2.4 e2.4	e1.7 e1.7 e1.6 e1.6 e1.6	e1.4 e1.4 e1.4 e1.4	e1.5 e1.5 e1.5 e1.5	e1.4 e1.4 e1.4 e1.4	e1.3 e1.3 e1.3 e1.3	e31 33 32 25 14	3.8 3.1 2.6 2.5 3.5	2.1 2.4 2.8 2.5 3.7	6.0 27 e30 e43 e23	e8.8 e8.6 e9.0 e9.6 e10
21 22 23 24 25	e4.1 e4.0 e3.9 e3.9 e3.8	e2.4 e2.4 e2.3 e2.3 e2.3	e1.5 e1.5 e1.4 e1.4	e1.4 e1.5 e1.5 e1.5 e1.5	e1.5 e1.5 e1.5 e1.5 e1.5	e1.4 e1.4 e1.4 e1.4	e1.3 e1.3 e1.3 e1.3	9.5 10 5.9 4.9 6.7	3.7 3.2 2.7 2.4 2.4	4.4 3.3 2.8 2.9 8.0	e15 e16 e14 e12 e10	e9.2 e9.0 e8.9
26 27 28 29 30	e3.7 e3.6 e3.6 e3.5 e3.4	e2.3 e2.3 e2.2 e2.2 e2.2	e1.4 e1.4 e1.4 e1.4 e1.4	e1.5 e1.5 e1.5 e1.5 e1.5	e1.5 e1.5 e1.5	e1.4 e1.4 e1.4 e1.4	e1.3 e1.3 e1.4 e2.5 e10	7.4 6.6 5.4 4.8 4.5	2.3 2.1 1.9 1.8 1.7	7.0 4.8 4.3 4.0 3.6 3.3	e9.8 e9.4 e9.0 e9.0 e8.8	8.6 8.5 8.4 8.6
TOTAL MEAN MAX MIN AC-FT CFSM IN.	141.6 4.57 7.5 3.3 281 0.44	76.7 2.56 3.3 2.2 152 0.24	52.8 1.70 2.2 1.4 105 0.16	44.4 1.43 1.5 1.4 88 0.14	42.0 1.50 1.5 1.5 83 0.14	44.9 1.45 1.5 1.4 89 0.14	50.2 1.67 10 1.3 100 0.16 0.18	447.9 14.4 40 3.0 888 1.38	152.6 5.09 19 1.7 303 0.48	136.3 4.40 15 1.8 270 0.42	324.4 10.5 43 2.8 643 1.00	293.8 9.79 15 8.4 583 0.93
							2, BY WATER			0.40	1.15	1.04
MEAN MAX (WY) MIN (WY)		2.23 4.26 2001 1.31 2000	1.43 2.37 2001 0.98 1998	1.09 1.70 2001 0.71 1998	0.96 1.50 2002 0.56 1998	0.87 1.45 2002 0.45 1998	1.62 2.58 2001 0.91 1998	10.2 16.4 2000 4.27 1998	4.94 7.65 2000 1.74 1998	6.83 2001 3.11	8.36 16.0 2000 4.29 1998	2000
SUMMARY	STATISTI	cs	FOR 20	01 CALENI	DAR YEAR		FOR 2002 W	ATER YEAR		WATER YEAR	RS 1997 -	2002#
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (TOCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS				1458.7 4.00 22 a1.2 1.2 2890 0.38 5.17 7.5 3.2 1.3	May 23 Mar 25 Mar 25		e43 b1.3 c d 3590 0.4 6.4(10 2.5 1.4	Aug 19 Apr 13 Apr 13		4.09 5.91 2.07 e49 0.4(0.4(e61 f33.4(2960 0.39 5.29 9.0 2.2	May 24 May 24 May 27 Mar 7 May 22 May 12	2000 1998 2000 71998 71998 22000 2000

See Period of Record; partial years used in monthly statistics From Mar. 25 to Apr. 13 From Apr. 13 to 27 Not determined see highest daily mean Not determined Estimated Estimated Backwater from snow and ice

c d

15477790 CENTRAL CREEK NEAR BIG DELTA

LOCATION.--Lat $64^{\circ}22'37''$, long $144^{\circ}56'35''$, in $SE^{1}/_{4}$ sec. 22, T. 6 S., R. 14 E. (Big Delta B-2 quad), Hydrologic Unit 19040503, on right bank, 0.5 mi upstream from mouth, 5 mi south of Pogo Mine Camp site, and 31 mi northeast of Big Delta.

DRAINAGE AREA.--115 mi².

PERIOD OF RECORD. -- August 1997 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1250 ft above sea level, from topographic map.

		DISCHA	RGE, CUB	IC FEET P	ER SECOND,	WATER	YEAR OCTOB	ER 2001 T	O SEPTE	MBER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	42 41	e17 e16	e4.0 e3.6	e0.50 e0.50	e0.40 e0.40	e0.20 e0.20	e0.10 e0.10	e140 e70	246 256	28 27	42 38	104 112
3	33	e16	e3.0	e0.50	e0.40	e0.20	e0.10	e60	132 89	222	34	114
4	43	e16	e2.6	e0.50	e0.40	e0.20	e0.10	e60 e50	89	742	32	108
5	40	e15	e2.2	e0.50	e0.40	e0.20	e0.10	e45	81	235	30	101
6	68	e15	e2.2	e0.50	e0.40	e0.10	e0.10	46	124	356	30	115
7 8	119 98	e15 e15	e1.8 e1.6	e0.50 e0.50	e0.40 e0.30	e0.10 e0.10	e0.10 e0.10	49 63	152 95	229 132	31 45	240 205
9	80	e15	e1.6	e0.50	e0.30	e0.10	e0.10	123	71	92	154	179
10	69	e14	e1.4	e0.50	e0.30	e0.10	e0.10	214	113	79	204	152
11	64	e14	e1.4	e0.50	e0.30	e0.10	e0.10	224	671	85	158	132
12	49	e14	e1.2	e0.50	e0.30	e0.10	e0.10	255	509	73	119	118
13 14	36 20	e14 e14	e1.2 e1.0	e0.50 e0.50	e0.30 e0.30	e0.10 e0.10	e0.10 e0.10	322 421	237 185	118 89	104 101	108 98
15	24	e13	e1.0	e0.50	e0.30	e0.10	e0.10	536	134	67	86	93
16	e27	e13	e0.90	e0.50	e0.30	e0.10	e0.10	427	90	55	98	88
17	e29	e13	e0.90	e0.50	e0.30	e0.10	e0.10	548	67	53	992	92
18	e28	e13	e0.80	e0.50	e0.30	e0.10	e0.10	689	52	61	942	91
19 20	e27 e26	e13 e12	e0.80 e0.80	e0.40 e0.40	e0.30 e0.20	e0.10 e0.10	e0.10 e0.10	772 768	43 57	51 61	954 482	100 107
21	e25	e12	e0.70	e0.40	e0.20	e0.10	e0.10	717	118	112	262	103
22	e24	e11	e0.70	e0.40	e0.20	e0.10	e0.10	481	118	76	258	97
23	e22	e11	e0.60	e0.40	e0.20	e0.10	e0.10	329	83	58	207	92
24 25	e21 e21	e10 e9.0	e0.60 e0.60	e0.40 e0.40	e0.20 e0.20	e0.10 e0.10	e0.10 e0.10	229 171	60 52	48 104	170 159	88 86
26	e20	e8.0	e0.60	e0.40	e0.20	e0.10	e0.50	138	55	149	141	84
27	e19	e7.0	e0.60	e0.40	e0.20	e0.10	e2.0	111			125	93
28	e19	e6.0	e0.60	e0.40	e0.20	e0.10	e10	78	39	98 78 72	113 108	99
29	e18	e5.6	e0.50	e0.40		e0.10	e30	61	33	72		98
30 31	e18 e17	e4.6	e0.50 e0.50	e0.40 e0.40		e0.10 e0.10	e70 	52 72	30	60 50	105 101	101
TOTAL	1187	371.2	40.50	14.20	8.20	3.60	115.00	8261	4039	3760	6425	3398
MEAN	38.29	12.37	1.306	0.458	0.293	0.116	3.833	266.5	134.6	121.3	207.3	113.3
MAX MIN	119 17	17 4.6	4.0 0.50	0.50	0.40	0.20	70	772 45	671 30	742 27	992 30	240 84
AC-FT	2350	736	0.50 80	0.40 28 0.00	16	7 1	0.10 228 0.03	16390	8010	7460	12740	6740
CFSM	0.33	0.11	0.01	0.00	16 0.00	0.00	0.03	2.32	1.17	1.05	1.80	0.98
IN.	0.38	0.12	0.01	0.00	0.00	0.00	0.04	2.67	1.31	1.22	2.08	1.10
STATIST	TICS OF M	ONTHLY MEA	AN DATA F	OR WATER	YEARS 1997	- 2002	, BY WATER	YEAR (WY)	#			
MEAN	26.89	11.76	4.594	2.728	1.989	1.609	8.863	163.5	97.77	82.62	129.3	79.87
MAX	46.4	30.9	16.7		8.74		12.4	266	170	128	237	170
(WY) MIN	2001 13.8	2001 4.71	2001	2001 0.026	2001 0.000	2001	2001 3.83	2002 81.6	2000 26.3	2001 47.8	2000 70.1	2000 37.2
(WY)	2000	1999	0.75 1999	1999	1999	1999	2002	1998	1998	1999	1998	1999
SUMMAR	Y STATIST			2001 CALE	NDAR YEAR		FOR 2002 W	ATER YEAR		WATER YEA	RS 1997 -	2002#
ANNUAL	TOTAL			17358.9	0		27622.70	0				
ANNUAL	MEAN			47.5	6		75.68	8		52.3		
	T ANNUAL									75.7		2002
	ANNUAL M T DAILY M			202	Jul 30		992	Aug 17		26.8	Aug 17	1998
	DAILY ME				0 Dec 29			0 Mar 6			0 Jan 8	
ANNUAL	SEVEN-DA	Y MINIMUM			6 Dec 25		0.10	0 Mar 6		0.0	0 Jan 8	1999
	M PEAK FL							Aug 17		d1700	Aug 17	2002
	M PEAK ST			24420			45.72 54790	2 Aug 17		45.7 37920	2 Aug 17	2002
	RUNOFF (34430 0.4	1		0.6	б		0.4		
ANNUAL	RUNOFF (INCHES)		5.6			8.9			6.1		
	CENT EXCE			119			181			131		
	CENT EXCE			21			19 0.10	n		18 0.1	0	
30 PER	CENI EVCE	פתםי		6.2			0.10	U		0.1	U	

See Period of Record; partial years used in monthly statistics From Dec. 29 to 31 From Mar. 6 to Apr. 25 From Jan. 8 to Apr. 17, 1999 and Peb. 18 to Apr. 17, 2000

a b

From rating extended above 395 ft³/s Estimated

15484000 SALCHA RIVER NEAR SALCHAKET

LOCATION.--Lat $64^{\circ}28'22''$, long $146^{\circ}55'26''$, in $NE^{1}/_{4}$ sec. 22, T. 5 S., R. 4 E. (Big Delta B-6 quad), Fairbanks North Star Borough, Hydrologic Unit 19040505, on right bank 0.2 mi upstream from bridge on Richardson Highway, 0.5 mi east of Sno-Shu Inn, 2 mi upstream from mouth, and 6 mi southeast of Salchaket.

DRAINAGE AREA.--2,170 mi^2 , approximately.

PERIOD OF RECORD.--July 1909 to August 1910, published as "at mouth" (no winter records), October 1948 to current year.

GAGE.--Water-stage recorder. Datum of gage is 631.85 ft above sea level. Prior to August 10, 1910, nonrecording gage at site 1.5 mi downstream at different datum. October 1, 1948, to April 24, 1953, nonrecording gage, and April 25, 1953 to October 16, 1967, water-stage recorder at site 800 ft downstream at same datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

Gage

Discharge

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 10,000 $\mathrm{ft^3/s}$ and maximum (*).

Gage

Discharge

	Date	Time		(ft ³ /s)	Height (ft)		Dat	е	Time	Discharge (ft³/s)	height (ft)	
	May 1	6 1500		10500	11.50		July	7	0800	10500	11.52	
	May 2	2 0330		14000	12.72		Aug	19	0500	27300*	16.40*	
	July	4 2100		11800	11.99							
			DISCHA	ARGE, in C		YEAR OCTO		TO SEP	TEMBER 20	02		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1150	e530	e360	e240	e210	e150	e140	e1100	1880	1320	1900	3700
2	1140	e520	e350	e240	e200	e150	e140	e3400	2530	1260	1700	3600
3	1120	e510	e340	e230	e200	e150	e140	e5100	3660	1690	1560	3820
4 5	1100 1100	e510 e500	e320 e310	e230 e230	e200 e190	e150 e150	e140 e140	e5700 e4200	3030 2440	9510 9480	1460 1380	3790 3580
6 7	1150 1310	e500 e500	e300 e300	e230 e230	e190 e190	e150 e150	e140 e140	e3400 e2700	2080 2090	7970 10100	1320 e1280	3490 e4090
8	1560	e490	e300	e230	e190	e150	e140	e3000	1980	7600	e1270	e5780
9	1540	e490	e290	e230	e190	e150	e140	e4400	1800	e5000	1360	5460
10	1410	e490	e290	e230	e180	e150	e140	e7000	1590	3720	1940	4880
11	e1300	e480	e290	e230	e180	e150	e140	e9700	1480	3130	2960	4460
12	e1200	e470	e280	e230	e170	e150	e140	e7800	3690	2700	2880	4070
13	e1100	e460	e280	e230	e170	e150	e140	e6600	e5000	2380	2620	3730
14	e1000	e450	e270	e230	e170	e150	e140	6510	3970	2430	2550	3460
15	e930	e440	e270	e230	e170	e150	e140	8170	4250	2200	2400	3240
16	e850	e430	e260	e230	e170	e150	e140	9590	3620		2310	3070
17	e780	e420	e260	e230	e170	e140	e140	8500	2630	1780	e5400	2920
18	e750	e420	e260	e230	e170	e140	e140	8920	2060	1660	e18900	2830
19	e710	e410	e260	e230	e160	e140	e140	10300	1710	1570	23900	2820
20	e680	e410	e250	e230	e160	e140	e140	11300	1510	1500	17100	2950
21	e660	e410	e250	e220	e160	e140	e140	11700	1990		11900	2880
22	e650	e400	e250	e230	e160	e140	e140	12700	4730	e2810	9330	2740
23	e620	e400	e250	e230	e160	e140	e150	10500	5540	e2430	9190	2600
24 25	e600 e590	e400	e250	e220	e160	e140	e160 e170	8400	3850	2060	8090 6980	2480 2390
25	e590	e400	e250	e210	e160	e140	e170	6740	e2690	1820	6980	2390
26	e570	e400	e240	e210	e150	e140	e180	5700	2200		6200	2330
27	e570	e400	e240	e210	e150	e140	e210	5190	1950	3070	5480	2280
28	e560	e390	e240	e210	e150	e140	e250	4240	1770		4910	2250
29 30	e550 e540	e380 e370	e240 e240	e210 e210		e140 e140	e310 e520	2820 2150	1580 1410	2500 2410	4470 4170	2210 2210
31	e540		e240	e210		e140		1860	1410	2150	3910	
шошат.	20220	12200	0.5.2.0	6000	4880	4500	E020	100200	00710	104070	170000	100110
TOTAL MEAN	28330 913.9	13380 446.0	8530 275.2	6990 225.5	174.3	4500 145.2	5030 167.7	199390 6432	80710 2690	104870 3383	170820 5510	100110 3337
MAX	1560	530	360	240	210	150	520	12700	5540	10100	23900	5780
MIN	540	370	240	210	150	140	140	1100	1410	1260	1270	2210
AC-FT	56190	26540	16920	13860	9680	8930	9980	395500	160100	208000	338800	198600
CFSM	0.42	0.21	0.13	0.10	0.08	0.07	0.08	2.96	1.24	1.56	2.54	1.54
IN.	0.49	0.23	0.15	0.12	0.08	0.08	0.09	3.42	1.38	1.80	2.93	1.72
STATIST	TICS OF N	MONTHLY MEAN	N DATA	FOR WATER	YEARS 194	19 - 2002,	BY WATER	YEAR (# (YW			
MEAN	1081	503.6	353.4	258.5	209.2	189.1	399.0	4276	3802	2656	3075	2453
MAX	1969	1028	730	471	449	377	1373	8666	8640	7330	13350	6186
(WY)	1994	1994	1994	1992	1994	1992	1993	1962	1964	1949	1967	1952
MIN	484	230	160	130	62.0	60.0	104	1564	963	568	717	636
(WY)	1959	1954	1954	1954	1953	1953	1974	1964	1969	1958	1966	1966

See Period of Record Estimated

15484000 SALCHA RIVER NEAR SALCHAKET—Continued

SUMMARY STATISTICS	FOR 2001 CALEN	DAR YEAR	FOR 2002 WA	TER YEAR	WATER YEARS	1949	- :	2002#
ANNUAL TOTAL	501020		727540					
ANNUAL MEAN	1373		1993		1613			
HIGHEST ANNUAL MEAN					2957			1967
LOWEST ANNUAL MEAN					796			1999
HIGHEST DAILY MEAN	10700	Jul 31	23900	Aug 19	94100	Aug :	L4 :	1967
LOWEST DAILY MEAN	a240	Dec 26	b140	Mar 17	c60	Mar	1	1953
ANNUAL SEVEN-DAY MINIMUM	241	Dec 25	140	Mar 17	60	Mar	1	1953
MAXIMUM PEAK FLOW			27300	Aug 19	97000	Aug :	L4 :	1967
MAXIMUM PEAK STAGE			16.40	Aug 19	21.78	Aug 1	14	1967
ANNUAL RUNOFF (AC-FT)	993800		1443000		1169000			
ANNUAL RUNOFF (CFSM)	0.63		0.92	!	0.74			
ANNUAL RUNOFF (INCHES)	8.59		12.47	,	10.10			
10 PERCENT EXCEEDS	3350		5420		3950			
50 PERCENT EXCEEDS	620		540		640			
90 PERCENT EXCEEDS	280		140		170			

[#] See Period of Record
a From Dec. 26 to Dec. 31
b From Mar. 17 to Apr. 22
c Monthly mean published for Mar. 1953

15485500 TANANA RIVER AT FAIRBANKS

LOCATION.--Lat $64^{\circ}47'34''$, long $147^{\circ}50'20''$, in $NE^{1}/_{4}$ $SW^{1}/_{4}$ sec. 25, T. 1 S., R. 2 W. (Fairbanks D-2 quad), Fairbanks North Star Borough, Hydrologic Unit 19040507, on right bank at the end of Groin No. 1 on Corps of Engineers flood-protection levee, 1.0 mi south of Fairbanks International Airport, and 1.0 mi upstream from Chena River.

DRAINAGE AREA.--Undefined. Part of river flows through Salchaket Slough and is ungaged.

PERIOD OF RECORD. -- June 1973 to current year.

GAGE.--Water-stage recorder. Datum of gage is 400 ft above sea level. Prior to September 14, 1973, nonrecording gage, and September 14, 1973 to June 14, 1985, water-stage recorder, at site 2.8 mi upstream at same datum.

REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of August 16, 1967 reached a stage of 34.4 ft, from floodmarks at site then in use; discharge, about 125,000 ft³/s, contained in reports of the Corps of Engineers.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAF	R APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	19500 19300 19000 18800 18600	e11000 e11000 e11000 e11000 e11000	e7900	e6500 e6500 e6500 e6400 e6400	e6200 e6200 e6200 e6200 e6200	e6200 e6200 e6200 e6200 e6200	e6200 e6200 e6200 e6200 e6200	e9000 e9900 e13000 e17000 e21000	34700 35400 36400 36600 35000	42700 43300 45000 49200 58600	57300 57600 54900 51700 52500	42200 40900 39700 38400 36800
6 7 8 9 10	18800 19000 19100 19200 19000	e12000 e12000 e12000 e12000 e11000	e7500	e6400 e6400 e6400 e6400	e6200 e6200 e6200 e6200 e6200	e6200 e6200 e6200 e6200 e6200	e6200 e6200 e6200 e6200 e6200	e19000 e17000 e17000 e19000 e20000	33700 34100 34500 34600 35500	58500 57200 58500 57600 54800	54300 56200 57000 56500 58500	36800 38400 41900 42200 39600
11 12 13 14 15	18600 18200 18000 17000 15700	e10000 e10000 e9900 e9700 e9600	e7200 e7200 e7200 e7200 e7200	e6400 e6300 e6300 e6300	e6200 e6200 e6200 e6200 e6200	e6200 e6200 e6200 e6200 e6200	e6200 e6200 e6200 e6200 e6300	e25000 e29000 e33000 e35000 36500	37600 37900 42900 46100 45000	51000 47800 47900 48900 49800	56000 56300 56800 57100 53000	37300 35100 33600 32900 32000
16 17 18 19 20	15000 14200 13100 12800 e13000	e9500 e9300 e9300 e9200		e6300 e6300 e6300 e6300	e6200 e6200 e6200 e6200 e6200	e6200 e6200 e6200 e6200 e6200	e6300 e6400 e6400 e6400 e6400	39000 39100 38100 40200 44400	43600 41100 39400 40000 40800	50500 51700 53300 55000 55900	48900 49100 57900 69700 70500	30800 29700 28800 28400 28200
21 22 23 24 25	e13000 e13000 e13000 e12000 e12000	e9100 e9000 e8900 e8900 e8900	e6900	e6300 e6300 e6300 e6300 e6200	e6200 e6200 e6200 e6200 e6200	e6200 e6200 e6200 e6200 e6200	e6400 e6400 e6400 e6400 e6400	46900 51500 53300 50800 47800	40700 42000 43000 42900 41500	55900 57000 59000 59900 61600	67100 62300 63900 66900 64500	27600 26700 26000 25400 25000
26 27 28 29 30 31	e12000 e12000 e12000 e11000 e11000	e8800 e8700 e8700 e8600 e8300		e6200 e6200 e6200 e6200 e6200 e6200	e6200 e6200 e6200	e6200 e6200 e6200 e6200 e6200 e6200	e6600 e6800 e7000 e7400 e8000	45900 45400 44600 40500 36700 34500	43200 43400 41200 41000 42400	62700 63000 61400 59000 60100 58500	60300 54700 50000 46800 44100 42800	25300 26100 26500 27300 26800
	477900 15420 19500 11000 947900	297600 9920 12000 8300 590300	221700 7152 8200 6500 439700	196000 6323 6500 6200 388800	173600 6200 6200 6200 344300	192200 6200 6200 6200 381200	192800 6427 8000 6200	1019100 32870 53300 9000	1186200 39540 46100 33700 2353000	1695300 54690 63000 42700 3363000		976400 32550 42200 25000 1937000
STATIS	TICS OF N	MONTHLY ME	EAN DATA I	FOR WATER	YEARS 197	3 - 2002	2, BY WATE	R YEAR (W	Y)#			
MEAN MAX (WY) MIN (WY)	13540 20720 2001 8669 1997	7706 10370 1986 5000 1977	6166 8090 1986 4500 1977	5611 7135 1986 4016 1974	5413 6700 1991 3207 1974	5361 6761 1993 3100 1974	12700 1995 4230 1974	1991 14810 1998	51350 1992 25120 1978	66090 1992 39550 1996	1997 34680 1996	27450 44880 1990 16950 1976
					ENDAR YEAR		FOR 2002	WATER YEA	R	WATER YE	ARS 1973	- 2002#
		MEAN MEAN MEAN			Aug 1		8384000 22970 70500	Aug 2	0	20130 22970 16080 92400	Jul 2:	2002 1996 2 1986
HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS					Mar 25 Mar 25		FOR 2002 8384000 22970 70500 b6200 6200 72500 24. 16630000 55400 12000 6200	Jan 2 Jan 2 Aug 1 57 Aug 1	5 5 9 9	3100 3100 96400 26. 14580000 50300 9800 5000	Feb 1 Feb 1 Jul 2: 25 Aug 1	4 1974 4 1974 2 1986 4 1997

See Period of Record, partial years used in monthly statistics From Mar. 25 to Apr. 8 From Jan. 25 to Apr. 14 From Feb. 14 to Mar. 31,1974

Estimated

15493000 CHENA RIVER NEAR TWO RIVERS

LOCATION.--Lat $64^{\circ}54'10''$, long $146^{\circ}21'25''$, in NE $^{1}/_{4}$ sec. 20, T. 1 N., R. 7 E. (Big Delta D-5 quad), Fairbanks North Star Borough, Hydrologic Unit 19040506, on left bank about 200 ft upstream from bridge at mi 39.5 on the Chena Hot Springs Highway, 15 mi upstream from South Fork Chena River, 22 mi east of Two Rivers, and 41 mi east of Fairbanks.

DRAINAGE AREA --937 mi²

PERIOD OF RECORD. -- October 1967 to current year.

GAGE.--Water-stage recorder. Datum of gage is 719.7 ft above sea level from datum used by Alaska Department of Transportation and Public Facilities. Prior to April 25, 1994, water stage recorder at site 2.5 mi downstream at datum of 700 ft.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Corps of Engineers meteor-burst and GOES satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of August 13, 1967 reached a stage of 26.6 ft at site and datum of gage in use prior to April 25, 1994, from floodmarks, discharge not determined.

		DISCHA	ARGE, CUE	BIC FEET	PER SECOND, DAIL	WATER Y MEAN		BER 2001 '	TO SEPTE	MBER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	562 554 539	e255 e245 e240	e195 e195 e195	e155 e155 e155	e130 e130 e130	e98 e98 e98	e94 e94 e94	e1200 e2200 e2800	798 1550 1590	590 577 2360	976 875 810	1860 1820 1770
4 5 6	533 532 599	e230 e225 e220	e190 e190 e185	e155 e155 e155	e125 e125 e125	e98 e98 e98	e94 e94 e94	e2100 e1500 e1060	1260 1050 1110	6800 3280 5580	756 716 675	1670 1580 1630
7 8 9	747 808 759	e215 e210 e205	e185 e185 e180	e155 e155 e155	e125 e120 e120	e96 e96 e96	e94 e94 e94	1120 1310 2300	1090 909 795	5870 3100 2040	647 654 729	2460 2490 2260
10	710	e205	e180	e155	e120	e96	e94	4130	716	1590	1000	2090
11 12 13 14	685 648 580 516	e205 e205 e205 e205	e175 e175 e170 e170	e155 e155 e150 e150	e120 e115 e115 e115	e96 e96 e96	e94 e94 e94 e94	3600 3250 3560 4410	879 2810 2570 1960	1320 1130 1390 1230	1200 1130 1140 1120	1890 1730 1610 1500
15	e500	e205	e165	e150	e110	e96	e94	5440	1780	993	1000	1420
16 17 18	e470 e415 e400	e205 e200 e200	e165 e165 e165	e150 e150 e150	e110 e110 e110	e96 e96 e96	e94 e94 e94	5700 5030 5250	1320 1040 853	871 794 737	1160 5320 e9600	1340 1270 1250
19 20	e385 e370	e200 e200	e160 e160	e145 e145	e105 e105	e96 e96	e96 e96	5300 5220	754 817	725 787	7850 6210	1250 1290
21 22 23	e355 e345 e330	e200 e200 e200	e160 e160 e160	e145 e145 e145	e105 e105 e105	e96 e96 e96	e98 e98 e100	5520 4650 3570	1290 1680 1560	1740 1360 1040	4910 5180 5490	1260 1210 1150
24 25	e315 e300	e200 e200	e160 e155	e140 e140	e100 e100	e94 e94	e100 e105 e110	2770 2270	1140 933	874 886	4260 3640	1100 1070
26 27 28	e295 e290 e285	e200 e195 e195	e155 e155 e155	e140 e140 e135	e100 e98 e98	e94 e94 e94	e120 e135 e160	2010 1780 1230	858 804 721	1570 1740 1610	3110 2720 2440	1040 1040 1020
29 30 31	e275 e265 e260	e195 e195 	e155 e155 e155	e135 e135 e135		e94 e94 e94	e220 e370 	954 821 788	668 632 	1630 1380 1140	2220 2060 1910	1050 1150
TOTAL MEAN	14627 472	6260 209 255	5275 170	4585 148 155	3176 113	2972 95.9 98	3400 113	92843 2995	35937 1198	56734 1830	81508 2629	45270 1509
MAX MIN AC-FT	808 260 29010	195 12420	195 155 10460	135 9090	130 98 6300	94 5890	94 6740	5700 788 184200	2810 632 71280	6800 577 112500	9600 647 161700	2490 1020 89790
CFSM IN.	0.50 0.58	0.22 0.25	0.18 0.21	0.16 0.18	0.12 0.13	0.10 0.12	0.12 0.13	3.20 3.69	1.28	1.95 2.25	2.81 3.24	1.61 1.80
STATIST	TICS OF M	ONTHLY ME	AN DATA	FOR WATER	YEARS 1968	3 - 2002	2, BY WATER	YEAR (WY	7)#			
MEAN MAX	568 1656	272 617	186 369	132 242	107 246	93.9 171	222 578	1878 4210	1359 4038	1050 2505	1310 3207	1145 2702
(WY) MIN	1987 260	1987 120	1994 85.5	1994 38.1	1994 20.2	1991 21.9	1989 68.3	1971 625	1992 323	1984 380	1969 437	1990 455
(WY)	1969	1969	1977	1970	1970	1970	1982	1998	1969	1976	1976	1976
	STATISTI	CS	FOR		NDAR YEAR	F	FOR 2002 WA	TER YEAR		WATER YEAR	RS 1968 -	2002
				213817 586			352587 966			697 1080 398		1971 1997
HIGHEST LOWEST ANNUAL	DAILY ME	EAN AN Y MINIMUM		3640 a120 120	Jul 30 Mar 25 Mar 25		9600 b94 94 11000	Aug 18 Mar 24 Mar 24 Aug 18		17700 c20 20 20	Feb Feb	3 1992 6 1970 6 1970 3 1992
MAXIMUN ANNUAL ANNUAL	1 PEAK ST. RUNOFF (. RUNOFF (AGE AC-FT) CFSM)		424100 0.			21.2 699400 1.0	6 Aug 18		d22.0 505200 0.7)4 Jun /4	3 1992
10 PERC 50 PERC	RUNOFF (CENT EXCE CENT EXCE CENT EXCE	EDS EDS		8. 1410 295 140	49		14.0 2450 275 96	0		10.1 1630 325 84	.1	

From Mar. 25 to Apr. 9 From Mar. 24 to Apr. 17 From Feb. 6 to Mar. 12, 1970 At site and datum then in use Estimated

15511000 LITTLE CHENA RIVER NEAR FAIRBANKS

LOCATION.--Lat $64^\circ53'10''$, long $147^\circ14'50''$, in $SW^1/_4$ $NE^1/_4$ sec. 25, T. 1 N., R. 2 E. (Fairbanks D-1 quad), Fairbanks North Star Borough, Hydrologic Unit 19040506, on downstream side of left bridge abutment at mi 11.9 Chena Hot Springs Highway, 22.5 mi upstream from mouth, and 14 mi northeast of Fairbanks.

DRAINAGE AREA. -- 372 mi2.

PERIOD OF RECORD. -- August 1966 to current year.

GAGE.--Water-stage recorder. Datum of gage is 458.79 ft above sea level.

REMARKS.--Records good except for estimated daily discharges, which are poor. Corps of Engineers meteor-burst and NOAA telephone telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 188 e78 e60 e29 e28 e27 e27 e110 250 188 324 485 2 e58 e28 e27 e27 e260 268 289 472 184 e84 e29 185 3 180 e94 956 e29 e28 e27 e27 e720 600 348 266 452 e28 e27 e740 4 180 e96 e56 e29 e28 606 1280 247 434 5 178 235 425 e96 e54 e29 e28 e27 e28 e660 442 888 6 193 e90 e50 e29 e28 e27 e28 e420 403 959 225 426 e29 233 e84 e48 e28 e27 e28 e390 357 1090 216 526 8 230 e80 e46 e29 e28 e2.7 e28 e440 313 734 223 544 212 e28 e27 286 505 e78 e44 e29 e29 e700 563 241 475 10 e200 e78 e29 e28 e29 e870 258 247 e42 e27 466 e76 e40 e27 11 e185 e29 e27 e29 e930 401 250 449 244 12 e170 e74 e38 e29 e27 e27 e29 e870 278 356 239 429 e27 13 e160 e74 e38 e29 e27 e30 e850 433 321 244 410 e27 e140 e72 e29 e27 e30 e950 424 293 246 395 14 e36 15 e130 e70 e36 e29 e27 e27 e30 e1000 381 270 235 382 16 e70 e27 e27 e1100 e110 17 e70 e34 e29 e27 e27 e32 1250 280 235 616 357 e70 e29 e27 e27 1140 250 222 351 18 e100 e34 e33 1300 e100 e70 e32 e28 e27 e27 e34 2.0 e98 e70 e32 e28 e27 e27 e34 1030 227 216 1230 351 e27 978 e98 e68 e28 e27 228 221 22 e96 e68 e32 e28 e27 e26 e35 832 240 205 841 334 e27 e96 e68 e32 e28 e26 e36 693 243 192 842 23 323 e27 589 25 e94 e66 e30 e28 e27 e26 **638** 511 202 190 765 308 e92 e30 e28 e40 e66 e27 457 260 307 716 305 27 e90 e66 e30 e28 e27 e26 e43 421 281 577 656 321 e84 e27 359 231 559 604 324 28 e64 e30 e28 e26 e46 e30 ---546 29 e80 e64 e28 e26 e52 312 566 30 e78 e62 e29 e28 e26 e65 284 202 454 536 369 e76 e29 e27 264 377 e28 505 31 TOTAL 4269 2234 1202 886 766 828 1018 21210 9172 13288 16147 11856 137.7 28.58 MEAN 74.47 38.77 27.36 26.71 33.93 684.2 305.7 428.6 520.9 395.2 MAY 233 96 60 20 28 27 65 1250 606 1280 1300 511 27 26 28 MIN 76 62 29 27 110 202 183 216 305 AC-FT 8470 4430 2380 1760 1520 1640 2020 42070 18190 26360 32030 23520 CESM 0.37 0 20 0.10 0 08 0.07 0 07 0.09 1.84 0.82 1.15 1.40 1.06 1.33 0.43 0.22 0.12 0.09 0.08 0.08 0.92 IN. 0.10 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1966 - 2002, BY WATER YEAR (WY)# 192.2 103.1 69.78 35.15 30.84 292.9 319.8 MEAN 46.92 89.08 554.6 343.0 385.4 MAX 490 264 176 112 74.8 72 0 270 1217 932 665 2147 686 1987 1994 2001 1993 (WY) 1986 1987 1993 1991 1992 1981 1967 1985 MIN 69.8 32.0 22.5 7.90 6.00 3.23 19.1 99.2 124 (WY) 1967 1967 1978 1970 1970 1967 1970 1998 1998 1997 1997 1966 SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1966 - 2002# ANNUAL TOTAL 59592 82876 207.5 ANNUAL MEAN 163.3 227.1 HIGHEST ANNUAL MEAN 414 1967 LOWEST ANNUAL MEAN 103 1997 HIGHEST DAILY MEAN 894 1300 12000 Aug 13 1967 Jun 9 Aug 18 LOWEST DAILY MEAN a29 Dec 30 b26 Mar 22 c0.00 Mar 11 1967 ANNUAL SEVEN-DAY MINIMUM 22 Mar 11 1967 Mar 0.00 MAXIMUM PEAK FLOW 1490 Jul d17000 Aug 13 1967 31.95 MAXIMUM PEAK STAGE 20.47 Jul Aug 13 1967 f23.13 MAXIMUM PEAK STAGE May ANNUAL RUNOFF (AC-FT) 118200 164400 150300 (CFSM) 0.61 ANNUAL RUNOFF 0.44 0.56 ANNUAL RUNOFF (INCHES) 5.96 8.29 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 330 602 473 96 90 120 90 PERCENT EXCEEDS 27 25

See Period of Record; partial years used in monthly statistics

a From Dec. 30-31 b From Mar. 22-30

c From Mar. 11 to Apr. 15, 1967

d $\,$ From rating curve extended above 3,000 $\,$ ft $^3/s$ on basis of contracted-opening determination of peak flow

e Estimated

f Backwater from ice

15514000 CHENA RIVER AT FAIRBANKS

LOCATION.--Lat $64^{\circ}50'45''$, long $147^{\circ}42'04''$, in $NW^{1}/_{4}$ sec. 11, T. 1 S., R. 1 W. (Fairbanks D-2 quad), Fairbanks North Star Borough, Hydrologic Unit 19040506, on right bank 100 ft downstream from Steese Highway Bridge, 800 ft upstream from Wendell Street bridge, 0.3 mi upstream from Noyes Slough, 11 mi upstream from mouth, and 11 mi downstream from Chena Slough.

DRAINAGE AREA. -- 1,995 mi².

PERIOD OF RECORD.--July 1947 to September 1948 (no winter records), October 1948 to current year.

GAGE.--Water-stage recorder and supplementary gage. Datum of gage is 422.92 ft above sea level. Supplementary gage, Chena River at Lathrop Street (15514003), 1.6 mi downstream on left bank, used during winter period. See WSP 1936 and 2136 for history of changes prior to April 27, 1968.

REMARKS.--Records are good except for estimated daily discharges, which are fair. Regulation during high-flow periods began July 9, 1981 at Moose Creek Dam 31.8 mi upstream. Flows on August 19-21 were regulated this year. GOES satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD--Outstanding floods occurred in early May 1905 and 1911, late August 1930, and May 11-14, 1937. See WDR AK-90-1 for more information.

1101		DISCHA	RGE, CUBI	C FEET	PER SECOND,		YEAR OCTOR	3ER 2001	TO SEPTE	MBER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	1180 1160 1140 1120	e460 e470 e490 e530	e400 e400 e400 e400	e240 e230 e230 e230	e225 e225 e225 e225	e225 e225 e225 e225	e230 e230 e230 e235	e700 e3000 4560 4920	1970 1890 2130 2780	1340 1290 1300 2410	2270 2040 1870 1740	3600 3440 3340 3240
5	1110	e560	e380	e230	e225	e225	e235	3750	2470	6280	1630	3140
6 7 8 9 10	1120 1160 1260 1350 1360	e540 e520	e330 e320	e230 e230 e230 e230 e230		e225 e225 e225 e225 e225	e235 e235 e235 e235 e240	2820 2500 2680 3500 5370	2170 2100 2100 1850 1700	5940 6720 7790 5780 4130	1560 1500 1450 1420 1450	3080 3070 3540 3790 3620
11	1320	e500	e290	e230	e225	e225	e240	6890	1580	3410	1560	3460
12 13 14 15	1280 1170 e960 e860	e480 e480 e470 e460	e290 e280 e270 e260 e260	e230 e230 e230 e230 e230	e225 e225 e225 e225 e225	e225 e225 e225 e225 e225	e245 e245 e245 e245	6340 5520 5530 6240	1520 2490 3170 2880	2980 2680 2540 2460	1810 1870 1860 1850	3290 3110 2960 2830
16 17 18 19	e780 e720 e680 e640	e460 e450 e450 e450	e260 e260 e260	e230 e230 e230	e225 e225 e225	e225 e220 e220 e220	e245 e250 e255 e255	7050 7770 7230 7130	2710 2360 2010 1790	2220 2030 1880 1770	1830 1990 4650 7630	2720 2600 2500 2430
20	e640	e450	e250	e230	e230	e215	e255	7130	1640	1700	8760	2380
21 22 23	e640 e630 e650	e450 e450 e450	e250 e250 e250 e250 e240	e230 e230 e240 e240 e250 e250 e240	e225 e230 e230 e230 e230 e230 e230	e215 e215 e215	e255 e255 e255	6970 7010 6360	1560 1750 2220	1660 1940 2120	8890 8330 7690	2380 2350 2310
24 25	e630 e610	e450 e450	e250 e240	e250 e240	e230 e230	e215 e215	e260 e270	5250 4410	2400 2060	1920 1790	7980 7120	2230 2150
26 27 28	e590 e580	e450 e440	e240 e240	e240 e230	e230 e225 e225 	e220 e220	e280 e300	3820 3450 3160 2790	1810 1730 1630 1510	1820 2390 2850	6170 5450 4830	2110 2070 2050
29 30 31	e540 e500	e420 e410	e240 e240 e240	e225 e225		e225 e225	e313 e330 e410	2790 2410 2130	1510 1410	2800 2750 2560	4390 4060 3820	2030 2030 2050
TOTAL MEAN	27410 884.2	14280 476.0	8900 287.1	7205 232.4	6335 226.2 230 225	6885 222.1	7750 258.3	148390 4787	61390 2046	91250 2944	119470 3854	83870 2796
MAX MIN MED AC-FT	1360 470 780 54370	580 410 460 28320	400 240 260 17650	250 225 230 14290	230 225 225 12570	225 215 225 13660	410 230 245 15370	7770 700 4920 294300	3170 1410 1990 121800	7790 1290 2410 181000	8890 1420 2040 237000	3790 2030 2780 166400
CFSM IN.	0.44 0.51	0.24 0.27	0.14 0.17	0.12	0.11 0.12	0.11	0.13 0.14	2.40	1.03 1.14	1.48 1.70	1.93 2.23	1.40 1.56
STATIST	TICS OF M	MONTHLY ME	AN DATA FO	R WATER	YEARS 1948	- 2002	2, BY WATER	R YEAR (W	Y)#			
MEAN MAX (WY) MIN (WY)	1190 2413 1962 461 1967	591.0 1231 1994 297 1959	444.7 922 1994 194 1977	340.9 595 1987 163 1977	281.7 509 1968 120 1953	260.0 445 1968 120 1958	465.2 1406 1993 209 1977	3656 10250 1948 1050 1998	2555 6721 1949 816 1969	2045 6133 1949 665 1958	2483 13120 1967 682 1957	2169 5735 1962 615 1957
SUMMARY	STATIST	TICS	FOR 2		ENDAR YEAR		FOR 2002 W	ATER YEA	R	WATER YEA	ARS 1948 -	2002#
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM DRAK FLOW				389679 1068	Aug 10		583135 1598	Nua 2	1	1359 2603 713	Aug 1	1962 1958
MAXIMUM FEAR FLOW					Dec 25 Dec 25		b215 216 8950 8.5	Mar 2 Mar 1 Aug 2 8 Aug 2	0 9 1	c120 120 74400 d18.8	Feb 1 Feb 1 Aug 15	1957 1953 1953 1967 1967
MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS			772900 0.54 7.27 2380 630				8890 Aug 21 b215 Mar 20 216 Mar 19 8950 Aug 21 8.58 Aug 21 1157000 0.80 10.87 4090 560 225			984500 0.6 9.2 3070 710	58 26	
90 PERCENT EXCEEDS 340 225 230												

a b

See Period of Record Dec. 25 to 31 Mar. 20 to 25 Monthly means published for Feb. 1953 and Mar. 1958 Site then in use Estimated

15515500 TANANA RIVER AT NENANA

LOCATION.--Lat $64^{\circ}33'55''$, long $149^{\circ}05'30''$, in $SE^{1}/_{4}$ sec. 14, T. 4 S., R. 8 W. (Fairbanks C-5 quad), Hydrologic Unit 19040507, on left bank on east end of Alaska Railroad dock in Nenana, and 0.3 mi upstream from Nenana River.

DRAINAGE AREA.--25,600 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1962 to current year.

REVISED RECORDS. -- WSP 2136: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 338.50 ft above sea level. Prior to March 10, 1965, on right bank 280 ft downstream from railroad bridge 0.5 mi upstream at present datum. March 10, 1965 to March 23, 1968, nonrecording gage on railroad bridge 0.5 mi upstream at present datum.

REMARKS. -- Records fair. GOES satellite telemetry at station.

EXTREMES OUTSIDE PEROD OF RECORD.--Flood of May 1948 reached a stage of 15.9 ft, discharge, about 135,000 ${\rm ft}^3/{\rm s}$, contained in reports of Corps of Engineers.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAY AUG SEP MAR APR JUN JUL e12000 e9200 e7400 e6800 e6800 e6800 e10000 48000 58900 51900 22900 43400 2 22500 e12000 e9000 e7300 e6800 e6800 e6800 e12000 43100 50100 58100 50900 3 22200 e12000 e8800 e7300 e6800 e6800 e6800 e14000 43900 54600 57900 49200 21900 e7300 e12000 e8800 e6800 e6800 e6800 e18000 44100 60100 55800 47600 e6800 66700 5 21600 e13000 e7300 e6800 e24000 43200 45800 e8600 e6800 55300 6 21700 e13000 e8400 e7200 e6800 e6800 e7000 e22000 42100 71900 55900 44800 22200 e13000 e8400 e7200 e6800 e6800 e7000 e20000 42500 71800 58400 46700 e7000 8 22200 e13000 e8400 e7200 e6800 e6800 e19000 43500 70400 62300 49300 22000 e12500 e8200 e7200 e6800 e6800 e7000 e20000 43000 68900 62600 50700 10 22000 e12000 e8200 e7200 e6800 e6800 e7000 e22000 41800 65100 63500 49300 11 21600 e12000 e8200 e7200 e6800 e6800 e7000 e28000 42200 61000 46400 12 21200 e12000 e8200 e7000 e6800 e6800 e7000 e34000 42600 57600 55700 62100 43400 20200 e11000 e7000 13 e8000 e7000 e6800 e6800 e40000 44000 62600 41600 14 e20000 e11000 e7000 e6800 e6800 e7000 e43000 49000 55000 15 e19000 e11000 e8000 e7000 e6800 e6800 e7000 e46000 49600 55100 59500 39600 16 e18000 e11000 e8000 e7000 e6800 e6800 e7000 48400 48600 55500 38000 e6800 17 e17000 e11000 e7800 e7000 e6800 e7200 51400 47200 55200 58000 36300 e17000 18 e10000 e7800 e7000 e6800 e6800 e7200 51700 45600 56600 64200 34600 e16000 e10000 e7800 e7000 e6800 e6800 e7200 53500 45300 57900 33700 2.0 e15000 e10000 e7800 e7000 e6800 e6800 e7200 58500 48100 59100 80800 33800 e10000 21 e15000 e7600 e7000 e6800 e6800 e7200 61100 49900 58200 79700 33300 2.2 e14000 e10000 e7600 e6800 e6800 e6800 e7200 63000 51200 57600 76800 31700 e14000 e10000 e7600 e7200 50800 59300 30700 23 e6800 e6800 e6800 66000 75200 e14000 e10000 e7600 e6800 e6800 e6800 e7400 49400 60400 77900 29900 24 63600 e7400 2.5 e13000 e10000 e7600 e6800 e6800 e6800 60800 48400 61700 77700 29300 e10000 e6800 e6800 e6800 26 e13000 e7600 e7400 58100 48800 62100 73400 29700 27 e13000 e9800 e7400 e6800 e6800 e6800 e7700 57400 49100 62000 67800 32000 e13000 e7400 e6800 e8000 47400 61800 28 e9600 e6800 e6800 55300 33300 e9600 29 e12000 e7400 e6800 e6800 e8400 51900 46200 60100 57300 34300 e7400 --e12000 47400 46700 30 e9400 e6800 e6800 e9200 60600 54300 34200 e12000 e7400 e6800 61400 TOTAL 331900 217800 190400 210800 216900 1265100 1380700 1861100 1985200 1192800 551200 248200 17780 11060 7230 46020 MEAN 8006 7026 6800 6800 40810 60040 64040 39760 MAX 22900 13000 9200 7400 6800 6800 9200 66000 51200 71900 80800 51900 12000 7400 6800 10000 41800 MIN 9400 6800 6800 6800 48000 52700 29300 18000 11000 8000 7000 6800 6800 7000 45900 60100 62300 38800 MED 46000 AC-FT 1093000 658300 492300 432000 377700 418100 430200 2509000 2739000 3691000 3938000 2366000 CFSM 0.69 0.43 0.31 0.27 0.27 0.28 1.59 1.80 2.50 1.55 0.27 2.35 TN 0.80 0.48 0.36 0.32 0.28 0.31 0.32 1.84 2.01 2.70 2.88 1.73 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1962 - 2002, BY WATER YEAR (WY)# MEAN 16950 9306 7385 6751 6537 6472 8703 31030 47590 59950 57010 33650 26870 14070 10770 15090 87390 76770 MAX 9065 8171 8161 62210 98210 57690 2001 1986 1995 1962 1986 1986 1986 1993 1963 1988 1990 MTN 11420 5517 4532 4694 4421 4071 5870 16030 29750 44920 41510 21710

1977

1977

1974

1974

1974

1964

1970

1996

1996

1976

1977

1977

(WY)

[#] See Period of Record, partial years used in monthly statistics

e Estimated

YUKON ALASKA

15515500 TANANA RIVER AT NENANA—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR	YEAR	FOR 2002 WAT	ER YE	EAR	WATER YEARS	1962	2 -	2002#
ANNUAL TOTAL	9238900		9652100						
ANNUAL MEAN	25310		26440			24180			
HIGHEST ANNUAL MEAN						29310			1967
LOWEST ANNUAL MEAN						19530			1970
HIGHEST DAILY MEAN	93300 Au	ıq 1	80800	Aug	20	183000	Aug	18	1967
LOWEST DAILY MEAN	7400 Ma	r 26	6800	Jan	22	4000	Mar	6	1974
ANNUAL SEVEN-DAY MINIMUM	a7400 Ma	ır 26	b6800	Jan	22	c4000	Mar	6	1974
MAXIMUM PEAK FLOW			81600	Aug	20	186000	Aug	18	1967
MAXIMUM PEAK STAGE			11.24	Aug	20	d18.90	Aug	18	1967
ANNUAL RUNOFF (AC-FT)	18330000		19140000			17520000			
ANNUAL RUNOFF (CFSM)	0.99		1.03			0.94			
ANNUAL RUNOFF (INCHES)	13.43		14.03			12.83			
10 PERCENT EXCEEDS	59600		60500			58200			
50 PERCENT EXCEEDS	13000		13000			12000			
90 PERCENT EXCEEDS	7600		6800			6200			

[#] See Period of Record, partial years used in monthly statistics
a From Mar. 26 to Apr. 7
b From Jan. 22 to Apr. 5
c From Mar. 6 to Mar. 20, 1974
d At site then in use

15515500 TANANA RIVER AT NENANA—Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1954-57, 1963-64, 1966-75, 1978-1995, and 2001 to current year.

PERIOD OF RECORD.--WATER TEMPERATURE: 1954 to 1956 (seasonal).

Date	Time	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
MAR									
22	1733	570		310	7.5	. 0	766	7.9	54
22	1750	470		310	7.5	. 0	766	8.0	55
22	1758	370		311	7.5	. 0	766	8.0	55
22	1811	255		311	7.5	. 0	766	8.0	55 55
22	1845	140		311	7.5	. 0	766	8.1	55
	1845	140		311	7.5	. 0	766	8.1	55
MAY	1610	100		1.01		1 5	868	0 0	
14	1610	190		171	7.7	1.5	767	9.3	66
14	1611	290		171	7.7	1.5	767	9.6	68
14	1614	380		171	7.8	1.5	767	9.9	70
14	1615	440		171	7.8	1.5	767	10.0	71
29	1654		245.0	205	8.0	12.1	745	9.0	86
29	1656		345.0	205	8.0	12.1	745	9.1	86
29	1657		410.0	205	8.0	12.1	745	9.1	86
29	1659		470.0	205	8.0	12.1	745	9.1	86
29	1700		520.0	205	8.1	12.1	745	9.1	86
JUL									
16	1550	550		208	8.0	17.3	762	9.3	97
16	1552	500		208	8.0	17.3	762	9.2	96
16	1553	460		208	8.0	17.3	762	9.2	96
16	1554	384		208	8.0	17.3	762	9.2	95
16	1556	295		208	8.0	17.3	762	9.1	95
29	1345	190		206	8.1	14.3	771	9.2	8.9
29	1348	350		206	8.1	14.3	771	9.2	8.9
29	1351	470		206	8.1	14.3	771	9.2	89
29	1355	550		206	8.1	14.3	771	9.2	89
29	1400	660		206	8.1	14.3	771	9.2	89
AUG	1100	000		200	0.1	11.5	,,_	٥. ٤	0,5
21	1552	140		181	7.7	9.2	747	11.3	100
21	1554	370		181	7.7	9.2	747	11.3	100
21	1556	500		181	7.6	9.2	747	11.2	100
21	1558	550		181	7.6	9.2	747	11.2	100
					7.7	9.2		11.2	
21	1600	680		180			747		100
30	1612		460.0	230	7.7	10.9	758	11.1	101
30	1614		350.0	230	7.5	10.9	758	11.1	101
30	1616		260.0	230	7.5	10.9	758	11.1	101
30	1617		190.0	229	7.5	10.9	758	11.1	101
30	1618		105.0	229	7.6	10.9	758	11.3	102

Date	Time	Medium code	Sample type	STREA WIDTH (FT)	M GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	QUALITY ASSUR- ANCE DATA INDICA- TOR CODE (99111)	REP- LICATE TYPE (CODE) (99105)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)
MAR													
22	1800	9	9	680		6600	20	3044	100		310	7.6	. 0
MAY													
14	1500	9	9	560	7.20	46100	20	3055	30		171	7.8	
29	1550	9	9	600	7.89	51000	20	3055	30		205	8.0	
JUL													
16	1430	9	9	591	8.29	55000	20	3055	100		208	8.0	
29	1310	9	9		8.88	60400	20	3055	30		206	8.1	
AUG													
21	1330	9	7	740	11.00	72500	20	3055	30	10.00	181	7.7	
30	1540	9	9	655	8.16	50000	20	3055	30		229	7.5	

15515500 TANANA RIVER AT NENANA—Continued

Date	(DEG C)		UV ABSORB ANCE 254 NM, WTR FLT (UNITS /CM) (50624)	UV ABSORB- ANCE 280 NM, WTR FLT (UNITS /CM) (61726)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	DIS-	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
MAR 22	0	4.7	.024	.018	766	8.2	56	150	45.0	9.28	4.11	126	2.24
	1.5	540 790	.406	.306	767 745	9.9 9.0	70 86	82 92	24.0 25.9	5.43 6.57	2.32	57 65	1.80
JUL 16	17.3	780 1300	.053	.039	762 771	9.2	96 89	98 98	28.6	6.43 6.11	3.48	70 68	1.98
AUG 21	9.0	380 210	.249	.185	747 758	11.3	79 101	88 110	25.3 31.0	6.01 7.67	2.58	59 76	1.41
30	10.9	210	.125	.091	756	11.1	101	110	31.0	7.67	3.39	76	1.43
Dati	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	TOT IT FIELD	ALKA- LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA,		SUM OF	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)
MAR 22 MAY	151	. 0	124	130	34.3	1.33	.1	14.7	202	187	E.002	.184	.049
14 29	69 78	.0	57 64	 	23.1 31.8	.45 .99	E.07 E.10	6.97 6.79	130 131	99 116	E.002 E.002	.081	E.009 <.015
29	85 82	.0	70 67		30.8 30.5	1.23 1.12	<.10 .11	6.98 6.61	126 129	122 120	<.002 <.002	.083	<.015 <.015
	72 93	.0	59 76		27.6 35.2	.76 1.13	E.09 E.11	7.64 8.86	132 145	107 135	E.002 E.002	.122	<.015 <.015
Dat	TOTAL e (MG/L AS N)	GEN,AM- MONIA + ORGANIC DIS. (MG/L	PHOS-	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO-PHOS-PHATE, DIS-SOLVED (MG/LAS P) (00671)	NITRO- GEN, TOTAL, SEDIMNT SUSP, (WEIGHT PERCNT) (62845)	PHOS- PHORUS SEDI- MENT SUSP.	ALUM- INUM SED, SUS PERCENT (30221)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	AN- TIMONY SED. SUSP. (UG/G) (29816)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC SED. SUSP. (UG/G) (29818)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)
MAR 22	GEN,AM- MONIA + ORGANIC TOTAL e (MG/L AS N)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHORUS DIS- SOLVED (MG/L AS P)	PHOS- PHATE, DIS- SOLVED (MG/L AS P)	GEN, TOTAL, SEDIMNT SUSP, (WEIGHT PERCNT)	PHOS- PHORUS SEDI- MENT SUSP. PERCENT	INUM SED,SUS PERCENT	INUM, DIS- SOLVED (UG/L AS AL)	TIMONY SED. SUSP. (UG/G)	MONY, DIS- SOLVED (UG/L AS SB)	SED. SUSP. (UG/G)	DIS- SOLVED (UG/L AS AS)
MAR 22 MAY 14 29	GEN,AM- MONIA + ORGANIC TOTAL e (MG/L AS N) (00625)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	GEN, TOTAL, SEDIMNT SUSP, (WEIGHT PERCNT) (62845)	PHOS- PHORUS SEDI- MENT SUSP. PERCENT (30292)	INUM SED, SUS PERCENT (30221)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	TIMONY SED. SUSP. (UG/G) (29816)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	SED. SUSP. (UG/G) (29818)	DIS- SOLVED (UG/L AS AS) (01000)
MAR 22 MAY 14 29 JUL 16 29	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)111.16452	GEN, AM-MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS-PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) <.007	GEN, TOTAL, SEDIMNT SUSP, (WEIGHT PERCNT) (62845)	PHOS-PHORUS SEDI-MENT SUSP. PERCENT (30292)	INUM SED, SUS PERCENT (30221) 7.0 6.6	INUM, DIS- SOLVED (UG/L AS AL) (01106)	TIMONY SED. SUSP. (UG/G) (29816)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	SED. SUSP. (UG/G) (29818)	DIS- SOLVED (UG/L AS AS) (01000)
MAR 22 MAY 14 29 JUL 16 29 AUG 21	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)111.16452	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .11 .33 .13 E.07	PHOS- PHORUS TOTAL (MG/L AS P) (00665) .027 2.13 .83 1.35	PHORUS DIS- SOLVED (MG/L AS P) (00666) <.004 .011 .006	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671) <.007 E.004 <.007	GEN, TOTAL, SEDIMNT SUSP, (WEIGHT PERCNT) (62845) <.10 <.10	PHOS-PHORUS SEDI-MENT SUSP. PERCENT (30292) .110 .070 .080	INUM SED, SUS PERCENT (30221) 7.0 6.6 7.8 8.1	INUM, DIS- SOLVED (UG/L AS AL) (01106) 1 32 16	TIMONY SED. SUSP. (UG/G) (29816) 1.5 1.2 2.2	MONY, DIS- SOLVED (UG/L AS SB) (01095) .17 .29 .47	SED. SUSP. (UG/G) (29818) 44 13 21	DIS- SOLVED (UG/L AS AS) (01000) .5 1.2 1.0
MAR 22 MAY 14 29 JUL 16 29 AUG 21 30	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)1164525733 BARIUM SED. E SUSP. (UG/G)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .11 .33 .13 E.07 E.08	PHOS-PHORUS TOTAL (MG/L AS P) (00665) .027 2.13 .83 1.35 1.47 1.24 .66 BERYL-LIUM SED. SUSP. (UG/G)	PHORUS DIS- SOLVED (MG/L AS P) (00666) <.004 .011 .006 E.003 E.004 .006 E.004 BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) <.007 E.004 <.007 C.007 E.004 <.007 C.007 E.004 <.007 C.007 E.004 <.007 E.004 E.007 E.004 E.004 E.004 E.004 E.007 E.004 E.004 E.007 E.007 E.004 E.007	GEN, TOTAL, SEDIMNT SUSP, (WEIGHT PERCNT) (62845) <.10 <.10 <.10 <.10 <.10	PHOS-PHORUS SEDI-MENT SUSP.PERCENT (30292) .110 .070 .080 .080 .080 .080 .080 CADMIUM DIS-SOLVED (UG/L AS CD)	INUM SED, SUS PERCENT (30221) 7.0 6.6 7.8 8.1 7.9 7.0 7.0 CHRO-MIUM SED. SUSP. (UG/G)	INUM, DIS- SOLVED (UG/L AS AL) (01106) 1 32 16 22 16 29	TIMONY SED. SUSP. (UG/G) (29816) 1.5 1.2 2.2 1.8 1.8	MONY, DIS- SOLVED (UG/L AS SB) (01095) .17 .29 .47 .34 .38	SED. SUSP. (UG/G) (29818) 44 13 21 16 15 14 15 COPPER SED. SUSP. (UG/G)	DIS- SOLVED (UG/L AS AS) (01000) .5 1.2 1.0 1.1 1.0 COPPER, DIS- SOLVED (UG/L AS CU)
MAR 22 MAY 14 29 JUL 16 29 AUG 21 30 Date	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)1164525733 BARIUM SED. E SUSP. (UG/G)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .11 .33 .13 E.07 E.08 .20 .12 BARIUM, DIS- SOLVED (UG/L AS BA)	PHOS-PHORUS TOTAL (MG/L AS P) (00665) .027 2.13 .83 1.35 1.47 1.24 .66 BERYL-LIUM SED. SUSP. (UG/G)	PHORUS DIS- SOLVED (MG/L AS P) (00666) <.004 .011 .006 E.003 E.004 .006 E.004 BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) <.007 E.004 <.007 C.007 E.004 <.007 C.007 E.004 <.007 C.007 E.004 <.007 E.004 E.007 E.004 E.004 E.004 E.004 E.007 E.004 E.004 E.007 E.007 E.004 E.007	GEN, TOTAL, SEDIMNT SUSP, (WEIGHT PERCNT) (62845) <.10 <.10 <.10 <.10 <.10 <.10 SUSP, (WEIGHT PERCNT) (62845)	PHOS-PHORUS SEDI-MENT SUSP.PERCENT (30292) .110 .070 .080 .080 .080 .080 .080 CADMIUM DIS-SOLVED (UG/L AS CD)	INUM SED, SUS PERCENT (30221) 7.0 6.6 7.8 8.1 7.9 7.0 7.0 CHRO-MIUM SED. SUSP. (UG/G)	INUM, DIS- SOLVED (UG/L AS AL) (01106) 1 32 16 22 16 29 19 CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	TIMONY SED. SUSP. (UG/G) (29816) 1.5 1.2 2.2 1.8 1.8 1.2 1.4 COBALT SEDI-MENT SUSP. (UG/G)	MONY, DIS- SOLVED (UG/L AS SB) (01095) .17 .29 .47 .34 .38 .30 .34 .30 .34	SED. SUSP. (UG/G) (29818) 44 13 21 16 15 14 15 COPPER SED. SUSP. (UG/G)	DIS- SOLVED (UG/L AS AS) (01000) .5 1.2 1.0 1.1 1.0 COPPER, DIS- SOLVED (UG/L AS CU)
MAR 22 MAY 14 29 JUL 16 29 AUG 21 30 Data	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)11	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .11 .33 .13 E.07 E.08 .20 .12 BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	PHOS-PHORUS TOTAL (MG/L AS P) (00665) .027 2.13 .83 1.35 1.47 1.24 .66 BERYL-LIUM SED. SUSP. (UG/G) (29822)	PHORUS DIS- SOLVED (MG/L AS P) (00666) <.004 .011 .006 E.003 E.004 .006 E.004 BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) <.007 E.004 <.007 C.007 E.004 <.007 C.007 E.004 <.007 C.007 E.004 <.007 E.004 C.007 E.004 E.00	GEN, TOTAL, SEDIMNT SUSP, (WEIGHT PERCNT) (62845) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.10	PHOS-PHORUS SEDI-MENT SUSP.PERCENT (30292) .110 .070 .080 .080 .080 .080 .080 CADMIUM DIS-SOLVED (UG/L AS CD) (01025)	INUM SED, SUS PERCENT (30221) 7.0 6.6 7.8 8.1 7.9 7.0 7.0 CHRO-MIUM SED. SUSP. (UG/G) (29829)	INUM, DIS- SOLVED (UG/L AS AL) (01106) 1 32 16 22 16 29 19 CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	TIMONY SED. SUSP. (UG/G) (29816) 1.5 1.2 2.2 1.8 1.8 1.2 1.4 COBALT SEDI- MENT SUSP. (UG/G) (35031)	MONY, DIS- SOLVED (UG/L AS SB) (01095) .17 .29 .47 .34 .38 .30 .34 .30 .34 .30 .34	SED. SUSP. (UG/G) (29818) 44 13 21 16 15 14 15 COPPER SED. SUSP. (UG/G) (29832)	DIS- SOLVED (UG/L AS AS) (01000) .5 1.2 1.0 1.2 .9 1.1 1.0 COPPER, DIS- SOLVED (UG/L AS CU) (01040)
MAR 22 MAY 14 29 JUL 30 Dat. MAR 221 30 Dat. MAR 22 MAY 14 29 JUL 16 16	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)111.16452574533 BARIUM SED. E SUSP. (UG/G) (29820)840780	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .11 .33 .13 E.07 E.08 .20 .12 BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	PHOS-PHORUS TOTAL (MG/L AS P) (00665) .027 2.13 .83 1.35 1.47 1.24 .66 BERYL-LIUM SED. SUSP. (UG/G) (29822) 1	PHORUS DIS- SOLVED (MG/L AS P) (00666) <.004 .011 .006 E.003 E.004 .006 E.004 BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06	PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) <.007 E.004 <.007 E.004 <.007 C.007 BORON, DIS-SOLVED (UG/L AS B) (01020)	GEN, TOTAL, SEDIMNT SUSP, (WEIGHT PERCNT) (62845) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.10	PHOS-PHORUS SEDI-MENT SUSP.PERCENT (30292) .110 .070 .080 .080 .080 .080 .080 .080 CADMIUM DIS-SOLVED (UG/L AS CD) (01025) E.02 E.03	INUM SED, SUS PERCENT (30221) 7.0 6.6 7.8 8.1 7.9 7.0 7.0 CHRO-MIUM SED. SUSP. (UG/G) (29829) 100 85	INUM, DIS- SOLVED (UG/L AS AL) (01106) 1 32 16 22 16 29 19 CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.5 <.8	TIMONY SED. SUSP. (UG/G) (29816) 1.5 1.2 2.2 1.8 1.8 1.2 1.4 COBALT SEDI-MENT SUSP. (UG/G) (35031)	MONY, DIS- SOLVED (UG/L AS SB) (01095) .17 .29 .47 .34 .38 .30 .34 COBALT, DIS- SOLVED (UG/L AS CO) (01035)	SED. SUSP. (UG/G) (29818) 44 13 21 16 15 14 15 COPPER SED. SUSP. (UG/G) (29832) 50 34	DIS- SOLVED (UG/L AS AS) (01000) .5 1.2 1.0 1.1 1.0 COPPER, DIS- SOLVED (UG/L AS CU) (01040)

YUKON ALASKA

15515500 TANANA RIVER AT NENANA—Continued

Date	IRON SEDI- MENT SUSP. PERCENT (30269)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD SED. SUSP. (UG/G) (29836)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM SEDI- MENT SUSP. (UG/G) (35050)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MAN- GANESE SED. SUSP. (UG/G) (29839)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY SED. SUSP. (UG/G) (29841)	MOLYB- DENUM SED. SUSP. (UG/G) (29843)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL SED. SUSP. (UG/G) (29845)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)
MAR 22. MAY	5.5	19	20	<.08	23	3.4	1100	89.0	.04	2	1.3	45	.25
14. 29.	3.4 4.6	209 25	13 20	.24 E.07	20 42	1.8 3.1	680 920	72.5 9.1	.03	1 2	. 7 . 9	37 56	2.71 1.79
29.	4.7 4.6	E6 E6	20 20	<.08	31 30	4.6 4.2	800 770	4.7 3.1	.04	3 2	1.1 1.2	46 43	.44
	4.0 4.0	88 42	18 12	.11	24 22	2.6 4.2	680 750	29.3 19.1	.20	1 <1	.7 1.2	38 46	2.09
Date	SELE- NIUM SED. SUSP. (UG/G) (29847)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER SED. SUSP. (UG/G) (29850)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM SEDI- MENT SUSP. (UG/G) (35040)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	THAL- LIUM SUS SED (UG/G) (49955)	TITA- NIUM SEDI- MENT SUSP. PERCENT (30317)	VANA- DIUM SED. SUSP. (UG/G) (29853)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC SED. SUSP. (UG/G) (29855)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	URANIUM SEDI- MENT SUSP. (UG/G) (35046)
MAR 22. MAY	М	. 9	<.5	<1	230	193	<50	.370	120	<.2	110	1	<50
14. 29.		E.3	<.5 <.5	<1 <1	230 220	105 118	<50 <50	.400	110 150	.9 1.5	76 120	3 2	<50 <50
JUL 16. 29.		.7	<.5 <.5	<1 <1	240 240	121 113	<50 <50	.450 .440	130 130	1.2	100 94	<1 3	<50 <50
AUG 21. 30.		.4	<.5 <.5	<1 <1	240 230	102 136	<50 <50	.400	110 120	.6 .6	77 75	4 2	<50 <50
Date	NATURAI DIS- SOLVEI	DIS- SOLVED (MG/L AS C)	G GANIC PARTIC TOTAL (MG/I AS C)	ORGANIC, PARTIC C. ULATE TOTAL (MG/I AS C)	IC INORG C- ORGAN PARTI TOTA (MG/	G + JIC JC. CARB AL SED L SUSP C) PERC	ORGA ON SUS PENI TOS ENT PERS	BON, GEN ANIC TIC S- WAT DED, SU FAL (M CENT AS	I,PAR M CULTE S FLT F ISP TH IG/L CE N) (M	LOW- MROUGH S NTRIF H	SEDI- MENT, CH SUS- PENDED I (MG/L) (1	PENDED [/DAY)	SED. SUSP. SIEVE DIAM. FINER THAN .062 MM (70331)
	83	1.0	<.1	.3	. 3	1.	6 -	<	.02	12	13 2	232	73
29.	68	11.7 3.7	1.6 1.1	8.6 5.8	10.2			. 4 . 5			050 3790 200 1660		46 72
29.	82	1.8 1.5	1.1	3.8	4.9			. 3			710 2540 940 3160		69 78
AUG 21. 30.	60	7.4 3.8	1.6 .5	7.2 4.4	8.8 5.0			. 4 . 4			910 3740 998 1350		61 55

15518080 LIGNITE CREEK ABOVE MOUTH NEAR HEALY

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1980 to 1981, 1986 to current year

Date	Time	STREAM WIDTH (FT) (00004)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164) (ATURE WATER (DEG C)	TEMPER- ATURE AIR (DEG C) (00020)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	THAN	SED. SUSP. FALL DIAM. % FINER THAN .004 MM (70338)	SED. SUSP. FALL DIAM. % FINER THAN .008 MM (70339)
OCT													
05 JUN	1845	23.0	2.76	22	10	3001	7.0	7.0	145	8.6			
21	1230	45.0	3.45	124	10	3001	5.0	10.5	3640	1220	11	15	22
	1645	39.8	2.56	78	10	3001	13.5	20.5	1320	278	29	40	50
AUG 09	1924	27.5	2.59	91	10	3001	9.5	8.5	2620	644	24	33	42
21	1247		2.74	108	10	3001	11.0		1970	574	23	33	44
SEP 20	1111	22.6	2.44	61	10	3001	4.0	2.0	1170	193	11	18	23
Date		SED. SUSP. FALL DIAM. % FINER THAN .016 MM (70340)	SED. SUSP. FALL DIAM. % FINER THAN .031 MM (70341)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	SED. SUSP. SIEVE DIAM. % FINER THAN .125 MM (70332)	SIEVE DIAM. % FINER THAN .250 MM	SIEVE DIAM FINE THAM	P. SUS E SIEV I. DIA ER % FIN I THA IM 1.00	P. SUSE E SIEV M. DIA ER % FIN N THA MM 2.00	SP. /E AM. VER AN MM			
OCT 05				47						-			
JUN 21		31	41	47	62	85	97	99	100)			
JUL 09 AUG		61	69	72	79	89	97	97	98	3			
09 21		51 54	60 63	66 65	81 72	96 83	100 98	 99	100				
SEP 20		29	33	37	47	68	95	99	100)			
27		40	42	55	75	91	97	98					

15564879 SLATE CREEK AT COLDFOOT

LOCATION.--Lat 67°15'17", long 150°10'24", in NW¹/₄ sec. 15, T. 28 N., R. 12 W. (Wiseman B-1 quad), Hydrologic Unit 19040601, on left bank 40 ft downstream from bridge on Dalton Highway, 1.1 mi upstream from mouth and 0.1 mi north of Coldfoot.

DRAINAGE AREA. -- 73.4 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Annual maximums, water years 1981-94. May 1995 to current year (no winter records in water years 1995-98).

REVISED RECORDS.--WRD AK-99-1: 1984(M), 1989(M), 1993(M), 1994(M), 1998 (M).

GAGE.--Water-stage recorder. Elevation of gage is 1050 ft above sea level, from topographic map. Prior to May 5, 1995, nonrecording gage at site 105 ft upstream at same datum. May 5, 1995 to May 22, 2002, recording gage at site 40 ft downstream at same datum.

REMARKS.--Records good except for the periods Oct. 1 to 12, 2001 and May 27 to July 10 which are fair and estimated daily discharges which are poor. GOES satellite telemetry at station.

DISCHARGE, in CFS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB APR MAY JUN JUL AUG SEP 75 e0 00 e0 20 270 e11 e3 0 e0 60 e0 00 e0 00 117 48 45 74 e10 e2.8 e0.60 e0.00 e0.00 e0.00 e0.20 258 115 46 43 3 71 e9.6 e2.6 e0.40 e0.00 e0.00 e0.00 e0.20 306 114 47 43 4 70 e9.4 e2.6 e0.40 e0.00 e0.00 e0.00 e0.20 337 110 45 43 5 71 e8.8 e2.4 e0.40 e0.00 e0.00 e0.00 e0.40 74 6 e2.2 e0.00 e0.00 e0.00 326 90 42 68 e8.6 e0.40 e0.60 e8.0 e2.0 e0.40 e0.00 e0.00 307 214 42 e7.6 e7.2 8 78 e2.0 e0.40 e0.00 e0.00 e0.00 e1.0 322 198 40 76 72 e1.8 e0.40 e0.00 e0.00 e0.00 e1.8 283 139 40 77 10 73 e0.00 e0.00 e0.00 240 41 73 73 73 11 e0.20 e0.00 e0.00 e0.00 222 45 e6.8 e1.6 e4.4 12 65 e0.20 e0.00 e0.00 e8.0 44 e0.00 268 89 92 13 e54 e6.4 e1.4 e0.20 e0.00 e0.00 e0.00 e12 209 89 57 190 232 e6.2 e0.20 e0.00 e0.00 e0.00 e18 54 179 14 e46 e1.4 83 15 60 153 e41 e6.0 e0.20 e0.00 e0.00 e0.00 e28 182 78 16 e36 e6.0 e1 2 e0.20 e0.00 e0.00 e0.00 e44 156 70 134 17 e32 e5.8 e0.20 e0.00 e0.00 e0.00 e60 143 70 64 122 e1.2 18 e29 e5.8 e1.0 e0.20e0.00 e0.00 e0.00 e100 125 66 58 113 e0.00 e0.00 e0.00 71 e27 e0.20 117 19 e5.6 e1.0 e160 64 120 20 e24 e5.6 e0.20 e0.00 e0.00 e0.00 e300 75 79 111 e1.0 160 e22 e5.4 e0.00 e0.00 e0.00 e0.00 71 106 22 e21 e5.2 e0.80 e0.00 e0.00 e0.00 e0.00 e800 129 61 64 99 2.3 e19 e5.0 e0.80 e0.00 e0.00 e0.00 e0.00e0.00 e1100 117 59 59 94 e0.80 e0.00 e0.00 e0.00 e1160 e18 91 e4.8 e0.00 25 e17 e4.6 e0.80 e0.00 e0.00 e0.00 e1310 98 55 53 94 e0.00 e0.00 e0.00 e15 27 e4.0 e0.60 e0.00 e0.00 e0.00 e0.20 855 320 63 51 170 28 e14 e3.6 e0.60 e0.00 e0.00 e0.00 e0.20 415 185 62 49 223 e0.60 ---50 e13 3.0 e12 e3 2 e0.60 e0 00 e0 00 e0.20 227 141 53 48 366 270 31 e11 e0.60 e0.00 e0.00 50 46 TOTAL. 1345 43 60 0 00 8917 60 2730 1636 191 4 6 40 0 00 1 00 6340 3522 0.000 0.000 0.033 MEAN 0.21 288 211 43.4 6.38 1.41 88.1 52.8 117 82 0.60 0.00 0.00 0.20 1330 337 MAX 214 366 MIN 11 3.2 0.60 0.00 0.00 0.00 0.00 0.20 98 50 40 43 AC-FT 2670 380 0.00 2.0 17690 12580 5410 3250 6990 86 13 0.00 0.72 CFSM 0.59 0.09 0.02 0.00 0.00 0.00 0.00 3.92 2.88 1.20 IN. 0.68 0.10 0.02 0.00 0.00 0.00 0.00 4.52 3.21 1.38 0.83 1.78 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1995 - 2002, BY WATER YEAR (WY)# MEAN 14.2 7.30 4.12 2.88 2.31 3.48 220 208 99.7 189 147 MAX 30.0 17.3 1999 12.1 1999 9.07 7.13 9.32 184 1995 88.5 378 308 435 212 1998 2001 1998 (WY) 1999 1998 MIN 16.2 2.28 1.41 0.12 0.000 0.000 0.000 71.7 128 54.7 52.8 (WY) 1997 1998 2002 2001 2001 2001 2001 2000 1997 1996 2002 1996

[#] See Period of Record; partial years used in monthly summary statistics

e Estimated

15564879 SLATE CREEK AT COLDFOOT—Continued

SUMMARY STATISTICS	FOR 2001 CALEND	AR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1995 - 2002
ANNUAL TOTAL	25845.50		24733.00			
ANNUAL MEAN	70.8		67.8		72.1	
HIGHEST ANNUAL MEAN					84.0	1999
LOWEST ANNUAL MEAN					65.9	2000
HIGHEST DAILY MEAN	1500	Aug 14	1330	May 26	a2850	May 26 1998
LOWEST DAILY MEAN	b0.00	Jan 13	c0.00	Jan 21	0.00	Jan 13 2001
ANNUAL SEVEN-DAY MINIMUM	0.00	Jan 13	0.00	Jan 21	0.00	Jan 13 2001
MAXIMUM PEAK FLOW			d	May 26	f4930	May 26 1998
MAXIMUM PEAK STAGE			17.54	May 26	19.73	May 26 1998
ANNUAL RUNOFF (AC-FT)	51260		49060		52230	
ANNUAL RUNOFF (CFSM)	0.96		0.92		0.98	
ANNUAL RUNOFF (INCHES)	13.10		12.53		13.35	
10 PERCENT EXCEEDS	154		174		178	
50 PERCENT EXCEEDS	6.4		7.0		18	
90 PERCENT EXCEEDS	0.00		0.00		0.00	

[#] See Period of Record; partial years used in monthly summary statistics
a Revised in 1999 from 2740 ft³/s
b From Jan. 13 to May 5
c From Jan. 21 to Apr. 25
d Not determined, see highest daily mean
f From rating curve extended above 2,190 ft³/s on basis of slope-area measurement at discharge 4,700 ft³/s, gage height 19.6 ft, at previous site 40 ft downstream

15564879 SLATE CREEK AT COLDFOOT—Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD. -- May 1998 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: May 1998 to current year (seasonal).

INSTRUMENTATION.--Water-temperature recorder since May 11, 1998. Electronic water temperature recorder set for 1hour recording interval.

REMARKS.--No record October 16 to May 21 due to probe frozen in ice. Records represent water temperature at sensor within 0.5°C. Temperature at the sensor was compared with the stream average by cross section on September 11.

No variation was found within the cross section. The variation found between mean stream temperature and sensor temperature was less than 0.5°C.

EXTREMES FOR PERIOD OF RECORD.-WATER TEMPERATURE: Maximum, 14.5°C, July 5 and 21, 1998 and July 24, 2002; minimum, 0.0°C, on many days during spring break up and winter periods.

EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 14.5°C, July 24; minimum, 0.0°C, October 11 to 15, May 22 to June 2, 4-6.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	STREAM WIDTH (FT) (00004)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)
SEP								
11	2037	47.0	8.00	14.27	72	10	5.0	5.5
11	2038	47.0	16.0	14.27	72	10	5.0	5.5
11	2040	47.0	24.0	14.27	72	10	5.0	5.5
11	2042	47.0	32.0	14.27	72	10	5.0	5.5
11	2044	47.0	40.0	14.27	72	10	5.0	5.5

TEMPERATURE, WATER (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NC	OVEMBER		DE	CEMBER			JANUARY	
1	2.5	1.0	2.0									
2	2.5	0.5	2.0									
3	2.5	1.5	2.0									
4	3.5	2.0	2.5									
5	3.5	2.0	2.5									
6	3.5	2.5	3.0									
7	3.0	2.0	2.5									
8	2.0	1.0	1.5									
9	1.0	0.5	0.5									
10	1.5	0.5	1.0									
11	1.0	0.0	0.5									
12	1.0	0.0	0.5									
13	0.5	0.0	0.0									
14	0.5	0.0	0.5									
15	0.5	0.0	0.5									
16												
17												
18												
19												
20												
21												
22												
23												
24												
25												
26												
27												
28												
29												
30												
31												
MONTH												

15564879 SLATE CREEK AT COLDFOOT—Continued

TEMPERATURE, WATER (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1												
2												
3 4												
5												
6												
7 8												
9												
10												
11												
12 13												
14												
15												
16												
17 18												
19												
20												
21												
22 23										1.5 1.5	0.0	0.5
24										2.0	0.0	1.0
25										2.0	0.0	1.0
26										2.0	0.0	1.0
27 28										2.0 2.5	0.0	1.0
29										2.5	0.0	1.0
30 31										3.0 3.0	0.0	1.0 1.5
MONTH												
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN	MAX	MIN	MEAN	MAX	MIN SEPTEMBE	MEAN R
		JUNE			JULY		P	AUGUST		S	EPTEMBE	R
DAY 1 2	MAX 3.0 3.5		MEAN 1.5 1.0	MAX 8.0 9.5		MEAN 6.0 6.5			MEAN 10.0 10.5			
1 2 3	3.0 3.5 3.0	JUNE 0.0 0.0 0.5	1.5 1.0 1.5	8.0 9.5 7.5	JULY 4.0 4.5 3.5	6.0 6.5 5.5	13.0 13.5 14.0	7.5 8.5 8.0	10.0 10.5 11.0	8.5 7.5 7.5	4.5 3.5 5.0	R 6.5 5.5 6.5
1 2	3.0 3.5	JUNE 0.0 0.0	1.5 1.0	8.0 9.5	JULY 4.0 4.5	6.0 6.5	13.0 13.5	AUGUST 7.5 8.5	10.0 10.5	8.5 7.5	4.5 3.5	R 6.5 5.5
1 2 3 4 5	3.0 3.5 3.0 2.0 3.5	JUNE 0.0 0.0 0.5 0.0	1.5 1.0 1.5 1.0	8.0 9.5 7.5 8.0 9.0	JULY 4.0 4.5 3.5 2.5 3.5	6.0 6.5 5.5 5.5 6.0	13.0 13.5 14.0 13.5 12.5	7.5 8.5 8.0 8.0 8.5	10.0 10.5 11.0 11.0	8.5 7.5 7.5 7.0 7.0	4.5 3.5 5.0 5.0 6.0	R 6.5 5.5 6.5 6.5
1 2 3 4	3.0 3.5 3.0 2.0	JUNE 0.0 0.0 0.5 0.0	1.5 1.0 1.5 1.0	8.0 9.5 7.5 8.0	JULY 4.0 4.5 3.5 2.5	6.0 6.5 5.5 5.5	13.0 13.5 14.0 13.5	7.5 8.5 8.0 8.0	10.0 10.5 11.0 11.0	8.5 7.5 7.5 7.0	4.5 3.5 5.0 5.0	R 6.5 5.5 6.5 6.0
1 2 3 4 5 6 7 8	3.0 3.5 3.0 2.0 3.5 4.0 4.5 4.0	JUNE 0.0 0.0 0.5 0.0 0.0 0.5	1.5 1.0 1.5 1.0 1.5	8.0 9.5 7.5 8.0 9.0 7.0 6.5	JULY 4.0 4.5 3.5 2.5 3.5 5.0 4.5 4.0	6.0 6.5 5.5 6.0 6.5 6.0	13.0 13.5 14.0 13.5 12.5 11.0 9.0	7.5 8.5 8.0 8.0 8.5 5.5 6.0 6.5	10.0 10.5 11.0 11.0 10.5 8.0 8.5 7.5	8.5 7.5 7.5 7.0 7.0 7.5 8.0 7.0	4.5 3.5 5.0 5.0 6.0 6.0 5.0	6.5 5.5 6.5 6.0 6.5 6.5 6.5
1 2 3 4 5	3.0 3.5 3.0 2.0 3.5 4.0 4.5	JUNE 0.0 0.0 0.5 0.0 0.0 0.5	1.5 1.0 1.5 1.0 1.5	8.0 9.5 7.5 8.0 9.0 7.0 6.5	JULY 4.0 4.5 3.5 2.5 3.5 5.0 4.5	6.0 6.5 5.5 5.5 6.0 6.0	13.0 13.5 14.0 13.5 12.5	7.5 8.5 8.0 8.0 8.5 5.5 6.0	10.0 10.5 11.0 11.0 10.5 8.0 8.5	8.5 7.5 7.5 7.0 7.0 7.5 8.0	4.5 3.5 5.0 5.0 6.0	R 6.5 5.5 6.5 6.5 6.5 6.5
1 2 3 4 5 6 7 8 9	3.0 3.5 3.0 2.0 3.5 4.0 4.5 4.0 6.0	JUNE 0.0 0.0 0.5 0.0 0.0 0.5 1.5 1.5 2.0	1.5 1.0 1.5 1.0 1.5 2.0 2.0 2.5 3.5 4.0	8.0 9.5 7.5 8.0 9.0 7.0 6.5 8.0 10.0	JULY 4.0 4.5 3.5 2.5 3.5 5.0 4.5 4.0 4.0 3.5	6.0 6.5 5.5 5.5 6.0 6.0 5.5 6.0 6.5 7.5	13.0 13.5 14.0 13.5 12.5 11.0 9.0 9.5 9.5	7.5 8.5 8.0 8.0 8.5 5.5 6.0 6.5 7.0	10.0 10.5 11.0 11.0 10.5 8.0 8.5 7.5 8.0 8.0	8.5 7.5 7.5 7.0 7.0 7.0 7.5 8.0 7.0 6.5	4.5 3.5 5.0 5.0 6.0 6.0 5.5 5.0	6.5 5.5 6.5 6.0 6.5 6.5 6.5 6.0 5.5
1 2 3 4 5 6 7 8 9 10	3.0 3.5 3.0 2.0 3.5 4.0 4.5 4.0 6.0 6.0	JUNE 0.0 0.0 0.5 0.0 0.0 0.5 1.5 1.5 2.0 2.5 2.0	1.5 1.0 1.5 1.0 1.5 2.0 2.0 2.5 3.5 4.0	8.0 9.5 7.5 8.0 9.0 7.0 6.5 8.0 10.0 11.0	JULY 4.0 4.5 3.5 2.5 3.5 5.0 4.0 4.0 3.5 5.0 5.5	6.0 6.5 5.5 5.5 6.0 6.0 6.5 7.5	13.0 13.5 14.0 13.5 12.5 11.0 9.0 9.5 9.5 10.0 8.5	7.5 8.5 8.0 8.0 8.5 5.5 6.0 6.5 7.0 6.5	10.0 10.5 11.0 11.0 10.5 8.0 8.5 7.5 8.0 8.0	8.5 7.5 7.5 7.0 7.0 7.5 8.0 7.0 6.5 5.0	4.5 3.5 5.0 6.0 6.0 5.5 5.0 3.5	R 6.5 5.5 6.5 6.0 6.5 6.5 6.5 4.0
1 2 3 4 5 6 7 8 9 10	3.0 3.5 3.0 2.0 3.5 4.0 4.5 4.0 6.0 5.5 5.5	JUNE 0.0 0.0 0.5 0.0 0.0 0.5 1.5 1.5 2.0 2.5 2.0 3.0	1.5 1.0 1.5 1.0 1.5 2.0 2.5 3.5 4.0 4.0 4.0	8.0 9.5 7.5 8.0 9.0 7.0 6.5 8.0 10.0 11.0 10.0 9.5 10.0	JULY 4.0 4.5 3.5 2.5 3.5 5.0 4.5 4.0 3.5 5.0 5.5 5.5	6.0 6.5 5.5 5.5 6.0 6.0 6.5 7.5 7.5	13.0 13.5 14.0 13.5 12.5 11.0 9.0 9.5 9.5 10.0 8.5 9.0	7.5 8.5 8.0 8.0 8.5 5.5 6.0 6.5 7.0 6.5 6.5 6.5	10.0 10.5 11.0 11.0 10.5 8.0 8.5 7.5 8.0 8.0 7.5	8.5 7.5 7.5 7.0 7.0 7.5 8.0 7.0 6.5 5.0 5.0	4.5 3.5 5.0 6.0 6.0 5.5 5.0 6.0 4.0 4.0	R 6.5 5.5 6.5 6.0 6.5 6.5 6.5 6.0 5.5 4.0
1 2 3 4 5 6 7 8 9 10	3.0 3.5 3.0 2.0 3.5 4.0 4.5 4.0 6.0 6.0	JUNE 0.0 0.0 0.5 0.0 0.0 0.5 1.5 1.5 2.0 2.5 2.0	1.5 1.0 1.5 1.0 1.5 2.0 2.0 2.5 3.5 4.0	8.0 9.5 7.5 8.0 9.0 7.0 6.5 8.0 10.0 11.0	JULY 4.0 4.5 3.5 2.5 3.5 5.0 4.0 4.0 3.5 5.0 5.5	6.0 6.5 5.5 5.5 6.0 6.0 6.5 7.5	13.0 13.5 14.0 13.5 12.5 11.0 9.0 9.5 9.5 10.0 8.5	7.5 8.5 8.0 8.0 8.5 5.5 6.0 6.5 7.0 6.5	10.0 10.5 11.0 11.0 10.5 8.0 8.5 7.5 8.0 8.0	8.5 7.5 7.5 7.0 7.0 7.5 8.0 7.0 6.5 5.0	4.5 3.5 5.0 6.0 6.0 5.5 5.0 3.5	R 6.5 5.5 6.5 6.0 6.5 6.5 6.5 4.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14	3.0 3.5 3.0 2.0 3.5 4.0 6.0 6.0 5.5 7.0	JUNE 0.0 0.0 0.5 0.0 0.0 0.5 1.5 1.5 2.0 2.5 2.0 3.0 2.5	1.5 1.0 1.5 1.0 1.5 2.0 2.0 2.5 3.5 4.0 4.0 4.0 4.0 5.0	8.0 9.5 7.5 8.0 9.0 7.0 6.5 8.0 10.0 11.0	JULY 4.0 4.5 3.5 2.5 3.5 5.0 4.5 4.0 3.5 5.0 5.5 6.0	6.0 6.5 5.5 5.5 6.0 6.0 6.5 7.5 7.5 7.5	13.0 13.5 14.0 13.5 12.5 11.0 9.0 9.5 9.5	7.5 8.5 8.0 8.0 8.5 5.5 6.0 6.5 7.0 6.5 6.5 6.5 6.0	10.0 10.5 11.0 11.0 10.5 8.0 8.5 7.5 8.0 8.0 7.5 7.5	8.5 7.5 7.5 7.0 7.0 7.5 8.0 7.0 6.5 5.0 5.0 6.0	4.5 3.5 5.0 6.0 6.0 5.5 5.0 6.0 4.0 4.0 3.5	R 6.5 5.5 6.0 6.5 6.5 6.5 4.0 4.5 4.5 4.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	3.0 3.5 3.0 2.0 3.5 4.0 4.5 4.0 6.0 5.5 5.5 7.0 8.5 9.5	JUNE 0.0 0.0 0.5 0.0 0.0 0.5 1.5 1.5 2.0 2.5 2.0 3.0 2.5 2.0 3.0 3.5	1.5 1.0 1.5 1.0 1.5 2.0 2.0 2.5 3.5 4.0 4.0 4.0 5.0 6.5	8.0 9.5 7.5 8.0 9.0 7.0 6.5 8.0 10.0 11.0 10.0 9.5 10.0 10.0 12.0 12.0 13.5	JULY 4.0 4.5 3.5 2.5 3.5 5.0 4.5 4.0 3.5 5.5 6.0 6.0 6.0 7.0	6.0 6.5 5.5 5.5 6.0 6.0 5.5 6.0 6.5 7.5 7.5 7.5 9.0	13.0 13.5 14.0 13.5 12.5 11.0 9.0 9.5 9.5 9.5 10.0 8.5 9.0 9.5 8.0	7.5 8.5 8.0 8.0 8.5 5.5 6.0 6.5 7.0 6.5 6.5 6.0 6.5	10.0 10.5 11.0 11.0 10.5 8.0 8.5 7.5 8.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5	8.5 7.5 7.5 7.0 7.0 7.5 8.0 7.0 6.5 5.0 6.0 6.0 6.0	4.5 3.5 5.0 6.0 5.0 5.0 5.0 5.0 3.5 4.0 4.0 4.0 4.0 3.5 2.5	R 6.5 5.5 6.0 6.5 6.5 6.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	3.0 3.5 3.0 2.0 3.5 4.0 4.5 4.0 6.0 6.0 5.5 7.0 8.5	JUNE 0.0 0.0 0.5 0.0 0.0 0.5 1.5 1.5 2.0 2.5 2.0 3.0 2.5 2.0 3.0	1.5 1.0 1.5 1.0 1.5 2.0 2.5 3.5 4.0 4.0 4.0 5.0 5.0 6.5 5.5	8.0 9.5 7.5 8.0 9.0 7.0 6.5 8.0 10.0 11.0 10.0 9.5 10.0 12.0	JULY 4.0 4.5 3.5 2.5 3.5 5.0 4.5 4.0 3.5 5.5 6.0 6.0 6.0 7.0 6.5	6.0 6.5 5.5 5.5 6.0 6.0 5.5 6.0 6.5 7.5 7.5 8.0 9.0	13.0 13.5 14.0 13.5 12.5 11.0 9.0 9.5 9.5 10.0 8.5 9.0 9.5 8.0	7.5 8.5 8.0 8.0 8.5 5.5 6.0 6.5 7.0 6.5 6.5 6.5 6.0	10.0 10.5 11.0 11.0 10.5 8.0 8.5 7.5 8.0 8.0 7.5 7.5 7.5	8.5 7.5 7.5 7.0 7.0 7.5 8.0 7.0 6.5 5.0 6.0 6.0	4.5 3.5 5.0 6.0 6.0 5.5 5.0 3.5 4.0 4.0 3.5 2.5	R 6.5 5.5 6.0 6.5 6.5 6.5 4.0 4.5 4.5 4.5 4.0
1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18	3.0 3.5 3.0 2.0 3.5 4.0 4.5 4.0 6.0 6.0 5.55 7.0 8.5 9.5 9.5	JUNE 0.0 0.0 0.5 0.0 0.0 0.5 1.5 1.5 2.0 2.5 2.0 3.0 2.5 2.0 3.0 3.5 2.5	1.5 1.0 1.5 1.0 1.5 2.0 2.0 2.5 3.5 4.0 4.0 4.0 5.0 6.5	8.0 9.5 7.5 8.0 9.0 7.0 6.5 8.0 10.0 11.0 10.0 9.5 10.0 12.0 12.0 13.5 14.0	JULY 4.0 4.5 3.5 2.5 3.5 5.0 4.5 4.0 3.5 5.5 6.0 6.0 6.0 7.0	6.0 6.5 5.5 5.5 6.0 6.0 6.5 7.5 7.5 7.5 8.0 9.0 10.0	13.0 13.5 14.0 13.5 12.5 11.0 9.0 9.5 9.5 10.0 8.5 9.0 9.5 8.0 7.0	7.5 8.5 8.0 8.5 5.5 6.0 6.5 7.0 6.5 6.5 6.0 4.0 6.0 5.5 4.5	10.0 10.5 11.0 11.0 10.5 8.0 8.5 7.5 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5	8.5 7.5 7.5 7.0 7.0 7.5 8.0 7.0 6.5 5.0 6.0 6.0 5.5 5.5	4.5 3.5 5.0 6.0 5.0 5.0 5.0 5.0 5.0 4.0 4.0 4.0 3.5 2.5	R 6.5 5.5 6.5 6.0 6.5 6.5 6.5 4.5 4.5 4.5 4.5 4.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	3.0 3.5 3.0 2.0 3.5 4.0 4.5 4.0 6.0 6.0 5.5 5.5 7.0 8.5 9.5 9.5 9.5	JUNE 0.0 0.0 0.5 0.0 0.0 0.5 1.5 1.5 2.0 2.5 2.0 3.0 2.5 2.0 3.5 2.5 4.0	1.5 1.0 1.5 1.0 1.5 2.0 2.0 2.5 3.5 4.0 4.0 4.0 5.0 5.0 6.5 5.5 6.5	8.0 9.5 7.5 8.0 9.0 7.0 6.5 8.0 10.0 11.0 10.0 12.0 12.0 13.5 14.0	JULY 4.0 4.5 3.5 2.5 3.5 5.0 4.5 4.0 3.5 5.5 6.0 6.0 7.0 6.5 7.5	6.0 6.5 5.5 5.5 6.0 6.0 5.5 6.0 6.5 7.5 7.5 7.5 8.0 9.0 10.0	13.0 13.5 14.0 13.5 12.5 11.0 9.0 9.5 9.5 10.0 8.5 9.0 9.5 8.0 9.0 8.0 7.5	7.5 8.5 8.0 8.0 8.5 5.5 6.0 6.5 7.0 6.5 6.5 6.0 6.5 6.5 6.0 6.5	10.0 10.5 11.0 11.0 10.5 8.0 8.5 7.5 8.0 8.0 7.5 7.5 7.0 6.5	8.5 7.5 7.0 7.0 7.5 8.0 7.0 6.5 5.0 6.0 6.0 5.5 5.5 4.5	4.5 3.5 5.0 6.0 6.0 5.5 5.0 3.5 4.0 4.0 3.5 2.5	R 6.5 5.5 6.0 6.5 6.5 6.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	3.0 3.5 3.0 2.0 3.5 4.0 4.5 4.0 6.0 5.5 5.0 8.5 9.5 9.0 10.0 6.5 5.5	JUNE 0.0 0.0 0.5 0.0 0.0 0.5 1.5 1.5 2.0 2.5 2.0 3.0 2.5 2.0 3.5 2.5 4.0 4.0 1.5 2.5	1.5 1.0 1.5 1.0 1.5 2.0 2.0 2.5 3.5 4.0 4.0 4.0 4.0 5.0 6.5 5.5 6.5 5.0	8.0 9.5 7.5 8.0 9.0 7.0 6.5 8.0 10.0 11.0 10.0 12.0 12.0 12.0 14.0 13.5 14.0 13.5	JULY 4.0 4.5 3.5 2.5 3.5 5.0 4.5 4.0 3.5 5.5 6.0 6.0 7.0 6.5 7.5 7.5	6.0 6.5 5.5 5.5 6.0 6.0 5.5 6.0 6.5 7.5 7.5 7.5 9.0 9.0 10.0 10.0 10.5 10.5	13.0 13.5 14.0 13.5 12.5 11.0 9.0 9.5 9.5 10.0 8.5 9.5 8.0 9.0 8.0 7.0 7.5 8.0	7.5 8.5 8.0 8.0 8.5 5.5 6.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.0 4.0 6.0	10.0 10.5 11.0 11.0 10.5 8.0 8.5 7.5 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.0 6.5 6.0	8.5 7.5 7.5 7.0 7.0 7.5 8.0 7.0 6.5 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	4.5 3.5 5.0 6.0 5.0 5.5 5.0 3.5 4.0 4.0 4.0 4.0 4.0 2.5 2.5 3.0 2.0 2.0 2.0	R 6.5 5.5 6.0 6.5 6.5 6.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	3.0 3.5 3.0 2.0 3.5 4.0 4.5 4.0 6.0 6.0 5.5 5.5 7.0 8.5 9.5 9.5 9.5 10.0 6.5	JUNE 0.0 0.0 0.5 0.0 0.0 0.5 1.5 1.5 2.0 2.5 2.0 3.0 2.5 2.0 3.5 4.0 4.0	1.5 1.0 1.5 1.0 1.5 2.0 2.0 2.5 3.5 4.0 4.0 4.0 5.0 5.0 6.5 5.5 6.5 5.0	8.0 9.5 7.5 8.0 9.0 7.0 6.5 8.0 10.0 11.0 10.0 12.0 12.0 13.5 14.0 13.5	JULY 4.0 4.5 3.5 2.5 3.5 5.0 4.5 4.0 3.5 5.5 6.0 6.0 7.0 6.5 7.5 7.5	6.0 6.5 5.5 5.5 6.0 6.0 5.5 6.0 6.5 7.5 7.5 8.0 9.0 10.0 10.0 10.5	13.0 13.5 14.0 13.5 12.5 11.0 9.0 9.5 9.5 10.0 8.5 9.0 9.5 8.0 7.5 8.0	7.5 8.5 8.0 8.0 8.5 5.5 6.0 6.5 7.0 6.5 6.5 6.5 6.0 4.0 6.0 5.5 4.5 4.5	10.0 10.5 11.0 11.0 10.5 8.0 8.5 7.5 8.0 8.0 7.5 7.5 7.0 6.5 7.5 7.0 6.5	8.5 7.5 7.0 7.0 7.5 8.0 7.0 6.5 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	4.5 3.5 5.0 6.0 6.0 5.5 5.0 3.5 4.0 4.0 3.5 2.5 3.0 2.0 2.0	R 6.5 5.5 6.0 6.5 6.5 6.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	3.0 3.5 3.0 2.0 3.5 4.0 4.5 4.0 6.0 5.5 5.5 7.0 8.5 9.0 10.0 5.5 5.0 5.0	JUNE 0.0 0.0 0.5 0.0 0.0 0.5 1.5 1.5 2.0 2.5 2.0 3.0 2.5 2.0 3.0 4.0 1.5 2.5 3.5	1.5 1.0 1.5 1.0 1.5 2.0 2.0 2.5 3.5 4.0 4.0 4.0 5.0 5.0 6.5 5.5 6.5 5.0	8.0 9.5 7.5 8.0 9.0 7.0 6.5 8.0 10.0 11.0 10.0 9.5 10.0 12.0 12.0 13.5 14.0 13.5 14.0 13.5	JULY 4.0 4.5 3.5 2.5 3.5 5.0 4.5 4.0 3.5 5.5 6.0 6.0 7.5 7.5 7.5 8.5	6.0 6.5 5.5 5.5 6.0 6.0 5.5 6.0 6.5 7.5 7.5 7.5 8.0 9.0 10.0 10.5 10.5	13.0 13.5 14.0 13.5 12.5 11.0 9.0 9.5 9.5 9.5 10.0 8.5 9.0 9.5 8.0 7.0 7.5 8.0	7.5 8.5 8.0 8.0 8.5 5.5 6.0 6.5 6.5 6.5 6.5 6.5 6.5 4.5 5.5 4.5 5.5	10.0 10.5 11.0 11.0 10.5 8.0 8.5 7.5 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.0 6.5 6.0 5.5 6.0 5.5	8.5 7.5 7.0 7.0 7.5 8.0 7.0 5.0 5.0 6.0 6.0 5.5 5.5 4.0 3.5 4.0	4.5 3.5 5.0 6.0 5.0 5.0 5.0 3.5 4.0 4.0 4.0 3.5 2.5 3.0 2.0 2.5 2.0 2.0	R 6.5 5 5.5 6.0 6.5 6.5 6.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 5.0 3.0 2.5 5.0 6.5 5.5 6.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25	3.0 3.5 3.0 2.0 3.5 4.0 4.5 4.0 6.0 6.0 5.5 5.5 7.0 8.5 9.5 9.5 9.5 10.0 6.5 5.0 9.5 11.5	JUNE 0.0 0.0 0.5 0.0 0.0 0.5 1.5 1.5 2.0 2.5 2.0 3.0 2.5 2.0 3.5 2.5 4.0 4.0 1.5 2.5 3.5 4.0	1.5 1.0 1.5 1.0 1.5 2.0 2.0 2.5 3.5 4.0 4.0 4.0 5.0 5.0 6.5 5.5 6.5 5.0 3.5 7.5	8.0 9.5 7.5 8.0 9.0 7.0 6.5 8.0 10.0 11.0 10.0 12.0 13.5 14.5 14.5 14.5 14.5 14.5 15.5 14.5 15.5 16	JULY 4.0 4.5 3.5 2.5 3.5 5.0 4.0 4.0 3.5 5.5 6.0 6.0 7.0 6.5 7.5 7.5 7.5 8.5 7.0	6.0 6.5 5.5 5.5 6.0 6.0 5.5 6.0 6.5 7.5 7.5 7.5 8.0 9.0 10.0 10.0 10.5 10.5 10.5	13.0 13.5 14.0 13.5 12.5 11.0 9.0 9.5 9.5 10.0 8.5 9.0 9.5 8.0 7.5 8.0 7.5 8.0 7.5 8.5 8.5 8.5	7.5 8.5 8.0 8.0 8.5 5.5 6.0 6.5 7.0 6.5 6.5 6.0 4.0 6.0 5.5 4.5 4.5 4.5 3.0 4.0 3.0 3.0	10.0 10.5 11.0 11.0 10.5 8.0 8.5 7.5 8.0 8.0 7.5 7.0 6.5 7.5 7.0 6.5 6.0 5.5 6.0	8.5 7.5 7.0 7.0 7.5 8.0 7.0 6.5 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	4.5 3.5 5.0 6.0 6.0 5.5 5.0 3.5 4.0 4.0 3.5 2.5 3.0 2.0 2.0 2.0 2.0 2.5 2.0	R 6.5 5.5 6.0 6.5 6.5 6.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	3.0 3.5 3.0 2.0 3.5 4.0 4.5 4.0 6.0 6.0 5.5 5.5 9.5 9.0 10.0 6.5 5.5 9.5 9.5 9.5 11.5	JUNE 0.0 0.0 0.5 0.0 0.0 0.5 1.5 1.5 2.0 2.5 2.0 3.0 2.5 2.0 3.5 2.5 4.0 4.0 4.0 2.5	1.5 1.0 1.5 1.0 1.5 2.0 2.0 2.5 3.5 4.0 4.0 4.0 5.0 5.0 6.5 5.5 5.5 5.5 7.5	8.0 9.5 7.5 8.0 9.0 7.0 6.5 8.0 10.0 11.0 10.0 12.0 12.0 13.5 14.5 14.5 15.5 16	JULY 4.0 4.5 3.5 2.5 3.5 5.0 4.5 4.0 3.5 5.5 6.0 6.0 6.0 7.0 6.5 7.5 7.5 8.5 7.5 8.5 7.0 7.0	6.0 6.5 5.5 5.5 6.0 6.0 5.5 6.0 6.5 7.5 7.5 7.5 7.0 9.0 10.0 10.0 10.0 10.5 10.5 10.5 10.5 9.0	13.0 13.5 14.0 13.5 12.5 11.0 9.0 9.5 9.5 10.0 8.5 9.0 8.0 7.0 7.5 8.0 7.5 8.0 8.5 8.5 8.5 8.5 8.5 8.5	7.5 8.5 8.0 8.0 8.5 5.5 6.0 6.5 7.0 6.5 6.5 6.5 6.5 6.0 6.5 4.0 6.0 8.0 8.5	10.0 10.5 11.0 11.0 10.5 8.0 8.5 7.5 8.0 8.0 7.5 7.0 6.5 7.5 7.0 6.5 6.0 5.5 6.0 5.5 6.0	8.5 7.5 7.0 7.0 7.5 8.0 7.0 6.5 5.0 5.0 6.0 6.0 5.5 5.5 4.0 3.5 4.0 4.5 4.0	4.5 3.5 5.0 6.0 5.0 5.5 5.0 3.5 4.0 4.0 4.0 4.0 2.5 3.5 2.5 3.0 2.0 2.5 2.0 2.0 2.5 3.0 3.5	R 6.5 5.5 6.5 6.0 6.5 6.5 6.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.0 3.0 3.0 2.5 1.5 2.0 1.5 3.5 4.0 3.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	3.0 3.5 3.0 2.0 3.5 4.0 6.0 6.0 6.0 5.5 5.5 7.0 8.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 11.5 12.0 9.5 11.5	JUNE 0.0 0.0 0.5 0.0 0.0 0.5 1.5 1.5 2.0 2.5 2.0 3.0 2.5 2.0 3.5 2.5 4.0 4.0 1.5 2.5 3.5 4.0 4.5 4.5	1.5 1.0 1.5 1.0 1.5 2.0 2.0 2.5 3.5 4.0 4.0 4.0 5.0 5.0 6.5 5.5 6.5 5.0 4.0 4.0 5.5 5.0 5.5 6.5 5.0 6.5 5.0 6.5 5.0 6.5 5.0 6.5 5.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	8.0 9.5 7.5 8.0 9.0 7.0 6.5 8.0 10.0 11.0 10.0 12.0 12.0 13.5 14.0 15.5 14.0 15.5 16	JULY 4.0 4.5 3.5 2.5 3.5 5.0 4.0 4.0 3.5 5.5 6.0 6.0 7.0 6.5 7.5 7.5 8.5 7.5 8.5 7.0 6.0	6.0 6.5 5.5 5.5 6.0 6.0 5.5 6.0 6.5 7.5 7.5 7.5 8.0 9.0 10.0 10.5 10.5 10.5 10.5 10.5 9.0 8.5 9.0	13.0 13.5 14.0 13.5 12.5 11.0 9.0 9.5 9.5 10.0 8.5 9.0 9.5 8.0 7.5 8.0 7.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8	7.5 8.5 8.0 8.0 8.5 5.5 6.0 6.5 7.0 6.5 6.5 6.5 6.0 4.0 6.0 5.5 4.5 4.5 3.0 4.0 3.0 3.0 3.0 3.0	10.0 10.5 11.0 11.0 10.5 8.0 8.5 7.5 8.0 8.0 7.5 7.0 6.5 7.5 7.0 6.5 6.0 5.5 6.0 6.5 6.0 6.5 6.5 6.5	8.5 7.5 7.0 7.0 7.5 8.0 7.0 6.5 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	4.5 3.5 5.0 6.0 6.0 5.5 5.0 3.5 4.0 4.0 3.5 2.5 3.0 2.0 2.0 2.0 2.5 2.0 2.0 3.5	R 6.5 5 6.5 6.0 6.5 6.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 30 30 30 30 30 30 30 30 30 30 30 30	3.0 3.5 3.0 2.0 3.5 4.0 4.5 4.0 6.0 6.0 5.5 5.5 7.0 8.5 9.5 9.0 10.0 6.5 5.5 5.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	JUNE 0.0 0.0 0.5 0.0 0.0 0.5 1.5 1.5 2.0 2.5 2.0 3.0 2.5 2.0 3.5 2.5 4.0 4.0 1.5 2.5 3.5 4.0 4.5 4.5	1.5 1.0 1.5 1.0 1.5 2.0 2.0 2.5 3.5 4.0 4.0 4.0 5.0 5.0 6.5 5.5 5.5 7.5 7.5 7.5 7.5 6.0 5.5 5.0	8.0 9.5 7.5 8.0 9.0 7.0 6.5 8.0 10.0 11.0 10.0 12.0 12.0 13.5 14.5 14.0 13.5 14.5 14.5 14.5 14.5 15.5 16	JULY 4.0 4.5 3.5 2.5 3.5 5.0 4.5 4.0 3.5 5.5 6.0 6.0 6.0 6.5 7.5 7.5 8.5 7.0 6.5 6.6 6.5	6.0 6.5 5.5 5.5 6.0 6.0 5.5 6.0 6.5 7.5 7.5 7.5 8.0 9.0 9.0 10.0 10.0 10.5 10.5 10.5 10.5 9.0 9.5 10.0 9.5	13.0 13.5 14.0 13.5 12.5 11.0 9.0 9.5 9.5 10.0 8.5 9.0 8.0 7.0 7.5 8.0 7.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8	7.5 8.5 8.0 8.0 8.5 5.5 6.0 6.5 7.0 6.5 6.5 6.5 6.0 6.5 4.0 6.0 5.5 4.5 4.5 3.0 3.0 3.0 3.0 3.0 3.0	10.0 10.5 11.0 11.0 10.5 8.0 8.5 7.5 8.0 8.0 7.5 7.0 6.5 7.5 7.0 6.5 6.0 5.5 6.0 6.5 6.0 6.5 6.0 6.5 6.5	8.5 7.5 7.0 7.0 7.5 8.0 7.0 6.5 5.0 6.0 6.0 5.5 5.5 4.0 4.5 4.0 4.5 4.0 4.5 3.5 3.5	4.5 3.5 5.0 6.0 5.0 5.0 5.5 5.0 3.5 4.0 4.0 3.5 2.5 3.0 2.0 2.5 0.0 0.5 2.5	R 6.5 5.5 6.0 6.5 6.5 6.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	3.0 3.5 3.0 2.0 3.5 4.0 6.0 6.0 6.0 5.5 5.5 7.0 8.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 11.5 12.0 9.5 11.5	JUNE 0.0 0.0 0.5 0.0 0.0 0.5 1.5 1.5 2.0 2.5 2.0 3.0 2.5 2.0 3.5 2.5 4.0 4.0 1.5 2.5 3.5 4.0 4.5 4.5	1.5 1.0 1.5 1.0 1.5 2.0 2.0 2.5 3.5 4.0 4.0 4.0 5.0 5.0 6.5 5.5 6.5 5.0 4.0 4.0 5.5 5.0 5.5 6.5 5.0 6.5 5.0 6.5 5.0 6.5 5.0 6.5 5.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	8.0 9.5 7.5 8.0 9.0 7.0 6.5 8.0 10.0 11.0 10.0 12.0 12.0 13.5 14.0 15.5 14.0 15.5 16	JULY 4.0 4.5 3.5 2.5 3.5 5.0 4.0 4.0 3.5 5.5 6.0 6.0 7.0 6.5 7.5 7.5 8.5 7.5 8.5 7.0 6.0	6.0 6.5 5.5 5.5 6.0 6.0 5.5 6.0 6.5 7.5 7.5 7.5 8.0 9.0 10.0 10.5 10.5 10.5 10.5 10.5 9.0 8.5 9.0	13.0 13.5 14.0 13.5 12.5 11.0 9.0 9.5 9.5 10.0 8.5 9.0 9.5 8.0 7.5 8.0 7.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8	7.5 8.5 8.0 8.0 8.5 5.5 6.0 6.5 7.0 6.5 6.5 6.5 6.0 4.0 6.0 5.5 4.5 4.5 3.0 4.0 3.0 3.0 3.0 3.0	10.0 10.5 11.0 11.0 10.5 8.0 8.5 7.5 8.0 8.0 7.5 7.0 6.5 7.5 7.0 6.5 6.0 5.5 6.0 6.5 6.0 6.5 6.5 6.5	8.5 7.5 7.0 7.0 7.5 8.0 7.0 6.5 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	4.5 3.5 5.0 6.0 6.0 5.5 5.0 3.5 4.0 4.0 3.5 2.5 3.0 2.0 2.0 2.0 2.5 2.0 2.0 3.5	R 6.5 5 6.5 6.0 6.5 6.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

15565447 YUKON RIVER AT PILOT STATION

LOCATION.--Lat $61^{\circ}56'04''$, long $162^{\circ}52'50''$, in SW^{1}_{4} SE $^{1}_{4}$ sec. 5, T.21 N., R.74 W. (Marshall D-3 quad), Hydrologic Unit 19040805, on the right bank, .2 mi downstream from village of Pilot Station, 2.4 mi downstream from Atchuelinguk River, and 19 mi upstream from Andreafsky River.

DRAINAGE AREA.--321,000 mi² approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1975 to September 1996, April 2001 to current year.

REVISED RECORDS.--WRD-AK-99-1: 1998.

GAGE.--Water-stage recorder. Elevation of gage is 20 ft above sea level from topographic map.

REMARKS.--Records good, except for July 8 to July 13 and July 24 to Aug. 20, which are fair and estimated daily discharges, which are poor. GOES satellite telemetry at station.

DISCHARGE, in CFS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e290000	e130000	e70000	e55000	e48000	e44000	e38000	e48000	761000	407000	308000	375000
2	e280000	e120000	e70000	e55000	e48000	e44000	e38000	e53000	750000	396000	307000	380000
3	e280000	e120000	e70000	e55000	e48000	e44000	e38000	e57000	735000	389000	307000	384000
4	e290000	e120000	e65000	e55000	e48000	e42000	e38000	e63000	718000	382000	307000	386000
5	e280000	e120000	e65000	e55000	e48000	e42000	e38000	e70000	701000	375000	307000	387000
6	e270000	e110000	e65000	e55000	e48000	e42000	e38000	e81000	682000	368000	310000	389000
7	e260000	e110000	e65000	e55000	e48000	e42000	e38000	e93000	663000	360000	312000	391000
8	e250000	e110000	e65000	e55000	e48000	e42000	e38000	e105000	640000	354000	312000	391000
9	e240000	e110000	e65000	e55000	e46000	e42000	e38000	e117000	619000	352000	311000	389000
10	e230000	e100000	e65000	e55000	e46000	e42000	e38000	e136000	602000	348000	315000	385000
11	e220000	e100000	e60000	e55000	e46000	e42000	e38000	e151000	586000	346000	319000	381000
12	e210000	e100000	e60000	e50000	e46000	e42000	e38000	e169000	569000	345000	322000	379000
13	e210000	e100000	e60000	e50000	e46000	e40000	e38000	e184000	550000	344000	325000	377000
14	e200000	e95000	e60000	e50000	e46000	e40000	e38000	e220000	532000	346000	327000	375000
15	e200000	e95000	e60000	e50000	e46000	e40000	e38000	e250000	515000	345000	323000	373000
16	e190000	e95000	e60000	e50000	e46000	e40000	e38000	e290000	497000	344000	320000	371000
17	e190000	e90000	e60000	e50000	e46000	e40000	e38000	e330000	481000	343000	316000	373000
18	e180000	e90000	e60000	e50000	e44000	e40000	e38000	e370000	466000	343000	310000	374000
19	e180000	e90000	e60000	e50000	e44000	e40000	e38000	e430000	454000	340000	304000	375000
20	e170000	e85000	e60000	e50000	e44000	e40000	e38000	e501000	447000	336000	298000	375000
21	e170000	e85000	e60000	e50000	e44000	e40000	e38000	e577000	443000	331000	295000	376000
22	e160000	e85000	e60000	e50000	e44000	e40000	e38000	e647000	441000	328000	292000	377000
23	e160000	e85000	e55000	e50000	e44000	e40000	e38000	e745000	442000	324000	293000	377000
24	e150000	e85000	e55000	e50000	e44000	e40000	e38000	e829000	443000	322000	294000	377000
25	e150000	e80000	e55000	e50000	e44000	e40000	e40000	e870000	442000	321000	298000	376000
26	e150000	e80000	e55000	e50000	e44000	e40000	e40000	e884000	438000	319000	306000	372000
27	e140000	e75000	e55000	e50000	e44000	e40000	e42000	e865000	434000	317000	319000	366000
28	e140000	e75000	e55000	e48000	e44000	e40000	e44000	842000	429000	313000	336000	367000
29	e140000	e75000	e55000	e48000		e38000	e46000	814000	423000	310000	350000	368000
30	e130000	e70000	e55000	e48000		e38000	e47000	800000	416000	308000	360000	371000
31	e130000		e55000	e48000		e38000		782000		309000	368000	
	6240000	2885000	1880000	1597000	1282000	1264000		12373000				11337000
MEAN	201300	96170	60650	51520	45790	40770	39030	399100	544000	344000	315200	377900
MAX	290000	130000	70000	55000	48000	44000	47000	884000	761000	407000	368000	391000
MIN	130000	70000	55000	48000	44000	38000	38000	48000	416000	308000	292000	366000
	12380000	5722000	3729000	3168000	2543000	2507000		24540000				
CFSM	0.63	0.30	0.19	0.16	0.14	0.13	0.12	1.24	1.69	1.07	0.98	1.18
IN.	0.72	0.33	0.22	0.19	0.15	0.15	0.14	1.43	1.89	1.24	1.13	1.31
STATI	STICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS 19	76 - 2002	, BY WATE	ER YEAR (V	VY) #			
MEAN	252000	126800	75880	61500	53110	48080	46110	272600	582900	450500	394400	360200
MAX	335900	188800	94840	76000	65360	56770	55000	501700	844600	563500	515800	481300
(WY)	1991	1987	1986	1986	1994	1980	1989	1991	1985	1992	1981	1994
MIN	170600	72500	50000	50000	38380	35160	38430	100200	364400	314000	315000	252700
(WY)	1979	1989	1988	1988	1984	1984	1976	1985	1978	1996	1990	1976

See Period of Record, partial years used in monthly statistics ${\tt Estimated}$

15565447 YUKON RIVER AT PILOT STATION—Continued

SUMMARY STATISTICS	FOR 2002 WATER Y	EAR	WATER YEARS	1976	-	2002#
ANNUAL TOTAL	76784000					
ANNUAL MEAN	210400		226600			
HIGHEST ANNUAL MEAN			253700			1994
LOWEST ANNUAL MEAN			185300			1978
HIGHEST DAILY MEAN	884000 May	26	ae1100000	Jun	5	1985
LOWEST DAILY MEAN	b38000 Mar	29	c35000	Feb 2	23	1984
ANNUAL SEVEN-DAY MINIMUM	38000 Mar	29	35000	Feb 2	23	1984
MAXIMUM PEAK FLOW	882000 May	28	d1070000	Jun	9	1985
MAXIMUM PEAK STAGE	d27.03 May	28	d27.50	Jun	9	1985
MAXIMUM PEAK STAGE			f36.25	May 2	25	1989
ANNUAL RUNOFF (AC-FT)	152300000		164200000			
ANNUAL RUNOFF (CFSM)	0.66		0.71			
ANNUAL RUNOFF (INCHES)	8.90		9.59			
10 PERCENT EXCEEDS	441000		500000			
50 PERCENT EXCEEDS	110000		130000			
90 PERCENT EXCEEDS	40000		47000			

[#] See Period of Record, partial years used in monthly statistics
a Jun. 5-8, 1985
b Mar. 29 to Apr 24
c Feb. 23 to Mar. 27, 1984
d Not determined. See highest daily mean
e Estimated
f Backwater from ice

15565447 YUKON RIVER AT PILOT STATION—Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1954-1956, 1975-96 AND April 2001 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: 1976 and 1978, (seasonal).

Date		Time	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	(MM OF HG)	C OXYGE DIS SOLV (MG/)	- CEN ED SATU L) ATIO	- ED - T R- N)			
APR 20 02 02 02 02 JUN	• •	1710 1800 1815 1855 1900	1350 1100 700 1550 1750	325 326 327 323 321	6.9 6.9 6.9 7.0 6.9	.0.0.0	778 778 778 778 778	2.4 2.5 2.4 2.4	17 16 16				
12 12 12 12 12 JUL		1505 1513 1520 1530 1535	2450 2100 1800 1450 950	140 141 143 143 143	7.6 7.6 7.6 7.7 7.6	13.5 13.5 13.5 13.5 13.5	773 773 773 773 773	8.9 8.8 8.7 8.6 8.6	82 81				
16 16 16 16 16		0858 0904 0908 0910 0913	625 1140 1480 1740 2000	219 219 219 219 214	7.9 7.9 7.8 7.8 7.8	16.0 16.0 16.0 16.0	763 763 763 763 763	9.8 9.7 9.7 9.7 9.7	98 98				
24 24 24 24	• •	1745 1746 1748 1750 1751	600 1100 1500 1900 2200	221 221 221 219 218	7.9 7.9 7.9 7.9 7.9	8.0 8.0 8.0 8.0	760 760 760 760 760	11.0 11.0 10.9 11.0 10.9	92 93				
Date	BARIUM SED. SUSP. UG/G) (29820)	BARIUM DIS- SOLVED (UG/L AS BA) (01005)	, BERYL- LIUM SED. SUSP. (UG/G) (29822)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	(UG/L AS B)	SUSP.	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM SED. SUSP. (UG/G) (29829)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT SEDI- MENT SUSP. (UG/G) (35031)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER SED. SUSP. (UG/G) (29832)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)
APR 02	970	82	1	<.06	11	2.1	E.03	210	<.8	15	.25	89	.8
JUN 12 20		38 42	2 2	<.06 <.06	E6 E5	.5	.05 E.03	110 100	<.8 <.8	17 17	.11	33 34	5.0 3.3
JUL 01	980 1000	39 42	2 2	<.06 <.06	E6 7	. 4 . 4	E.02 E.04	110 110	<.8	19 21	.09	40 51	3.3
AUG 08		52	2	<.06	14	.5	E.02	110	<.8	23	.08	57	2.1
SEP 24	1000	39	2	<.06	E6	.5	.04	100	<.8	18	.12	41	2.7
Date	TEMPER- ATURE WATER (DEG C) (00010)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	ANCE	UV ABSORB- ANCE 280 NM, WTR FLT (UNITS /CM) (61726)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
	. 0	9.7	.053	.038	778	2.5	17	160	45.3	10.4	3.36	155	1.35
20	13.5 17.5	76 78	.369 .291	.280	773 764	8.7 8.0	84 83	73 79	22.3 22.9	4.25 5.23	1.46 1.95	51 66	1.14 1.14
16	16.5 16.0	79 230	.272 .165	.203	764 763	8.6 9.7	87 98	93 93	27.0 26.6	6.21 6.47	2.11	69 79	1.16 1.14
AUG 08 SEP	19.0		.107	.077	760	9.0	97	110	30.1	7.41	2.84	80	1.61
	8.0	7.6	.187	.138	760	11.0	93	110	30.1	8.19	2.59	74	1.00

YUKON ALASKA

15565447 YUKON RIVER AT PILOT STATION—Continued

Date	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	FIX END FIELD	SOLVEI (MG/L AS SO4)	CHLO- ERIDE, DIS- DESOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA,	AT 180	SUM OF	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)
APR 02	. 188	. 0	154	160	26.4	.98	. 2	11.6	200	193	E.002	.163	.125
JUN 12		.0	50		14.4	.56	E.08	4.57	107	79	E.002	.046	E.011
20 JUL		.0	65	= =	19.5	.72	E.08	5.10	114	96	E.002	.055	<.015
01 16 AUG		.0	68 76		22.9 28.4	.62 1.23	E.06 E.11	5.97 5.53	119 142	107 118	E.002 E.002	.056 .079	<.015 <.015
08 SEP	. 98	.0	80		31.1	.77	.12	6.22	140	129	E.002	.079	<.015
24	. 90	.0	74		31.6	.69	E.10	7.11	137	126	E.002	.087	<.015
Date	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)		PHOS-	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	SEDIMNT SUSP, (WEIGHT PERCNT)		ALUM- INUM SED, SUS PERCENT (30221)		AN- TIMONY SED. SUSP. (UG/G) (29816)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC SED. SUSP. (UG/G) (29818)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)
APR 02	22	.16	.023	E.002	<.007		.350	2.8	<1	2.6	<.05	120	.3
	70	.41	.22	.014	<.007 E.005	.10 <.10	.090	6.9 6.9	18 15	1.5 1.5	.26 .27	13 13	.8 1.0
	. E.44 46	.19 .13	E.183	.011	E.005 E.004	.13	.100	7.2 7.8	13 44	2.0	.27	15 18	. 9
AUG	44	.10	.47	.005	<.007	<.10	.100	8.1	16	2.2	.39	18	.9
SEP 24	35	.17	.026	.007	<.007		.090	7.2	11	1.6	.23	15	. 8
Date	BARIUM SED. SUSP. (UG/G) (29820)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM SED. SUSP. (UG/G) (29822)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM SED. SUSP. (UG/G) (29826)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM SED. SUSP. (UG/G) (29829)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT SEDI- MENT SUSP. (UG/G) (35031)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER SED. SUSP. (UG/G) (29832)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)
	. 970	82	1	<.06	11	2.1	E.03	210	<.8	15	.25	89	.8
20	. 940 . 920	38 42	2 2	<.06 <.06	E6 E5	.5	.05 E.03	110 100	<.8	17 17	.11	33 34	5.0 3.3
JUL 01 16	. 980 . 1000	39 42	2 2	<.06 <.06	E6 7	. 4	E.02 E.04	110 110	<.8	19 21	.09 .12	40 51	3.3
	. 1000	52	2	<.06	14	.5	E.02	110	<.8	23	.08	57	2.1
SEP 24	. 1000	39	2	<.06	E6	.5	.04	100	<.8	18	.12	41	2.7
Date	PERCENT	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD SED. SUSP. (UG/G) (29836)		LITHIUM SEDI- MENT SUSP. (UG/G) (35050)	DIS- SOLVED (UG/L AS LI)	MAN- GANESE SED. SUSP. (UG/G) (29839)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY SED. SUSP. (UG/G) (29841)	SED. SUSP. (UG/G)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)		NICKEL, DIS- SOLVED (UG/L AS NI) (01065)
APR	. 19	51	47	<.08	13	2.8	1600	162		9	.8	89	1.39
JUN	. 3.9	279	18	.29	30	1.7	810	15.1	.06	2	1.6	89 51	1.58
20 JUL	. 4.0	320	16	.31	28	1.7	850	9.9	.05	1	. 7	48	1.20
	. 4.5	238 115	18 21	.14 .32	34 42	2.1	910 940	6.6 4.9	.05	2	.7 .9	54 52	1.22 1.53
	. 5.2	24	19	E.06	40	3.1	960	2.4	.08	2	1.0	55	.75
	. 4.3	125	16	.09	34	2.5	890	6.9	.07	2	. 9	57	2.21

YUKON ALASKA

15565447 YUKON RIVER AT PILOT STATION—Continued

Date	SELE- NIUM SED. SUSP. (UG/G) (29847)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER SED. SUSP. (UG/G) (29850)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM SEDI- MENT SUSP. (UG/G) (35040)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	THAL- LIUM SUS SED (UG/G) (49955)	TITA- NIUM SEDI- MENT SUSP. PERCENT (30317)	VANA- DIUM SED. SUSP. (UG/G) (29853)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC SED. SUSP. (UG/G) (29855)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	URANIUM SEDI- MENT SUSP. (UG/G) (35046)
APR													
02. JUN	3	.3	<.5	<1	260	188	<250	.230	100	.8	360	3	<250
12.	M	< . 3	<.5	<1	220	80.1	<50	.460	130	.9	110	1	<50
20.	M	.3	< . 5	<1	240	88.4	< 50	.470	130	. 9	110	1	< 50
JUL													
01.		. 4	<.5	<1	230	99.1	< 50	.470	140	. 7	130	1	< 50
16.	M	. 4	M	<1	240	105	< 50	.460	150	. 9	130	3	< 50
AUG													
_08.	M	E.2	<.5	<1	260	135	< 50	.460	160	1.4	130	1	< 50
SEP			_	_						_		_	
24.	M	. 4	<.5	<1	250	118	< 50	.450	140	.7	120	2	< 50
Date APR	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	TRITIUM IN WATER MOLE- CULES (TU)	TRITIUM WATER MOLE- CULES COUNT ERROR (TU) (07013)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, INOR- GANIC, PARTIC. TOTAL (MG/L AS C) (00688)	CARBON, ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	SED. SUSP.	CARBON, ORGANIC SUS- PENDED, TOTAL PERCENT (50465)	NITRO- GEN, PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570)	SEDI- MENT SUSP., FLOW- THROUGH CENTRIF (MG/L) (50279)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
02. JUN	89	11.9	.5	2.3	<.1	. 4	. 4			. 04	1 2	3.	0 310
12.	36	9.1	. 4	10.6	< . 1	1.3	1.4	1.4	1.4	.11	283	342	526000
20.	47	9.7	. 4	7.8	< . 1	2.9	3.0	1.4	1.2	.16	260	269	324000
JUL													
01.		10.6	. 4	7.3	< .1	1.3	1.3	1.5	1.3	.07			
16. AUG	69	10.8	. 4	4.5	. 7	4.5	5.2	1.6	1.1	.28	3 3 6 3	344	320000
08. SEP	84	11.0	. 7	3.5	2.7	3.9	6.7	1.7	.9	.26	494	502	430000
	67	11.3	. 7	6.0	<.1	2.7	2.7	1.6	1.3	.16	190	200	198000

15565700 UNALAKLEET RIVER ABOVE CHIROSKEY RIVER NEAR UNALAKLEET

 $\texttt{LOCATION.--Lat 63°56'06'', long 160°18'18'', in NW}^{1}_{/4} \ \texttt{NE}^{1}_{/4} \ \texttt{sec. 18, T.18 S., R.8 W. (Unalakleet D-3 quad), Hydrologic } \\ \texttt{NE}^{1}_{/4} \ \texttt{NE}^{1$ Unit 19050102, on the right bank, 3.5 mi upstream from mouth of the Chiroskey River, 28 mi upstream from mouth, 15 mi east of Unalakleet.

DRAINAGE AREA.--1,048 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1997 to September 1999 (no winter record), October 1999 to current year.

REVISED RECORDS. -- WRD-AK-99-1: 1998.

GAGE.--Water-stage recorder. Elevation of gage is 40 ft above sea level from topographic map.

REMARKS.--Records good, except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

	DISCHARGE, in CFS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1270	e600	e250	e160	e130	e120	e110	e140	3000	898	1040	666
2	1240	e600	e250	e160	e130	e120	e110	e140	2770	868	996	655
3	1210	e550	e240	e160	e130	e120	e110	e150	2760	895	958	653
4	1230	e550	e240	e160	e130	e120	e110	e160	2910	973	923	683
5	1370	e500	e230	e160	e130	e120	e110	e180	2770	1030	892	838
6	1420	e500	e230	e160	e130	e120	e110	e200	2470	1120	861	1070
7	1420	e480	e220	e150	e130	e120	e110	e220	2260	1160	835	1370
8	1390	e480	e220	e150	e130	e120	e110	e240	2100	1120	814	1750
9	1360	e460	e220	e150	e130	e120	e110	e270	1980	1120	803	1770
10	1330	e440	e210	e150	e130	e120	e110	e300	1890	1110	804	1750
11	1260	e420	e210	e150	e130	e120	e110	e350	1820	1110	811	2000
12	e1200	e420	e210	e150	e130	e120	e110	e400	1800	1100	794	2640
13	e1200	e400	e200	e150	e130	e120	e110	e450	1780	1080	765	3630
14	e1100	e380	e200	e150	e130	e120	e110	e550	1740	1100	740	4700
15	e1100	e380	e200	e150	e130	e120	e110	e650	1610	1140	723	4350
16	e1000	e360	e190	e150	e130	e120	e110	e800	1530	1120	730	3730
17	e1000	e360	e190	e150	e130	e120	e110	e1000	1470	1080	766	3210
18	e950	e360	e190	e140	e130	e120	e110	e1300	1410	1080	838	2820
19	e950	e340	e190	e140	e130	e120	e110	e1700	1350	1060	896	2530
20	e900	e340	e180	e140	e130	e120	e110	e2500	1270	1030	905	2290
21	e900	e320	e180	e140	e130	e120	e110	e4000	1210	997	867	2110
22	e850	e320	e180	e140	e130	e120	e110	e6000	1140	967	822	1970
23	e850	e300	e180	e140	e130	e120	e110	e10000	1080	950	781	1860
24	e800	e300	e170	e140	e130	e120	e110	e17000	1040	942	755	1780
25	e800	e290	e170	e140	e120	e120	e120	e16600	1010	941	735	1720
26	e750	e280	e170	e140	e120	e120	e120	16400	1010	972	721	1660
27	e700	e280	e170	e140	e120	e120	e120	14800	1040	1010	712	1690
28	e700	e270	e170	e140	e120	e115	e130	12700	998	1140	706	2060
29	e650	e270	e170	e140		e110	e130	7640	964	1210	701	3660
30	e650	e260	e160	e140		e110	e130	5050	939	1150	691	5310
31	e600		e160	e140		e110		3750		1080	679	
TOTAL	32150	11810	6150	4570	3600	3685	3390	125640	51121	32553	25064	66925
MEAN	1037	393.7	198.4	147.4	128.6	118.9	113.0	4053	1704	1050	808.5	2231
MAX	1420	600	250	160	130	120	130	17000	3000	1210	1040	5310
MIN	600	260	160	140	120	110	110	140	939	868	679	653
AC-FT	63770	23430	12200	9060	7140	7310	6720	249200	101400	64570	49710	132700
CFSM	0.99	0.38	0.19	0.14	0.12	0.11	0.11	3.87	1.63	1.00	0.77	2.13
IN.	1.14	0.42	0.22	0.16	0.13	0.13	0.12	4.46	1.81	1.16	0.89	2.38
STATIST	rics of	MONTHLY M	EAN DATA	FOR WATER	YEARS 199	7 - 2002,	BY WATER	YEAR (W	Y)#			
MEAN	1224	521.8	243.2	151.7	121.6	108.3	110.8	2399	3627	1595	2834	2786
MAX	1471	685	279	154	129	119	115	4053	8788	2467	5690	3890
(WY)	2001	2001	2001	2000	2002	2002	2000	2002	2001	2001	1998	1998
MIN	1037	394	198	147	116	98.2	105	1182	1216	562	809	1385
(WY)	2002	2002	2002	2002	2001	2001	2001	2001	1997	1997	2002	1999

See Period of Record Estimated

15565700 UNALAKLEET RIVER ABOVE CHIROSKEY RIVER NEAR UNALAKLEET—Continued

SUMMARY STATISTICS	FOR 2001 CALENDA	R YEAR	FOR 2002 WAT	rer y	EAR	WATER YEARS	199	7 –	2002#
ANNUAL TOTAL	579802		366658						
ANNUAL MEAN	1588		1005			1318			
HIGHEST ANNUAL MEAN						1656			2001
LOWEST ANNUAL MEAN						1005			2002
HIGHEST DAILY MEAN	19600	Jun 8	17000	May	24	19600	Jun	8	2001
LOWEST DAILY MEAN	a95	Mar 21	b110	Mar	29	a95	Mar	21	2001
ANNUAL SEVEN-DAY MINIMUM	95	Mar 21	110	Mar	29	95	Mar	21	2001
MAXIMUM PEAK FLOW			С			d19700	Jun	8	2001
MAXIMUM PEAK STAGE						98.41	Jun	8	2001
MAXIMUM PEAK STAGE			f99.58	May	23	f99.58	May	23	2002
ANNUAL RUNOFF (AC-FT)	1150000		727300			955000			
ANNUAL RUNOFF (CFSM)	1.52		0.96			1.26			
ANNUAL RUNOFF (INCHES)	20.58		13.01			17.09			
10 PERCENT EXCEEDS	3370		1920			3100			
50 PERCENT EXCEEDS	400		420			550			
90 PERCENT EXCEEDS	100		120			110			

See Period of Record From Mar. 21 to Apr. 10 From Mar. 29 to Apr. 24 Not determined. See Highest Daily Mean From rating curve extended above 8800 ft³/s Backwater from ice

15565700 UNALAKLEET RIVER ABOVE CHIROSKEY RIVER NEAR UNALAKLEET—Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Water years 1982-83, 1998 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: June 1998 to current year.

INSTRUMENTATION.--Electronic water-temperature recorder set for one-hour recording interval.

REMARKS.-- Records represent water temperature at the sensor within $0.5^{\circ}C$. Temperature was compared with the stream average by cross section on June 18 and September 24. No variation was found within the cross sections. The variation found between mean stream temperature and sensor temperature was less than 0.5°C .

EXTREMES FOR PERIOD OF RECORD. --

WATER TEMPERATURE: Maximum, 14.5° C, July 11,12 2000 and July 19, August. 2,3, 2002; minimum, 0.0° C, many days during winter and spring breakup periods.

EXTREMES FOR CURRENT YEAR . - -

WATER TEMPERATURE: Maximum, 14.5°C, July 19, August 2,3; minimum, 0.0°C, many days during fall, winter and spring breakup periods.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	STREAM WIDTH (FT)	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK)	GAGE HEIGHT (FEET)	DIS- CHARGE, INST. CUBIC FEET PER SECOND	TEMPER- ATURE WATER (DEG C)	TEMPER- ATURE AIR (DEG C)
		(00004)	(72103)	(00065)	(00061)	(00010)	(00020)
JUN							
18	1400	252	235.0	87.65	1400	12.0	27.0
18	1401	252	155.0	87.65	1400	12.0	27.0
18	1402	252	65.0	87.65	1400	12.0	27.0
18	1403	252	35.0	87.65	1400	12.0	27.0
18	1404	252	15.0	87.65	1400	12.0	27.0
SEP							
24	1301	250	6.0	88.18	1720	4.8	10.0
24	1303	250	36.0	88.18	1720	4.8	10.0
24	1305	250	76.0	88.18	1720	4.8	10.0
24	1307	250	156.0	88.18	1720	4.8	10.0
24	1309	250	226.0	88.18	1720	4.8	10.0

WATER TEMPERATURE, (DEGREES CELSIUS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NC	VEMBER		DE	ECEMBER			JANUARY	
1 2 3 4 5	3.0 3.5 3.0 5.5	2.5 2.5 2.5 3.0 5.0	3.0 3.0 3.0 4.0 5.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
6 7 8 9 10	5.5 4.5 3.5 3.0 2.0	4.5 3.5 3.0 2.0 1.0	5.0 4.0 3.5 2.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
11 12 13 14 15	1.0 0.5 0.0 0.0	0.5 0.0 0.0 0.0	0.5 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
16 17 18 19 20	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
21 22 23 24 25	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
26 27 28 29 30 31	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
MONTH	5.5	0.0	1.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

15565700 UNALAKLEET RIVER ABOVE CHIROSKEY RIVER NEAR UNALAKLEET—Continued

WATER TEMPERATURE, (DEGREES CELSIUS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

		WATER	TEMPERATU	RE, (DEG	REES CEL	SIUS),	WATER YEAR	OCTOBER	2001 10	SEPTEMBER	2002	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 0.0	0.0	0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
6 7 8 9 10	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
11 12 13 14 15	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.5 2.0 2.0	0.0 0.0 0.0 0.0 0.5	0.0 0.0 0.5 1.0
16 17 18 19 20	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.5 2.5 3.0 3.0	0.5 1.0 1.0 1.0	1.5 2.0 2.0 2.0 2.0
21 22 23 24 25	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	4.0 4.0 4.5 5.0	2.0 3.0 4.0 4.0 4.5	3.0 3.5 4.0 4.5
26 27 28 29 30 31	0.0 0.0 0.0 	0.0 0.0 0.0 	0.0 0.0 0.0 	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	5.0 6.0 5.5 5.5 5.5 5.0	5.0 5.5 5.0 5.0 4.5 4.5	5.0 5.5 5.5 5.0 5.0
MONTH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		6.0	0.0	2.0
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST		S	EPTEMBE	lR.
1 2 3 4 5	6.5 6.5 6.0 7.0	5.0 6.0 5.5 5.5	5.5 6.0 6.0 6.0 7.0	10.5	9.5 10.0 9.0 9.0 8.5	10.5 10.0 9.5 9.0 8.5	14.0 14.5 14.5 13.5		12.5 13.5 13.5 13.0 12.5	8.0 8.0 8.0 8.0	7.5 7.5 7.5 7.5 7.5	8.0 7.5 7.5 7.5 7.5
6 7 8 9 10	8.0 7.5 6.5 7.0 7.0	7.0 6.5 5.5 6.0 6.5	7.5 7.0 6.0 6.5 7.0	9.0 9.0 9.0 9.0	7.5 8.5 8.5 8.0 8.5	8.0 8.5 8.5 8.5	13.0 12.0 11.5 10.5	11.5 10.5 10.0 10.0 9.0	12.5 11.5 10.5 10.5	8.5 8.5 8.0 7.5 6.5	8.0 7.5 7.0 6.5 6.0	8.0 8.0 7.5 7.0 6.5
11 12 13 14 15	8.5 9.0 9.0 9.5 11.0	6.5 7.5 8.0 8.0 8.5	7.0 8.0 8.5 8.5 9.5	11.0 10.5 10.0 10.5 11.5	9.5 10.0 9.5 9.5 9.5	10.5 10.0 10.0 10.0	11.0 11.0 10.5 10.0 9.5	9.0 9.5 9.0 8.5 9.5	10.0 10.0 9.5 9.5 9.5	7.0 6.5 6.0 6.0	6.0 6.0 5.5 6.0 5.5	6.5 6.0 6.0
16 17 18 19 20	12.0 12.5 13.0 13.0 12.5	11.0 11.5	11.0 11.5 12.0 12.0 11.5	11.5 13.5 14.0 14.5 14.0		11.0 12.0 13.0 13.5 13.0	9.5 9.0 9.5 9.0	9.0 8.5 8.5 8.5 8.0	9.0 9.0 9.0 9.0	6.0 5.5 5.0 4.0 4.0	5.5 5.0 4.0 3.5 3.0	5.5 5.0 4.5 4.0 3.5
21 22 23 24 25	12.0 11.5 11.0 11.0		11.0 10.5 10.5 10.0 9.5	13.5 13.0 12.5 12.0 11.5	11.0	12.5 12.0 11.5 11.5	10.0 9.5 9.5 9.5 8.5	8.0 8.0 7.5 7.5 8.0	9.0 9.0 8.5 8.5	3.5 4.0 4.5 5.5 6.0	2.5 3.0 3.5 4.5 5.0	3.0 3.0 3.5 5.0
26		8.5	9.0	10.5	10.0	10.0	8.5	7.5	8.0	6.5 6.5	6.0	6.0
27 28 29 30 31	10.0 11.5 11.0 10.0 10.5	8.5 10.0 8.5 8.0	10.0 10.5 9.0 9.5	11.0 12.0 12.0 12.5 13.0		10.5 11.0 11.5 11.5	9.0 9.0 9.5 9.0 8.5	7.5 7.5 8.0 7.0 7.5	8.5 8.5 8.0 8.0	6.0 6.0 5.5	6.0 6.0 5.5 4.5	6.0 6.0 5.5 5.0

15744500 KOBUK RIVER NEAR KIANA

 $\texttt{LOCATION.--Lat } \ 66^{\circ}58'25'', \ \texttt{long } \ 160^{\circ}07'51'', \ \texttt{in } \ \texttt{NW}^{1}/_{4} \ \texttt{SE}^{1}/_{4} \ \texttt{sec. 11, T. 18 N., R. 7 W.} (\texttt{Selawik D-3 quad}), \ \texttt{Northwest Arctic } \ \texttt{Northwest Arc$ Borough, Hydrologic Unit 19050304, on left bank, 5.8 mi upstream from Portage Creek, 9.7 mi upstream from Squirrel River, and 7.8 mi east of Kiana.

DRAINAGE AREA. -- 9,520 mi², approximately.

PERIOD OF RECORD. -- September 1976 to current year.

REVISED RECORDS.--WDR AK-81-1: 1977 (M), 1978, 1979-80 (M), WDR AK-93-1: 1992.

GAGE.--Water-stage recorder. Elevation of gage is 35 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES Satellite telemetry at station.

		DISCHA	ARGE, CUI	BIC FEET	PER SECOND,	, WATER LY MEAN		OBER 2001	TO SEPTE	MBER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	14200 13800 13500 13500 14700	e7500 e7000 e7000 e6500 e6500	e3400 e3400 e3300 e3200 e3200	e2400 e2400 e2400 e2300 e2300	e2000 e2000 e2000 e2000 e2000	e1900 e1800 e1800 e1800 e1800	e1800 e1800 e1800 e1800	e2000 e2100 e2200 e2300 e2500	45900 36200 32200 31900 31500	12600 12500 13200 14500 14800	9550 9190 8750 8300 7900	7110 6930 6770 6570 6880
6 7 8 9 10	16500 18900 19600 18800 18000	e6200 e6000 e6000 e5800 e5600	e3100 e3000 e3000 e2900 e2900	e2300 e2300 e2300 e2200 e2200	e2000	e1800 e1800 e1800 e1800 e1800	e1800 e1800 e1800 e1800 e1800	e3000 e4000 e5000 e6000 e8000	30800 31200 31000 32100 33600	14900 14300 14600 17400 21900	7450 7180 7060 7010 6870	7960 12100 18000 20900 23500
11 12 13 14 15	e17000 e16000 e16000 e15000 e14000	e5500 e5400 e5300 e5100 e5000	e2900 e2800 e2800 e2800 e2700	e2200 e2200 e2200 e2200 e2200		e1800 e1800 e1800 e1800 e1800	e1800 e1800 e1800 e1800 e1700	e11000 e15000 e19000 e22000 e24000	34000 33100 30800 28100 26800	24700 22800 20400 18600 17200	6720 6600 6430 6440 6510	24500 24000 24700 33300 43000
16 17 18 19 20	e14000 e13000 e12000 e12000 e11000	e4900 e4700 e4600 e4500 e4400	e2700 e2700 e2600 e2600 e2600	e2200 e2100 e2100 e2100 e2100	e1900 e1900	e1800 e1800 e1800 e1800 e1800	e1700 e1700 e1700 e1700 e1700	e25000 e27000 e40000 e60000 79300	25100 23400 22500 21300 19800	16300 15400 14400 13400 12700	6600 6940 9520 10700 10700	44300 46700 46400 41800 36600
21 22 23 24 25	e11000 e10000 e10000 e9500 e9500	e4300 e4200 e4100 e4000 e3900	e2600 e2600 e2600 e2500 e2500	e2100 e2100 e2100 e2100 e2100	e1900 e1900 e1900 e1900 e1900	e1800 e1800 e1800 e1800 e1800	e1700 e1700 e1700 e1700 e1700	101000 137000 137000 131000 129000	18700 17100 15900 16100 19300	12600 13600 14500 14600 14000	9950 9270 8820 8240 7730	32300 28900 26500 24400 22500
26 27 28 29 30 31	e9000 e8500 e8500 e8000 e8000 e7500	e3800 e3700 e3600 e3600 e3500	e2500 e2500 e2500 e2400 e2400 e2400	e2100 e2000 e2000 e2000 e2000 e2000	e1900 e1900 e1900 	e1800 e1800 e1800 e1800 e1800	e1800 e1800 e1800 e1900 e1900		18600 17100 15500 14100 13100	12800 11800 11100 10500 10100 9800	7290 6960 6850 6770 6770 7020	21100 20400 20400 21800 24000
TOTAL MEAN MAX MIN AC-FT CFSM IN.	401000 12940 19600 7500 795400 1.36 1.57	152200 5073 7500 3500 301900 0.53 0.59	86100 2777 3400 2400 170800 0.29 0.34	67300 2171 2400 2000 133500 0.23 0.26	54200 1936 2000 1900 107500 0.20 0.21	55900 1803 1900 1800 110900 0.19 0.22	53100 1770 1900 1700 105300 0.19 0.21		1521000	14900	242090 7809 10700 6430 480200 0.82 0.95	724320 24140 46700 6570 1437000 2.54 2.83
STATIS	TICS OF N	MONTHLY ME	AN DATA	FOR WATER	R YEARS 1976	5 - 2002	, BY WATI	ER YEAR (W	Y)#			
MEAN MAX (WY) MIN (WY)	13870 29870 1994 5003 1997	5440 11050 1994 2750 1981	3427 6097 1994 1926 1982	2603 3965 1994 1606 1982	2148 2868 1994 1331 1984	1899 2600 1980 1116 1984	1853 3703 1980 1000 1984	25140 52250 2002 1635 1992	46000 87010 1989 19690 1997	21150 40130 1980 9032 1997	30270 78210 1994 7809 2002	28210 78190 1986 9542 1996
SUMMAR	Y STATIST	rics	FOR	2001 CAI	LENDAR YEAR		FOR 2002	WATER YEA	R	WATER YEA	RS 1976	- 2002#
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU MAXIMU ANNUAL ANNUAL 10 PER	T ANNUAL	MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN		11940000 1. 23. 43300	Apr 21		12830 a137000 c1700 1700 146000 60 9292000 1 18 28400	May 2 Apr 1 Apr 1 May 2 May 2 .39 May 2	2	f62.9 g64.2 11060000 1.6 21.7 41000	4 Jun 6 Jun 0	1 1989
	CENT EXC			3800 2000			6000 1800			5400 1700		

See Period of Record; partial years used in monthly statistics From May 22-23 From Apr. 21 to May 14 From Apr. 15 to Apr. 25 From Apr. 1 to May 14, 1984 Estimated From flood marks Backwater from ice

c d

15746900 WULIK RIVER ABOVE FERRIC CREEK NEAR KIVALINA

LOCATION.--Lat $68^{\circ}04'42''$, long $163^{\circ}11'15''$, in NW $^{1}/_{4}$ sec. 23, T. 31 N., R. 20 W. (DeLong Mts A-2 quad), Northwest Arctic Borough, Hydrologic Unit 19050404, on left bank 0.7 mi upstream from Ferric Creek, 9 miles west of Red Dog Mine site, and 43 miles northeast of Kivalina.

DRAINAGE AREA.--191 mi².

PERIOD OF RECORD. -- July 2000 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 500 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

	DISCHARGE, in CFS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	147 163 147 126 125	e8.5 e8.0 e7.5 e6.5 e6.0	e0.80 e0.70 e0.70 e0.70	e0.20		e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.20 e0.20 e0.20 e0.20 e0.20	e500 e700 1740 1970 2040	287 553 342 229 181	71 67 63 60 57	621 536 737 1780 3810
6 7 8 9 10	123 e90 e82 e74 e66	e5.5 e5.0 e4.6 e4.4 e4.0	e0.60 e0.50 e0.50 e0.50	e0.10 e0.10	e0.00 e0.00	e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.20	1480 893 1570 1760 2230	169 179 229 547 641	54 53 50 50 46	2980 3190 2460 1570 1290
11 12 13 14 15	e60 e55 e50 e45 e41	e3.6 e3.4 e3.2 e2.9 e2.7	e0.40 e0.40	e0.10 e0.10 e0.10	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00	e0.00 e0.00 e0.00 e0.00	e0.20 e0.20 e0.20 e0.20 e0.20	2010 1460 1100 834 773	448 378 383 321 281	43 40 37 37 127	1040 810 672 582 757
16 17 18 19 20	e38 e34 e30 e27 e25	e2.5 e2.3 e2.1 e1.9 e1.8	e0.30 e0.30	e0.10 e0.10 e0.10 e0.10 e0.10	e0.00 e0.00 e0.00 e0.00 e0.00		e0.00 e0.00 e0.00 e0.00		754 1080 1100 679 367	266 247 220 193 207	527 332 244 188 156	975 798 617 478 359
21 22 23 24 25	e23 e21 e20 e18 e17	e1.7 e1.5 e1.4 e1.4 e1.3	e0.20 e0.20 e0.20	e0.10 e0.10	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00	e0.00 e0.00 e0.10 e0.10 e0.10	e1000 e3200	250 551 610 340 295	241 348 325 261 203	129 107 94 83 74	346 266 237 226 221
26 27 28 29 30 31	e15 e14 e12 e11 e10 e9.5	e1.2 e1.1 e1.0 e0.90 e0.90	e0.20 e0.20 e0.20 e0.20 e0.20 e0.20		e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.20 e0.20 e0.20 e0.20 e0.20	e3400 e2100 e950 e650 e550	393 422 301 258 204	164 135 114 97 86 78	182 2390 4210 2060 1120 801	208 197 188 185 272
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	55 44	98.80 3.293 8.5 0.90 2.6 196 0.02 0.02	12.50 0.403 0.80 0.20 0.40 25 0.00	2.70 0.087 0.20 0.00 0.10 5.4 0.00 0.00	0 000	0.00 0.000 0.00 0.00 0.00 0.00 0.00	1.30 0.043 0.20 0.00 0.00 2.6 0.00 0.00	4800 0.20 0.20 42430	28664 955.5 2230 204 764 56860 5.00 5.58	8353 269.5 641 78 241 16570 1.41 1.63	4210 37 83 26880	28408 946.9 3810 185 619 56350 4.96 5.53
STATIS	TICS OF M	ONTHLY MEA	N DATA F	OR WATER	YEARS 2000	- 2002,	, BY WATE	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	54.69 59.7 2002 49.7 2001	16.46 29.6 2001 3.29 2002	6.065 11.7 2001 0.40 2002	2.765 5.44 2001 0.087 2002	1.868 3.74 2001 0.000 2002	1.482 2.96 2001 0.000 2002	1.280 2.52 2001 0.043 2002	359.1 690 2002 28.1 2001	1267 1576 2001 959 2002	383.7 567 2001 270 2002	851.9 1147 2000 437 2002	767.4 947 2002 421 2001
SUMMAR	Y STATIST	ICS	FOR	2001 CALE	NDAR YEAR	I	FOR 2002	WATER YEAR		WATER YEAR	S 2000 -	2002
ANNUAL MEAN HIGHEST ANNUAL MEAN		110732.10 303.4 4840 Aug 13 a0.20 Dec 23 0.20 Dec 23			102204.00 280.0 4800 May 26 b0.00 Jan 25 0.00 Jan 25 6520 May 25 c53.68 May 25 202700 1.47 19.91				20.07	Aug 13 Jan 25 Jan 25 May 25 May 25	2001 2002 8 2001 5 2002 5 2002 5 2002 5 2002	
50 PER	0 PERCENT EXCEEDS 942 799 862 0 PERCENT EXCEEDS 5.5 2.3 12 0 PERCENT EXCEEDS 1.3 0.00 0.00											

See Period of Record, partial years used in monthly statistics

From Dec.23-31 From Jan.25 to Apr.22 From floodmarks Estimated

15746991 IKALUKROK CREEK BELOW RED DOG CREEK NEAR KIVALINA

LOCATION.--Lat $68^{\circ}02'51''$, long $163^{\circ}01'34''$, in $NE^{1}_{/4}$ $NW^{1}_{/4}$ sec.33, T.31 N., R.19 W.(Delong Mountains A-2 quad) Northwest Arctic Borough, Hydrologic Unit 19050404, on left bank about 3.5 mi downstream from the mouth of Red Dog Creek, 2.5 mi upstream from the mouth of Dudd Creek, and 45 mi northeast of Kivalina.

DRAINAGE AREA. -- 98.6 mi².

PERIOD OF RECORD. -- June 1995 to current year (no winter record).

GAGE.--Water-stage recorder. Elevation of gage is 650 ft above sea level, from topographic map. Prior to June 1, 1998 at site 1 mi upstream at different datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Runoff from $3.6~\text{mi}^2$ is impounded in tailings ponds and released intermittently at a maximum rate of $25~\text{ft}^3/\text{s}$. Meteor-burst telemetry at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, undetermined, July 25, 1996; gage height, 12.22 ft, at site and datum then in use.

EXTREMES FOR CURRENT PERIOD.--Maximum discharge, 2390 ${\rm ft}^3/{\rm s}$, September 5, gage height, 10.98 ft; minimum not determined, occurs during the winter.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e100								e150	145	52	281
2	e110								e230	257	53	251
3	e105								e400	161	51	452
4	e100								e500	124	48	951
5	e90								e460	112	46	1880
6	e80								e360	103	46	1460
7	e70								308	98	45	1620
8	e65								447	117	42	1130
9	e58								537	326	44	787
10	e52								535	329	40	672
11	e48								482	232	34	554
12	e44								367	209	29	456
13	e38								336	240	28	401
14	e36								253	189	25	405
15	e32								240	162	143	598
16	e29								247	152	210	570
17	e26								301	140	119	474
18	e24								329	129	93	390
19	e22								217	117	77	302
20	e20								144	108	66	224
21	e18								125	96	61	202
22	e16								213	88	58	175
23	e14								192	95	54	153
24	e12								149	81	51	145
25	e11								141	74	47	142
26	e10								148	66	180	154
27	e8.0								144	63	897	158
28	e7.0								113	60	1580	139
29	e6.0								91	57	877	130
30	e5.0								102	55	481	190
31	e4.0									55	348	
TOTAL	1260.0								8261	4240	5925	15446
MEAN	40.6								275	137	191	515
MAX	110								537	329	1580	1880
MIN	4.0								91	55	25	130
AC-FT	2500								16390	8410	11750	30640
CFSM	0.43								2.89	1.43	2.00	5.40
IN.	0.49								3.22	1.65	2.31	6.02
TIM.	0.42								3.44	1.00	2.31	0.02

e Estimated

15747000 WULIK RIVER BELOW TUTAK CREEK NEAR KIVALINA

LOCATION.--Lat 67°52′34", long 163°40′28", in NW¹/₄ sec. 34, T. 29 N., R. 22 W. (Noatak D-4 quad), Northwest Arctic Borough, Hydrologic Unit 19050404, on left bank 0.1 mi downstream from Tutak Creek and 25 mi northeast of Kivalina

DRAINAGE AREA. -- 705 mi².

PERIOD OF RECORD. -- September 1984 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 175 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station. Flow from 2.8 square miles of the drainage basin is regulated by a tailings dam at the Red Dog Mine site. Up to $25 \text{ ft}^3/\text{s}$ of the flow at the gage may be discharge from Red Dog Mine during the summer period.

DISCHARGE, in CFS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FER MΔR APR MAV .TITN JUL AUG SEP e30 e25 e22 465 e95 e22 1580 598 302 2060 e21 2 425 e90 e44 e30 e25 e22 e21 e21 e22 2000 1170 291 1730 2090 484 e90 e44 e30 e24 e22 e22 3260 1110 280 e30 4 496 e85 e42 e24 e22 e21 e22 3960 799 270 4060 5 509 e80 e42 e29 e24 e22 e21 e2.2 4280 650 261 13400 e40 6 550 e80 e29 e24 e22 e20 e22 3500 574 250 11400 471 372 e75 e40 e29 e24 e22 e20 e2.2 2040 533 245 e11000 e75 e22 2790 553 238 e8000 8 e40 e28 e24 e22 e20 9 e350 e70 639 e2.8 e24 e22 e20 e22 3410 1120 240 e5400 10 e340 e70 e39 e28 e24 e22 e20 e22 3930 2120 242 e4200 e300 11 e70 638 e28 e24 e22 e20 e23 4070 1530 228 e3000 217 12 e280 e65 e38 e28 e23 e21 e20 e23 3160 1190 e2400 13 e260 e23 e21 e20 e23 1150 e2000 14 e240 e60 e37 e27 e23 e21 e20 e23 1950 1010 203 e1900 e27 e23 e21 e20 e23 1610 855 15 e220 e60 e36 311 e2200 16 e210 e60 e36 e27 e23 e21 e20 e24 1530 760 1190 e2500 17 e200 e55 e36 e27 e23 e21 e20 e26 1970 703 1030 e2200 18 e180 e55 e35 e27 e23 e21 e20 e45 2090 646 e1800 19 e170 e55 e35 e27 e23 e21 e20 e120 1820 588 621 e1500 e55 e23 20 e160 e34 e26 e21 e20 e200 1060 555 538 e1200 21 e160 e55 e23 e20 e500 769 561 486 e1100 e34 e26 e21 e50 e34 e23 e20 e1200 809 637 e950 22 e150 e26 e21 442 2.3 e140 e50 e33 e26 e23 e21 e20 e2800 1540 634 410 e850 24 e140 e50 e33 e26 e23 e21 e20 e6000 971 606 381 e800 770 25 e22 e20 e12500 359 e130 e48 e32 e26 e21 532 e800 26 472 e750 e120 e48 e32 e25 e22 e21 16800 802 384 e21 e120 e46 e32 e25 e22 e21 e21 13600 868 424 3540 e700 28 e110 e46 e32 e25 e22 e21 e21 7570 743 382 9670 e700 3770 620 6160 e750 29 e110 e46 e31 e25 --e21 e22 354 30 e100 e44 e31 e25 e21 e22 2410 554 335 3510 e850 31 e100 e31 e25 --e21 1950 317 2520 TOTAL 69850 35785 8062 1893 1131 843 653 662 612 60836 23468 92290 MEAN 260.1 550 63.10 36.48 27.19 23.32 21.35 20.40 2253 2028 757.0 2120 1154 3076 MAX 25 16800 9670 95 30 22 22 4280 13400 44 MIN 100 44 22 183100 AC-FT 15990 3750 2240 1670 1300 1310 1210 138500 120700 46550 70980 CFSM 0.37 0.09 0.05 0.04 0.03 0.03 0.03 3.20 2.88 1.07 1.64 4.36 0.43 0.06 0.04 0.03 0.03 3.21 1.89 4.87 IN. 0.10 0.03 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 2002, BY WATER YEAR (WY) MEAN 136.6 24.27 18.84 3167 2859 532.3 62.83 35.51 16.27 1865 1697 1729 MAX 1542 290 111 70.0 49.3 39.5 38.8 4856 6669 6144 8458 3102 (WY) 1994 1994 1986 1986 1986 1991 1991 1993 1989 1989 1994 2002 MTN 207 63.1 34.2 21.5 12.0 9.10 9.00 20.6 1372 424 496 386 1997 1992 (WY) 2002 1992 1992 1989 1988 1999 1991

15747000 WULIK RIVER BELOW TUTAK CREEK NEAR KIVALINA—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR	YEAR	FOR 2002 WAT	TER YEAR	WATER YEARS	1985 - 2002
ANNUAL TOTAL	370367		296085			
ANNUAL MEAN	1015		811.2		1017	
HIGHEST ANNUAL MEAN					1843	1994
LOWEST ANNUAL MEAN					530	1987
HIGHEST DAILY MEAN	21100 Au	g 13	16800	May 26	29400	Aug 17 1994
LOWEST DAILY MEAN	a23 Ma	y 9	b20	Apr 6	c9.0	Apr 30 1985
ANNUAL SEVEN-DAY MINIMUM	23 Ma	y 9	20	Apr 6	9.0	Apr 30 1985
MAXIMUM PEAK FLOW			20600	May 26	38500	Aug 17 1994
MAXIMUM PEAK STAGE			10.18	May 26	12.21	Aug 17 1994
MAXIMUM PEAK STAGE					d13.5	May 16 1999
ANNUAL RUNOFF (AC-FT)	734600		587300		736600	
ANNUAL RUNOFF (CFSM)	1.44		1.15		1.44	
ANNUAL RUNOFF (INCHES)	19.54		15.62		19.60	
10 PERCENT EXCEEDS	3110		2100		2890	
50 PERCENT EXCEEDS	65		55		120	
90 PERCENT EXCEEDS	29		21		15	

See Period of Record From May 9-15 From Apr. 6-25 From Apr. 30 to May 10, 1985, and Mar. 4 to May 17, 1992 From floodmarks, backwater from snow and ice Estimated

15798700 NUNAVAK CREEK NEAR BARROW

LOCATION.--Lat 71°15'35", long $156^{\circ}46'57$ ", in $\mathrm{SE}^{1/}_4$ sec. 18, T. 22 N., R. 18 W.(Barrow B-4 quad), North Slope Borough, Hydrologic Unit 19060202, 0.7 mi downstream from Emaiksoun Lake, 1.2 mi upstream from Nunavak Bay, and 2.3 mi south of Barrow Post Office.

DRAINAGE AREA.--2.79 mi², approximately.

PERIOD OF RECORD. -- October 1971 to current year.

REVISED RECORDS.--WDR AK-76-1: 1972.

GAGE.--Water-stage recorder. Elevation of gage is 19 ft above sea level, from topographic map. Prior to May 29, 1982, at site 10 ft downstream at datum about 29.6 ft higher.

REMARKS.--Records poor.

		DISCHA	RGE, CUB	IC FEET	PER SECOND, DAIL		YEAR OCTO	BER 2001	TO SEPTE	MBER 2002		
DAY 1 2 3 4 5	OCT e0.10 e0.00 e0.00 e0.00 e0.00	NOV e0.00 e0.00 e0.00 e0.00 e0.00	DEC e0.00 e0.00 e0.00 e0.00	JAN e0.00 e0.00 e0.00 e0.00	FEB e0.00 e0.00 e0.00 e0.00 e0.00	MAR e0.00 e0.00 e0.00 e0.00 e0.00	APR e0.00 e0.00 e0.00 e0.00 e0.00	MAY e0.00 e0.00 e0.00 e0.00 e0.00	JUN e4.6 e7.3 e7.2 6.3 6.5	JUL 2.5 2.7 2.4 2.1 1.8	AUG 0.17 0.13 0.12 0.10	SEP e0.00 e0.00 0.10 0.22 0.49
6 7 8 9 10	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	7.1 7.1 7.2 6.9 6.4	1.7 1.7 1.3 1.1 0.83	0.10 0.10 0.10 0.10 e0.00	0.30 0.18 0.15 0.15 0.26
13 14 15	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	6.0 5.5 5.1 3.5 3.6	0.74 0.63 0.54 0.52 0.53	e0.00 e0.00 e0.00 e0.00	0.94 0.55 0.36 0.35 0.31
16 17 18 19 20	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00	4.5 4.0 3.5 3.1	0.51 0.44 0.38 0.34	1.2 0.19 0.13 0.12	0.27 0.25 0.34 0.52
21 22 23 24 25	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e14 e13 e16	3.4 3.4 3.6 3.3 2.7	0.28 0.28 0.26 0.23 0.23	0.10 0.10 e0.00 e0.00 e0.00	2.4 0.99 5.9 1.0 0.32
26 27 28 29 30 31	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00 e0.00 e0	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e18 e12 e3.7 e3.0 e3.3 e2.2	2.6 4.1 3.5 2.9 2.5	0.22 0.18 0.17 0.15 0.14 0.17	e0.00 e0.00 e0.00 e0.00 e0.00	0.32 0.35 0.34 0.59 0.33
TOTAL MEAN MAX MIN AC-FT CFSM IN.	0.10 0.003 0.10 0.00 0.2 0.00 0.00	0.00 0.000 0.00 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00 0.00	85.20 2.748 18 0.00 169 0.99 1.14	141.0 4.700 7.3 2.5 280 1.68 1.88	25.37 0.818 2.7 0.14 50 0.29 0.34	7.76 0.250 4.8 0.00 15 0.09 0.10	18.84 0.628 5.9 0.00 37 0.23 0.25
					YEARS 1972							
MEAN MAX (WY) MIN (WY)	0.030 0.22 1980 0.000 1972	0.000 0.000 1972 0.000 1972	0.000 0.000 1972 0.000 1972	0.000 0.000 1972 0.000 1972	0.000 0.000 1972 0.000 1972	0.000 0.000 1972 0.000 1972	0.000 0.000 1972 0.000 1972	0.278 3.55 1990 0.000 1972	8.401 17.3 1999 2.73 1992	2.004 9.93 1981 0.091 1983	0.878 6.79 1994 0.001 1983	1.012 8.34 1986 0.000 1975
SUMMARY	STATIST	ICS	FOR	2001 CAL	ENDAR YEAR		FOR 2002 V	WATER YEA	R	WATER YEA	RS 1972 -	2002
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES)		409.40 1.122 70 Jun 14 a0.00 Jan 1 0.00 Jan 1			278.27 0.762 18 May 26 b0.00 Oct 2 0.00 Oct 2 19 May 25 fg33.67 May 21 552 0.27 3.71 2.9 0.00 0.00			1.044 2.26 1989 0.26 1992 110 Jun 14 1994 c0.00 Oct 1 1971 0.00 Oct 1 1971 131 Jun 10 1980 g34.36 Jun 11 1994 756 0.37 5.08				
50 PERC 90 PERC	ENT EXCE ENT EXCE	EDS EDS		0. 0.	00		0.0	00		0.0	0	

From Jan. 1 to Jun. 9 and Oct. 2 to Dec. 31 From Oct. 2 to May 22, Aug. 10-14 23-31, and Sept. 1-2 No flow during winter months and at times during summer months At site and datum then in use, flow over snow. Estimated Maximum observed but may have been higher prior to gage startup, May 21-23 Backwater from snow and ice c d

15896000 KUPARUK RIVER NEAR DEADHORSE

LOCATION.--Lat 70°16′54″, long 148°57′35″, in NE¹/₄ sec. 25, T. 11 N., R. 12 E. (Beechey Point B-4 quad), North Slope Borough, Hydrologic Unit 19060401, on right bank, 1.8 mi northeast of SE Eileen State No. 1, 2.1 mi south of Frontier Service City Camp, 10 mi upstream from mouth on Gwyder Bay, 3 miles upstream of the Spine Road, and 13 mi northwest of Deadhorse.

DRAINAGE AREA. -- 3,130 mi².

PERIOD OF RECORD.--June 1971 to current year.

GAGE.--Water-stage recorder. Datum of gage is at sea level (levels by private engineering firm).

REMARKS.--Records fair except for estimated daily discharges, which are poor. Winter low flow may be discontinuous as the flow probably varies significantly along the main stem of the river due to the formation of aufeis in the vicinity of springs. Flow may cease at other points. GOES satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

					DAI	DI MEAN V	ALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	API	R MAY	JUN	JUL	AUG	SEP
1	e800	e80	e10	e0.0	e0.0	e0.0	e0.0	e0.0	4380	3340	387	3150
2	e750	e75	e9.0	e0.0	e0.0	e0.0	e0.0	e0.0	4580	3430	360	2980
3	e700	e70	e9.0	e0.0	e0.0	e0.0	e0.0	e0.0	4070	3610	340	2750
4	e650	e65	e8.0	e0.0	e0.0	e0.0	e0.0	e0.0	3310	3750	322	2490
5	e600	e60	e7.0	e0.0	e0.0	e0.0	e0.0	e0.0	3120	3490	302	2350
	6600	600	e7.0	e0.0	e0.0	e0.0	eu.u	e0.0	3120	3490	302	2350
6	e540	e55	e7.0	e0.0	e0.0	e0.0	e0.0	e0.0	3210	3210	295	2200
7	e500	e55	e6.0	e0.0	e0.0	e0.0	e0.0	e0.0	3250	2760	284	2220
8	e460	e50	e6.0	e0.0	e0.0	e0.0	e0.0	e0.0	2750	2410	279	2450
9	e430	e46	e5.0	e0.0	e0.0	e0.0	e0.0	e0.0	2350	2720	275	3490
10	e390	e43	e4.0	e0.0	e0.0	e0.0	e0.0	e0.0	1920	3260	282	5480
11	e360	e40	e4.0	e0.0	e0.0	e0.0	e0.0	e0.0	1640	2810	301	5910
12	e340	e37	e3.0	e0.0	e0.0	e0.0	e0.0	e0.0	1450	2320	297	5400
13	e310	e35	e3.0	e0.0	e0.0	e0.0	e0.0	e0.0	1250	1980	307	4730
14	e290	e33	e3.0	e0.0	e0.0	e0.0	e0.0	e0.0	1100	1670	347	4210
15	e270	e31	e3.0	e0.0	e0.0	e0.0	e0.0	e0.0	1000	1440	571	3820
	6270	631	65.0	60.0	60.0	60.0	60.0	60.0	1000	1110	371	3020
16	e250	e28	e2.0	e0.0	e0.0	e0.0	e0.0	e0.0	1280	1480	4340	3500
17	e230	e26	e2.0	e0.0	e0.0	e0.0	e0.0	e0.0	2030	1490	23300	3130
18	e210	e24	e2.0	e0.0	e0.0	e0.0	e0.0	e0.0	2050	1330	33600	2880
19	e200	e22	e1.0	e0.0	e0.0	e0.0	e0.0	e0.0	1700	1140	21500	2850
20	e180	e21	e1.0	e0.0	e0.0	e0.0	e0.0	e0.0	1410	1010	14100	3100
21	e170	e19	e1.0	e0.0	e0.0	e0.0	e0.0	e500	1130	903	10800	3240
22	e160	e18	e1.0	e0.0	e0.0	e0.0	e0.0	e5000	990	801	8900	3110
23	e150	e17	e0.0	e0.0	e0.0	e0.0	e0.0	e25000	992	716	7330	2830
24	e140	e16	e0.0	e0.0	e0.0	e0.0	e0.0	e50000	1560	677	6220	2600
25	e130	e15	e0.0	e0.0	e0.0	e0.0	e0.0	e45000	4080	651	5320	2350
26	e120	e14	e0.0	e0.0	e0.0	e0.0	00 0	e36000	4670	596	4710	2140
27	e110	e13	e0.0	e0.0	e0.0	e0.0	e0.0	18100	3700	600	4020	1990
28	e110	e12	e0.0	e0.0	e0.0	e0.0	e0.0	10600	2940	582	3560	1920
29	e100	e11	e0.0	e0.0		e0.0	e0.0	7790	2500	537	3230	2630
30	e90	e10	e0.0	e0.0		e0.0	e0.0	6510	2600	479	3120	5240
31	e85		e0.0	e0.0		e0.0		4800		413	3090	
TOTAL	9825	1041	97.0	0.0	0.0	0.0	0.0	209300.0	73012	55605	162089	97140
MEAN	317	34.7	3.13	0.000	0.000	0.000	0.000	6752	2434	1794	5229	3238
MAX	800	80	10	0.0	0.0	0.0	0.0	50000	4670	3750	33600	5910
MIN	85	10	0.0	0.0	0.0	0.0	0.0	0.0	990	413	275	1920
MED	250	30	2.0	0.0	0.0	0.0	0.0	0.0	2200	1480	3090	2930
AC-FT	19490	2060	192	0.00	0.00	0.00	0.00	415100	144800	110300	321500	192700
CFSM			0.00		0.00	0.00	0.00					
	0.10	0.01		0.00				2.16	0.78	0.57	1.67	1.03
IN.	0.12	0.01	0.00	0.00	0.00	0.00	0.00	2.49	0.87	0.66	1.93	1.15
STATIST	rics of M	MONTHLY ME	AN DATA	FOR WATER	YEARS 197	1 - 2002,	BY WAT	ER YEAR (W	Y)#			
MEAN	235	20.8	2.67	0.99	0.97	0.97	0.97	1693	10470	1117	1747	1567
MAX	692	174	24.3	10.0	10.0	10.0	10.0	8877	26360	3169	5229	4863
(WY)	1978	1973	1973	1972	1972	1972	1972	1996	1982	1999	2002	1997
MIN	10.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	726	300	127	192
(WY)	1975	1977	1977	1976	1976	1975	1975	1975	1990	1971	1990	1974
(W ± /	17/3	1011	10//	1010	1010	1010	17/3	17/3	1000	17/1	1000	17/4

15896000 KUPARUK RIVER NEAR DEADHORSE—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1971 - 2002#
ANNUAL TOTAL	512231.0	608109.0	
ANNUAL MEAN	1403	1666	1388
HIGHEST ANNUAL MEAN			2304 1982
LOWEST ANNUAL MEAN			658 1974
HIGHEST DAILY MEAN	55000 Jun 10	50000 May 24	100000 Jun 7 1978
LOWEST DAILY MEAN	a0.0 Jan 1	b0.0 Dec 23	c0.0 Mar 1 1975
ANNUAL SEVEN-DAY MINIMUM	0.00 Jan 1	0.00 Dec 23	0.00 Mar 1 1975
MAXIMUM PEAK FLOW		d	118000 Jun 7 1978
MAXIMUM PEAK STAGE		f36.58 May 23	37.60 Jun 7 1978
ANNUAL RUNOFF (AC-FT)	1016000	1206000	1005000
ANNUAL RUNOFF (CFSM)	0.45	0.53	0.44
ANNUAL RUNOFF (INCHES)	6.09	7.23	6.02
10 PERCENT EXCEEDS	2290	3650	2780
50 PERCENT EXCEEDS	7.0	22	10
90 PERCENT EXCEEDS	0.00	0.00	0.00

See Period of Record, partial years used in monthly statistics
From Jan. 1 to Jun. 5
From Dec. 23 to May 20
No flow during winter months
Not determined, occurred during period of backwater from ice and snow, see highest daily mean
Estimated
From Floddmarks, backwater from snow and ice

Figure 2. Locations of crest-stage partial-record stations.

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or flood-flow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records of partial-record stations are presented in the table of annual maximum stage and discharge at crest-stage stations. Discharge measurements made at miscellaneous sites for both low flow and high flow are given in a second table.

CREST-STAGE PARTIAL-RECORD STATIONS

The following table contains annual maximum discharge for crest-stage stations. A crest-stage gage is a device that will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain, but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. The maximum discharge for each water year is given. The maximum discharge for the current water year and the maximum for the period of record are presented in the table below. However, at some stations the maximum discharge from spring runoff and from rainfall are shown by the symbols S/ and R/, respectively. Information on some lower floods may have been obtained, but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

Station name and number			Water	r year 2002 n	maximum	Period of record maximum				
	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft3/s)	Date	Gage height (ft)	Discharge (ft3/s)		
SOUTHEAST ALASKA										
Taiya River near Skag- way (15056210)	Lat 59°30′43″, long 135°20′40″, in NE¹¹₄SE¹¹₄ sec. 22, T. 27 S., R. 59 E. (Skagway B-1 quad), on the downstream side of highway bridge, 1.0 mi downstream from West Creek, 2.2 mi upstream from mouth, and 4 mi north of Skagway. Drainage area is 179 mi².	1970-78	7-23-02	19.86	b18,600	7-23-02	19.86	ь18,600		
Cupola Peak Creek at Bear Cove near Sitka (15088400)	Lat $57^{\circ}00'39''$, long $135^{\circ}09'11''$, in NE $^{1/}_{4}$ SE $^{1/}_{4}$ Sec. 13, T. 56 S., R. 64 E. (Sitka A-4 quad), on Baranof Island, in the Tongass National Forest, on left bank 200 ft downstream from Green Lake road crossing, 400 ft upstream from mouth at south shore of Bear Cove in Silver Bay, and about 7.1 mi southeast of Sitka. Drainage area is 0.43 mi^2 .	2000-2002	9-04-00 12-05-00 08-12-02	r17.33 r17.33 17.49	g16 g16 n	08-12-02	17.49	n		

G:	Location and drainage area	–	Water	r year 2002 n	naximum	Period	of record maximum		
Station name and number		Period of record	Date	Gage height (ft)	Discharge (ft3/s)	Date	Gage height (ft)	Discharge (ft3/s)	
		SOUTHEA	ST ALASK	XA—Continue	ed				
North Fork Peterson Creek near Auke Bay (15109045)	Lat 58°17′02″, long 134°39′49″, in SE¹¹⁄₄ NW¹¹⁄₄ SW¹¹⁄₄ sec. 29, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, on left bank, 300 ft upstream from mouth, 7.3 mi south of Auke Bay, and 9.5 mi west of Douglas. Drainage area is 1.59 mi²., revised.	1997-2002	9-20-02	22.15	57.4	11-01-99 and 12-28-99	23.38	160	
Drain at Airport Approach 29 near Yakutat (15129540)	Lat 59°29'42", long 139°37'56", in SE¹¹⁄₄ NW¹¹⁄₄ NE¹¹∕₄ sec. 15, T. 28 S., R. 34 E. (Yakutat B-5 quad), at Yakutat Airport, in Tongass National Forest, on right bank, 1.5 mi upstream from Lost River, 5.5 mi southeast of Yakutat. Drainage area not determined.	2002	08-21-02	15.88	n				
Drain at Airport Approach 2 near Yakutat. (15129550)	Lat 59°29'35", 139°41'17", in SW¹/₄NW¹/₄NE¹/₄, sec. 17, T. 28 S., R. 34 E. (Yakutat B-5 quad), at Yakutat Airport, in Tongass National Forest, on right bank, 0.4 mi upstream from Tawah Creek, 5.3 mi southeast of Yakutat. (Drainage area not determined.)	2002	08-21-02	6.44	n				
		SOUTH	-CENTRA	L ALASKA					
Dry Creek near Glen- nallen (15201000)	Lat 62°08′49″, long 145°28′31″, in NE¹/₄ sec. 7, T. 4 N., R.1 W. (Gulkana A-3 quad), on left bank 135 ft upstream from culvert at mi 119 Richardson Highway and 3.3 mi north of Glennallen. Drainage area is 11.4 mi².	1963-2002	5-20-02 5-25-02 6-01-02	f15.82 15.56 15.56	u S/109 R/109	572	d25.88	546	
McCarthy Creek at McCarthy (15210025)	Lat 61°25′54″, long 142°55′02″, in NW1′ ₄ NW1′ ₄ NE1′ ₄ sec. 19, T. 5 S., R. 14 E. (McCarthy B-6 quad), on right bank 1100 ft upstream from large boulder near footbridge at trail crossing at McCarthy, 0.8 mi upstream from mouth. Drainage area is 79.0 mi².	1994-2002	6-17-02 8-13-02	79.08 80.32	S/1,070 R/3,370	9-27-00	j80.27	e4,000	

G:		_	Water	r year 2002 n	naximum	Period	riod of record maximum				
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft3/s)	Date	Gage height (ft)	Discharge (ft3/s)			
SOUTH-CENTRAL ALASKA—Continued											
Boulder Creek near Tiekel (15212500)	Lat $61^{\circ}20'08''$, long $145^{\circ}18'26''$, in $SE^{1/}_{4}SW^{1/}_{4}NW^{1/}_{4}$ sec. 19, T. 6 S., R. 1 E. (Valdez B-4 quad), on left downstream wingwall of bridge at mi 51.4 of old Richardson Highway, 0.2 mi downstream from culvert on present Richardson Highway, and 0.7 mi north of Tiekel. Drainage area is 9.80 mi ² .	1964-2002	502 6-01-02 6-22-02	f11.31 10.44 10.31	u S/326 R/232	8-07-81	11.72	1,330			
Ptarmigan Creek Trib- utary near Valdez (15212800)	Lat $61^{\circ}08'12''$, long $145^{\circ}44'32''$, $NW^{1/}_4NE^{1/}_4$ sec 34, T. 8 S., R. 3 W. (Valdez A-5 quad), on left bank 275 ft upstream from Richardson Highway, 21 mi east of Valdez. Drainage area is 0.72 mi ² .	1965-70 1996-2002	5-18-02 6-15-02 8-22-02	f77.63 77.46 77.27	u S/33 R/20	965	d10.82	85			
Mineral Creek near Valdez (15227500)	Lat $61^{\circ}08'30''$, long $146^{\circ}21'42''$, in $SW^{1/}_4NE^{1/}_4SE^{1/}_4$ sec. 30, T. 8 S., R. 6 W. (Valdez A-7 quad), on right bank 120 ft upstream from bridge, 1.8 mi upstream from mouth, and 0.5 mi northwest of Valdez. Drainage area is 44.0 mi ² .	i1976-81, 1990-2002	5-18-02 8-22-02	<10.14 12.10	S/<1,060 R/2,000	676	di 90.81	5,570			
Shakespeare Creek at Whittier (15236200)	Lat 60°46′35″, long 148°43′35″, in NE¹¹₄ sec. 22, T. 8 N., R. 4 E. (Seward D-5 quad), on upstream right wingwall of concrete bridge 0.5 mi upstream from mouth, and 1.8 mi west of the Alaska railroad terminal building at Whittier. Drainage area is 1.61 mi².	1970-80, 1984-2002	10-05-01 5-30-02	12.36 10.65	R/529 S/336	9-20-95	14.90	690			
Fritz Creek near Homer (15239500)	Lat 59°42′30″, long 151°20′35″, in SW¹/₄SW¹/₄ sec. 28, T. 5 S., R. 12 W. (Seldovia C-4 quad), Kenai Peninsula Borough, on right bank 25 ft downstream from culvert under East End Road, 8 mi northeast of Homer. Drainage area is 10.4 mi²	1963-85, ‡1986-92, 1993-2002	4-15-02 5-19-02 9-24-02	f11.7 11.40 10.72	u S/285 R/95	10-22-80	d18.53	852			

.

Station			Water	year 2002 n	naximum	Period	od of record maximum				
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft3/s)	Date	Gage height (ft)	Discharge (ft3/s)			
SOUTH-CENTRAL ALASKA—Continued											
Anchor River near Anchor Point (15239900)	Lat 59°44′50″, long 151°45′11″, in NE¹/₄ sec. 13, T. 5 S., R. 15 W., (Seldovia C-5 quad), Kenai Peninsula Borough, on right bank at downstream side of bridge on Sterling Highway, 4.3 mi southeast of Anchor Point. Drainage area is 137 mi².	‡1965-73 1974 ‡1978-86 1987 ‡1991-92 2000-02	12-12-01 4-30-02 9-25-02	f5.62 5.24 4.75	u S/2,330 R/1,810	11-29-83	d7.42	6,050			
Premier Creek near Sutton (15283600)	Lat $61^{\circ}42'40''$, long $149^{\circ}05'12''$, in $SE^{1/}_4NE^{1/}_4$ sec. 28, T. 19 N., R. 2 E. (Anchorage C-6 quad), Matanuska-Susutna Borough, 10 ft downstream from culvert on Buffalo Mine Road, 4 mi north from of the Glenn Highway, 6 mi west of Sutton, and 7 mi northeast of Palmer. Drainage area is 3.38 mi^2 .	1997-2002	5-25-02 8-13-02	7.14 6.99	S/47 R/31	9-22-00 5-25-02	7.14 7.14	47 47			
Wasilla Creek near Palmer (15285000)	Lat $61^{\circ}38'37''$, long $149^{\circ}11'46''$, in $SE^{1}{}_{4}SW^{1}{}_{4}$ sec. 13, T. 18 N., R. 1 E. (Anchorage C-6 quad), Matanuska-Susitna Borough, on right bank 20 ft downstream from culverts on Wasilla Fishhook Road, and 4.1 mi northeast of Palmer. Drainage area is 16.8 mi ² .	1971, 1976-2002	4-30-02 5-29-02 8-13-02	f7.51 7.48 7.25	u S/100 R/76	8-10-71	d17.74	700			
Nancy Lake Tributary near Willow (15290200)	Lat 61°41'17", long 149°57'58", in SE¹¹₄ SE¹¹₄ sec. 34, T. 19 N., R. 4 W. (Tyonek C-1 quad), Matanuska-Susitna Borough, on left bank 150 ft upstream from culvert at Parks Highway, 0.3 mi upstream from mouth and 4.5 mi southeast of Willow. Drainage area is 8.00 mi².	1980, 1983-87, 1989-2002	402 5-22-02 8-13-02	f11.17 10.81 10.72	u S/n R/n	10-11-86	13.21	465			
Raft Creek near Denali (15291100)	Lat 63°03'04", long 147°16'22", in SE¹¹⁄₄ sec. 36, T. 21 S., R. 2 E.(Healy A-1 quad), Matanuska-Susitna Borough, on right bank 30 ft upstream from culvert at mi 68.9 Denali Highway, and 10.7 mi southeast of Denali. Drainage area is 4.33 mi².	1963-2002	5-25-02 9-08-02	fj16.21 10.88	S/u R/93	664	11.72	133			

g:	Location and drainage area		Water year 2002 maximum			Period	Period of record maximum		
Station name and number		Period of record	Date	Gage height (ft)	Discharge (ft3/s)	Date	Gage height (ft)	Discharge (ft3/s)	
	S	SOUTH-CEN	TRAL ALA	SKA—Conti	nued				
Myrtle Creek near Kodiak (15297200)	Lat 57°36′12″, long 152°24′12″, in NW¹/₄ SW¹/₄ sec. 6, T. 30 S., R. 19 W. (Kodiak C-2 quad), Kodiak Island Borough, on left bank 0.1 mi upstream from bridge, 0.3 mi upstream from mouth, and 13 mi south of Kodiak. Drainage area is 4.74 mi².	‡1963-86, 1987-2002	10-04-01 302 4-29-02	5.86 f6.59 4.60	R/879 u S/424	1-03-77	6.93	1,350	
Stapp Creek near Cold Bay (15297609)	Lat 55°11′17″, long 162°42′47″, in SE¹¹⁄₄ SE¹¹⁄₄ NW¹¹⁄₄ sec. 1, T. 58 S., R. 89 W. (Cold Bay A-3 quad), Aleutians East Borough, on left bank, 0.9 mi upstream from mouth, and 1 mi. south of Cold Bay. Drainage area is 1.68 mi².	2001-2002	10-16-01 202 5-24-02	15.05 f16.24 15.85	R/5.2 u S/34	5-24-02	15.85	34	
Frosty Creek near Cold Bay (15297810)	Lat $55^{\circ}09'59''$, long $162^{\circ}48'22''$, in $SE^{1}/_{4}SW^{1}/_{4}SE^{1}/_{4}$ sec. 8, T. 58 S., R. 89 W. (Cold Bay A-3 quad), Aleutians East Borough, on left bank, 2.8 mi upstream from mouth, and 4.5 mi southwest of Cold Bay. Drainage area is 5.92 mi ² .	2001-2002	202 5-24-02 7-23-02	f12.91 11.67 10.64	u S/411 R/146	10-24-00	11.92	497	
		SOU	THWEST A	ALASKA					
Chinkelyes Creek Trib- utary near Pedro Bay (15300350)	Lat $59^{\circ}44'02''$, long $153^{\circ}48'40''$, in SE^{1}_{4} NE^{1}_{4} NE^{1}_{4} sec. 23, T. 5 S., R. 27 W. (Iliamna C-3 quad), on left bank 60 ft upstream from culvert, 8 mi east of Pile Bay, and 11 mi east of Pedro Bay. Drainage area is 0.40 mi^{2} .	1997-2002	302 5-21-02 09-24-02	f11.38 <10.93 <10.93	u S/<14.8 R/<14.8	9-18-99	13.14	144	
	Lat 59°16′34″, long 158°35′v42″, in SE¹¹₄ sec. 30, T. 10 S., R. 55 W. (Dillingham B-7 quad), on left bank 10 ft upstream from culvert entrance, and 500 ft upstream from mouth at Wood River at the Aleknagik Mission. Drainage area is 1.28 mi².	1969-73, 1975-85, 1988-2002	5-21-02 6-24-02	18.68 18.03	S/34 R/20	6-07-71	19.60	55	
Gold Creek at Takotna (15303660)	Lat 62°59′20″, long 156°04′08″, in SE¹¹₄SE¹¹₄sec. 34, T. 34 N., R. 36 W. (Iditarod D-1 quad), at Takotna, on right bank, 350 ft upstream from bridge, and 400 ft upstream from mouth. Drainage area is 6.31 mi².	1987-2002	5-20-02 6-17-02 9-13-02	f11.26 7.01 7.51	u S36 R/71	5-16-99	8.30	131	

G:			Wate	r year 2002 n	naximum	Period	Period of record maximum			
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft3/s)	Date	Gage height (ft)	Discharge (ft3/s)		
YUKON ALASKA										
Dennison Fork near Tetlin Junction (15305900)	Lat $63^{\circ}25'24''$, long $142^{\circ}29'00''$, in SW 1 _{/4} sec. 14, T. 19 N., R. 15 E. (Tanacross B-3 quad), on left bank 7 ft downstream from culverts at mi 10.7 Taylor Highway, and 8.3 mi northeast of Tetlin Junction. Drainage area is 2.93 mi 2 .	1964-2002	5-15-01 5-24-01 7-24-01 5-14-02 6-10-02	fgj 13.1 fg 10.51 g 10.58 fj 12.46 j 10.66	u u u u eR/40	764	d16.29	128		
King Creek near Dome Creek (15344000)	Lat $64^{\circ}23'38''$, long $141^{\circ}24'43''$, in $NE^{\frac{1}{4}}$, $SW^{\frac{1}{4}}$, sec. 16, T. 6 S., R. 32 E. (Eagle B-1 quad), on left bank 1,100 ft upstream from culvert at mi 119.8 Taylor Highway, 0.4 mi upstream from mouth, 4.9 mi east of Dome Creek, and 28 mi south of Eagle. Drainage area is 5.87 mi ² .	1975-82, ‡1983-90, 1991-2002	5-23-01 7-25-01 5-15-02 5-19-02 9-22-02	g 15.43 g 16.26 f j16.20 j15.00 15.46	g S/51 gR/118 u S/30 R/53	6-13-97	j17.65	n		
Boulder Creek near Central (15439800)	Lat $65^{\circ}34'05''$, long $144^{\circ}53'13''$, in NW 1 / $_{4}$ sec. 32, T. 9 N., R. 14 E. (Circle C-2 quad), on right bank 2,000 ft upstream from bridge at mi 125.4 Steese Highway, 0.7 mi upstream from mouth, and 2.3 mi west of Central. Drainage area is 31.3 mi 2 .	1964-65, ‡1966-82, 1983, ‡1984-86, 1987-2002	n	n	n	6-25-89	10.01	1,460		
Quartz Creek near Central (15442500)	Lat $65^{\circ}37'09''$, long $144^{\circ}28'55''$, in SW 1 / ₄ sec. 7, T. 9 N., R. 16 E. (Circle C-1 quad), on left bank 10 ft upstream from culvert at mi 138.1 on Steese Highway, 1 mi upstream from mouth, 19 mi southwest of Circle, and 10 mi east of Central. Drainage area is 17.2 mi ² .	1967, 1969-79, 1989-2002	n	n	n	7-15-95	dj23.08	700		
Ray River Tributary near Stevens Village (15453610)	Lat $65^{\circ}56'57''$, long $149^{\circ}54'55''$, in $SE^1/_4$ sec. 17, T. 13 N., R. 11 W. (Livengood D-6 quad), on right bank 10 ft upstream from culvert at mi 63.6 on the Dalton Highway, and 22 mi west of Stevens Village. Drainage area is 8.00 mi ² .	1977-2002	5-23-01 6-03-01 8-14-01 5-19-02 7-03-02	f,g,m 20.61 g 18.76 g 16.77 18.49 17.01	g 85 g S/150 g R/31 S/135 R/40	579	d 21.10	860		
Little Jack Creek near Nabesna (15470300)	Lat $62^{\circ}32'39''$, long $143^{\circ}19'22''$, in $SW^{1/}_4NW^{1/}_4SE^{1/}_4sec$. 22, T. 9 N., R. 11 E. (Nabesna C-5 quad), on left bank 8 ft upstream from the culvert at mi 25.8 Nabesna Road, and 15.6 mi northeast of Nabesna (previously 0.2 mi upstream on left bank). Drainage area is 6.73 mi^2 .	1975-2002	6-01-02 8-21-02	19.34 20.23	S/150 R/192	c7-25-01	c21.42	c254		

G:			Wate	r year 2002 n	naximum	Period	of record m	aximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft3/s)	Date	Gage height (ft)	Discharge (ft3/s)
		YUKON	ALASKA	—Continued				
Berry Creek near Dot Lake (15476300)	Lat 63°41′23″, long 144°21′47″, in NW¹/ ₄ sec. 13, T. 22 N., R. 5 E. (Mt. Hayes C-1 quad), on left bank 100 ft upstream from former bridge site, at mi 1371.4 on abandoned section of Alaska Highway, 1.9 mi upstream from mouth, and 6.0 mi west of Dot Lake. Drainage area is 65.1 mi².	1964-71, ‡1972-81, 1982-2002	n	n	n	7-19-64	15.49	2,800
Suzy Q Creek near Pump Station 10 (15478093)	Lat $63^{\circ}29'43''$, long $145^{\circ}51'27''$, in SW $^{1}/_{4}$ sec. 29, T. 16 S., R. 10 E. (Mt. Hayes B-4 quad), on right bank 30 ft upstream from bridge at mi 224.8 on Richardson Highway, 0.1 mi upstream from mouth, and 6 mi north of Pump Station 10. Drainage area is 1.29 mi 2 .	1987, 1989-2002	6-06-01 7-20-01 5-12-02 5-21-02 7-01-02	g 29.40 g 29.99 f 30.93 30.78 29.58	gS/ 18 gR/ 39 u S/ 124 R/ 12	7-14-87	33.83	1,070
Ruby Creek above Richardson Highway near Donnelly (15478499)	Lat 63°37′54″, long 145°52′14″, in NE¹/₄ sec. 7, T. 15 S., R. 10 E. (Mt. Hayes C-4 quad), on right bank 0.2 mi upstream from Trans-Alaska Pipeline, 0.5 mi upstream from bridge at mi 234.8 on Richardson Highway, 2.2 mi upstream from mouth, and 2.3 mi south of Donnelly. Drainage area is 4.89 mi².	1987-2002	6-06-01 9-05-01	f,g 17.2 f,g13.92 g14.42 d,f16.17 14.82 <13.69	u gS/40 gR/130 u S/225 R/<35	7-14-87	16.95	1,660
Banner Creek at Richardson (15480000)	Lat 64°17′24″, long 146°20′56″, in SW¹/4 sec. 22, T. 7 S., R. 7 E. (Big Delta B-5 quad), on left bank 400 ft upstream from bridge at mi 295.4 Richardson Highway, 0.2 mi upstream from mouth, and 0.4 mi northwest of Richardson. Drainage area is 20.2 mi².	1964-2002	n	n	n	6-26-89	16.38	950
Slime Creek near Cantwell (15516200)	Lat $63^{\circ}30'34''$, long $148^{\circ}48'39''$, in $SE^{1/}_{4}$ sec. 24, T. 16 S., R. 7 W. (Healy C-4 quad), on right bank 25 ft downstream from culverts at mi 219.9 George Parks Highway, and 9.1 mi northeast of Cantwell. Drainage area is 6.90 mi ² .	1966-2002	5-25-02 6-01-02 8-10-02	f18.77 17.55 17.25	u S/177 R/115	767	d14.52	685

G:			Wate	r year 2002 n	maximum	Period	of record m	aximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft3/s)	Date	Gage height (ft)	Discharge (ft3/s)
		YUKON	ALASKA	—Continued				
Dragonfly Creek near Healy (15517980)	Lat $63^{\circ}47'45''$, long $148^{\circ}55'19''$, in SW $^{1}_{/4}$ SE $^{1}_{/4}$ SW $^{1}_{/4}$ sec. 9, T. 13 S., R. 7 W. (Healy D-4 quad), on left bank at mi 242.6 George Parks Highway 100 ft upstream from highway bridge, and 6 mi southeast of Healy. Drainage area is 0.71 mi 2 .	1990-2002	4-16-01 5-14-01 7-07-01 5-09-02 5-14-02 6-05-02	f,m41.1 f/u 36.24 f 38.89 36.21 36.90	u S/u R/9.1 u S/8.0 R/101	7-12-90	d7.59	535
Globe Creek near Liven- good (15541600)	Lat $65^{\circ}17'08''$, long $148^{\circ}07'56''$, in $SE^{1}/_{4}$ sec. 3, T. 5 N., R 3 W. (Livengood B-3 Quad), 0.1 mi upstream from culvert at mi 37.6 Elliot Highway, 9 mi upstream from mouth, and 19 mi southeast of Livengood. Drainage area is 23.0 mi ² .	1964-2002	n	n	n	8-12-67	17.05	1,240
Snowden Creek near Wiseman (15564868)	Lat 67°44′20″, long 149°44′24″, in SW¹/₄ sec. 26, T. 34 N., R. 10 W. (Chandalar C-6 quad), on right bank 0.25 mi upstream from culvert at mi 213.5 of the Dalton Highway, and 24.5 mi northeast of Wiseman. Drainage area is 16.7 mi².	1968, d1977-79, 1992-2002	5-14-01 6-3-01 8-14-01 5-22-02 5-25-02 u	fgj23.6 g23.29 g23.26 fj22.8 22.36 u	u S/623 R/603 u S/380 R/u	1968	u	1,200
NuggetCreek near Wise- man (15564872)	Lat $67^{\circ}29'25''$, long $149^{\circ}52'20''$, in NW 1 / $_{4}$ sec. 30, T. 31 N., R. 10 W. (Chandalar B-6 quad), on left bank 1,000 ft upstream from culvert at mi 195.6 Dalton Highway, and 8.7 mi northeast of Wiseman. Drainage area is 9.47 mi 2 .	d1975-88, d1990-92, 1993-2002	6-3-01 7-13-01 5-25-02 9-13-02	g 39.06 g 38.92 39.02 38.13	g S/166 g R/135 S/158 R/29	5-26-98	40.17	540
Prospect Creek near Prospect Camp (15564884)	Lat 66°46′56″, long 150°41′06″, in NW¹/₄ sec. 31, T. 23 N., R. 14 W. (Bettles D-2 quad), on left bank 200 ft upstream from bridge at mi 135.2 on the Dalton Highway, 0.4 mi downstream from Trans-Alaska Pipeline crossing, 1.5 mi upstream from mouth, 2.1 mi south of Pump Station 5, and 1.5 mi southeast of Prospect Camp. Drainage area is 110 mi².	1968, 1975-2002	5-19-01 6-3-01 8-14-01 5-18-02 5-23-02 u	f,g 7.78 g 7.63 g 7.75 8.38 7.31 <6.88	u g S/1320 g R/1410 u S/1130 R/<866	1968	d10.22	6,800
Bonanza Creek Trib- utary near Prospect Camp (15564887)	Lat 66°36′52″, long 150°41′24″, in SE¹/ ₄ sec. 25, T. 21 N., R. 15 W. (Bettles C-2 quad), on right bank 0.3 mi downstream from culverts at mi 121 on the Dalton Highway, 3.4 mi upstream from mouth, 13.5 mi south of Pump Station 5, and 12.6 mi south of Prospect Camp. Drainage area is 11.7 mi².	1975-2002	5-18-02 5-23-02 9-5-02	f 19.28 18.89 17.76	u S/149 R/81	5-15-93	19.89	290

				-				
Station			Water	r year 2002 n	naximum	Period	of record m	aximum
name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft3/s)	Date	Gage height (ft)	Discharge (ft3/s)
		YUKON	ALASKA	—Continued				
Indian River at Utopia (15564950)	Lat $65^{\circ}59'49''$, long $153^{\circ}41'V$ B31", in NW 1 / $_{4}$ sec. 19, T. 7 N., R. 25 E. (Melozitna D-2 quad), on right bank, 200 ft downstream of bridge at mi 0.2 on road to Indian Mountain. Drainage area is 38.8 mi 2 .	1998-2002	n	n	n	8-20-98	18.7	828
Utopia Creek at Utopia (15564960)	Lat.65°59′26″, long 153°41′ 44″, in SW¹/₄ sec. 19, T. 7 N., R. 25 E. (Melozitna D-2 quad), on right bank, 460 ft downstream of 4 wheeler crossing west of airstrip, .5 mi above mouth, .3 mi south-southeast of Utopia, 5.4 mi south of Indian Mt, and 16 mi east-southeast of Hughes. Drainage area is 5.18 mi2.	1999-2002	n	n	n	5-21-02	7.09	120
Municipal Reserve Creek at Pilot Station (15565449)	Lat 61°56′19″, long 162°52′53″, in NW¹/₄SE¹/₄sec. 5, T. 21 N., R. 74 W. (Marshall D-3 quad), on right bank 0.3 mile upstream from mouth, and 0.1 mile northeast of Village of Pilot Station. Drainage area is 1.43 mi².	1993-1997 2001-2002	5-15-02 5-20-02 7-25-02	f8.90 8.11 6.46	u S/8.8 R/3.3	8-26-94	8.71	12
		NOR'	THWEST A	ALASKA				
Chiroskey River near Unalakleet (15565730)	Lat 63°55′06″, long 160°18′58″, in NW¹¹₄ sec. 19, T. 18 S., R. 8 W. (Unalakleet D-3 quad), on left bank 0.7 miles upstream from mouth, 14 miles northeast of Unalakleet. Drainage area is 296 mi².	1998-2002	r9-07-01 5-23-02 9-14-02	r46.51 f48.98 45.80	R/1250 u R/916	9-07-00	47.03	1,520
Hugh Rowe Creek near Council (15581000)	Lat 64°44′35″, long 163°53′44″, in NW¹/₄NW¹/₄sec. 4, T. 09 S, R. 26 W. (Solomon C-4 quad), on left bank 150 ft upstream from culvert on Nome-Council Road, 0.1 miles upstream from mouth and 60 mi East of Nome. Drainage area is 2.34 mi².	2001-2002	501 6-06-01 5-18-02 5-26-02 9-05-02	fg73.04 g72.52 f 76.26 73.07 71.68	u S/n u S/n R/n	5-26-02	73.07	n
Goldengate Creek near Nome (15585000)	Lat 64°26′51″, long 165°03′14″, in SW¹¹⁄₄ sec. 15, T. 12 S., R. 32 W. (Nome B-1 quad), on right bank 80 ft upstream from culvert on Nome-Council Road, and 11 mi southeast of Nome. Drainage area is 1.55 mi².	1965, 1977-84, 1986-2002	5-18-02 5-26-02 9-05-02	f13.68 11.83 10.72	u S/52 R/5.0	9-08-65	d11.70	63

G			Water year 2002 maximum			Period of record maximum		
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft3/s)	Date	Gage height (ft)	Discharge (ft3/s)
		NORTHWE	ST ALASI	KA—Continu	ed			
Arctic Creek above Trib- utary near Nome (15624998)	Lat 64°38′16″, long 165°42′42″, in NE¹/₄ sec. 8, T. 10 S., R. 35 W. (Nome C-2 quad), on right bank 300 ft upstream from culvert on Nome-Teller Road, 2 mi upstream from mouth, and 13 mi northwest of Nome. Drainage area is 1.13 mi².	1975, 1979-2002	5-22-02 6-08-02 9-05-02	f21.44 18.29 <17.49	u S/54 R/<1.6	8-20-98	19.06	182
Washington Creek near Nome (15633000)	Lat 64°42′52″, long 165°49′13″, in NW¹/₄ sec. 14, T. 9 S., R. 35 W. (Nome C-2 quad), on left bank, 400 ft upstream from culvert on Nome-Teller Road, and 19 mi northwest of Nome. Drainage area is 6.34 mi².	1964-2002	502 5-26-02 9-05-02	f21.98 20.28 19.56	u S/59 R/15	7-10-75	d19.35	620
Eldorado Creek near Teller (15635000)	Lat $64^{\circ}57'38''$, long $166^{\circ}11'59''$, in NE ¹ / $_4$ NE ¹ / $_4$ sec. 20, T. 6 S., R. 37 W. (Nome D-3 quad), on right bank 30 ft downstream from bridge at mi 46.3 on Nome-Teller Road, 0.5 mi upstream from mouth at Tisuk River, and 21 mi south of Teller. Drainage area is 5.83 mi ² .	1986-87, ‡1988-90, 1991, ‡1992-98, 1999-2002	5-26-02 6-08-02 9-05-02	f9.97 8.95 9.11	u S/255 R/357	9-04-86	9.42	600
North Fork Red Dog Creek near Kivalina (15746988)	Lat 68°05′03″, long 162°52′52″, in NW¹/₄ SW¹/₄ sec. 18, T. 31 N., R. 18 W. (DeLong Mts. A-2 quad), on left bank 500 ft upstream from mouth, 1.1 mi northwest of Red Dog Mine mill site, 36 mi north of Noatak, and 50 mi northeast of Kivalina. Cominco Station 12. Drainage area is 15.9 mi².	‡1991-94, 1995-2002	5-29-01 6-4-01 8-12-01 6-2-02 6-3-02 9-05-02	fj8.06 f6.09 5.22 fj8.56 j5.52 5.08	u S/336 R/418 u S/560 R/333	8-17-94	6.03	900
Tutak Creek near Kivalina (15746998)	Lat 67°52′28″, long 163°40′14″, in NW¹/₄ NE¹/₄ sec. 34, T. 29 N., R. 22 W. (Noatak D-4 quad), on left bank, 1,000 ft upstream from mouth, 25 mi northeast of Kivalina, and 28 mi northwest of Noatak. Drainage area is 119 mi².	1992-2002	n	n	n	6-15-92	15.00	3,100

G:			Water	r year 2002	2 maximum	Period	of record m	aximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (f	Discharge (ft3/s)	Date	Gage height (ft)	Discharge (ft3/s)
			ARCTIO	C SLOPE A	LASKA			
Atigun River Tributary near Pump Station 4 (15904900)	Lat 68°22′25″, long 149°18′48″, in NE³/ ₄ SE³/ ₄ sec. 28, T. 12 S., R. 12 E. (Phillip Smith Mt. B-4 quad), on right bank 0.2 mi upstream from bridge at mi 265 on Dalton Highway, 0.9 mi upstream from mouth, and 4 mi south of Pump Station 4. Drainage area is 32.6 mi².	1976, ‡1977-86, 1987-2002	n	n	n	7-17-99	15.51	1,650
Sagavanirk- tok River Tributary near Happy Valley Camp (15910300)	Lat 69°09′38″, long 148°49′40″, in NE¹/₄ sec. 30, T. 3 S., R. 14 E. (Sagavanirktok A-4 quad), North Slope Borough, on right bank 500 ft upstream from culvert at mi 335.2 on the Dalton Highway, 0.8 mi upstream from mouth, 0.8 mi north of Happy Valley Camp, and 16 mi south of Sagwon. Drainage area is 12.7 mi².	1997-2002	n	n	n	6-8-01	24.21	860
Sagavanirk- tok River Tributary near Deadhorse (15918200)	Lat $69^{\circ}57'14''$, long $148^{\circ}43'48''$, in NW ¹ / ₄ NE ¹ / ₄ sec. 19, T. 1 N., R. 14 E. (Sagavanirktok D-3 quad), on right bank 6 ft upstream from culvert at mi 386.2 on the Dalton Highway, 0.4 mi upstream from mouth, and 23 mi south of Deadhorse. Drainage area is 12 mi ² , approximately.		n	n	n	5-24-96	j11.8	142
			FOOTNOT	ES				
† Operated a < Less than > Greater tha R/ Rainfall S/ Spring rune a Approxima	off			g Not p i Data j From	ated ffected reviously published collected by Dept. of floodmarks	Transportatio	n and Public Fa	acilities

r Revised

u Unknown

b Result of large landslide into West Lake displacing a significant

River 1.0 mi above gage.

At different site or datum

Corrected

amount of water and flowing into West Creek, a tributary to Tiaya

			Drainage	Measured	Measu	rements
Stream	Tributary to	Location	area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		SOUTHEAST ALASKA				
15040025 Dorothy Creek at mouth near Juneau	Taku Inlet	Lat $58^{\circ}14'14''$, long $134^{\circ}03'12''$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ $SE^{1}/_{4}$, sec. 12, T. 42 S., R. 69 E. (Juneau A-1 quad) in Tongass National Forest, at mouth, and 16 mi southeast of Juneau.			11-21-01 1-04-02 2-21-02 3-22-02 4-08-02 5-02-02 5-28-02	42 35 39 12 12 21 e210
15041144 Boundary Creek at Mouth near Juneau	Taku River	Lat $58^{\circ}34'49''$, long $133^{\circ}40'01''$, in $SE^{1}_{/4}$ $NW^{1}_{/4}$ $NE^{1}_{/4}$ sec. 15, T. 38 S., R. 71 E. (Taku River C-6 quad), in Tongass National Forest, at mouth, 0.4 mi southwest of U.S./Canadian boundary, 16 mi upstream from the mouth of the Taku River, and 32 mi southeast of Juneau.		1926	126 6-18-26 11-20-01 7-30-02	g50 g826 43 265
15049900 Gold Creek near Juneau	Gastineau Channel	Lat 58°18′26″, long 134°23′12″, in NW¹/ ₄ NE¹/ ₄ , sec. 24, T. 41 S., R. 67 E. (Juneau B-2 SE quad), City and Borough of Juneau, at Old Ebner Dam site, at head of Last Chance Basin, 0.6 mi upstream from Basin Road bridge, and 1.1 mi east of Juneau.	8.41	(‡)1984-97, 1998-2001	+11-16-01 +1-03-02 +3-07-02 +5-06-02 +7-17-02 +9-10-02	32 29 9.4 21 170 118
15052020 Lemon Creek at bridge near Juneau	Gastineau Chanel	Lat $58^{\circ}21'27''$, long $134^{\circ}29'56''$, in $SW^{1}/_{4}$ $NW^{1}/_{4}$ $NE^{1}/_{4}$, sec. 34, T. 40 S., R. 66 E. (Juneau B-2 SE quad), City and Borough of Juneau, 4.6 mi northwest of Juneau, 5.7 mi southeast of Auke Bay and 0.4 mi upstream from mouth.	24.3	1951-52, 1954, 1956- 64, 1966-68, 1970	5-15-02 6-25-02 7-22-02 8-13-02 9-17-02	87 816 567 1690 356
15052425 Jordan Creek Tributary at Thunder Mt. Trailer Park near Auke Bay	Jordan Creek	Lat 58°23′33″, long 134°33′15″, in NW¹/ ₄ NE¹/ ₄ NW¹/ ₄ , sec. 20, T. 40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, at downstream end of Thunder Mt. Trailer Park, 15 ft upstream from mouth, 3.4 mi northeast of Auke Bay, and 8.7 mi northwest of Juneau.		1999-2001	3-24-02 6-13-02	b no flow 1.1
15052430 Jordan Creek below Thunder Mt. Trailer Park near Auke Bay	Gastineau Channel	Lat 58°23′31″, long 134°33′15″, in SW¹/ ₄ NE¹/ ₄ NW¹/ ₄ , sec. 20, T. 40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, at downstream end of Thunder Mt. Trailer Park, 3.4 mi upstream from mouth, 3.4 mi northeast of Auke Bay, and 8.7 mi northwest of Juneau.	0.76	1998-2001	3-24-02	b no flow
15052450 Jordan Creek at Amalga Street near Auke Bay	Gastineau Channel	Lat $58^{\circ}23'14''$, long $134^{\circ}33'40''$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ $NW^{1}/_{4}$, sec. 20, T. 40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, at Amalga Street Bridge, 3.0 mi upstream from mouth, 3.1 mi east of Auke Bay, and 8.5 mi northwest of Juneau.	1.06	1997-2001	11-17-01 3-24-02 6-17-02	2.7 0.38 2.3

			Drainage	Measured previously	Measu	rements
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
		SOUTHEAST ALASKA—Continue	d			
15052455 Jordan Creek at Jennifer Street near Auke Bay	Gastineau Channel	Lat 58°23′01″, long 134°33′46″, in NW¹/ ₄ SW¹/ ₄ SW¹/ ₄ , sec. 20, T. 40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, 25 ft upstream from footbridge at Jennifer Creek, behind Glacier Valley Grade School, 2.7 mi upstream from mouth, 3.1mi east of Auke Bay, and 8.5 mi northwest of Juneau.	1.64	1999, 2001	6-18-02	3.4
15052465 Jordan Creek at Nancy Street near Auke Bay	Gastineau Channel	Lat $58^{\circ}22'32''$, long $134^{\circ}34'21''$, in $NE^{1}/_{4}$ $SW^{1}/_{4}$ $NE^{1}/_{4}$, sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, 0.2 mi east of intersection of Mendenhall Loop Road and Nancy Street, 2 mi upstream from mouth, 3.1 mi east of Auke Bay, and 8.5 mi northwest of Juneau.	2.26	1999-2001	10-04-01 3-24-02 6-18-02	7.3 0.74 3.2
15052475 Jordan Creek below Egan Drive near Auke Bay	Gastineau Channel	Lat $58^{\circ}21'59''$, long $134^{\circ}34'34''$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ $SE^{1}/_{4}$, sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, at footbridge, 50 ft downstream from Egan Drive, 0.4 mi southeast of intersection of Egan Drive and Mendenhall Loop Road and 3.0 mi east of Auke Bay Post Office. Currently operated as a continuous-record station.	2.60	h1984,88, h1989, h1995-96, (‡)1997-2001	11-17-01 12-03-01 3-08-02 3-11-02 4-05-02 5-08-02 6-18-02 7-26-02 8-22-02	7.1 1.8 3.1 2.0 0.31 0.96 3.1 5.6
15052480 Jordan Creek near Auke Bay	Gastineau Channel	Lat $58^{\circ}21'47''$, long $134^{\circ}34'47''$, in $SE^{1}_{/4}$ $NE^{1}_{/4}$ $NW^{1}_{/4}$, sec. 31 , T. 40 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, at Old Glacier Highway bridge, 0.9 mi upstream from mouth, and 3.0 mi southeast of Auke Bay.	2.67	1953-54, 1960, 1963- 65, 1967-68, 1997, 1999- 2001	3-24-02	d no flow
15052483 Jordan Creek above Yandunkin Avenue near Auke Bay	Gastineau Channel	Lat $58^{\circ}21'31''$, long $134^{\circ}34'23''$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ $NE^{1}/_{4}$, sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, at footbridge about 100 ft upstream from Yandunkin Avenue, 0.5 mi upstream from mouth, and 3.4 mi southeast of Auke Bay.		1997-2001	3-24-02 4-16-02 5-08-02 5-16-02 5-18-02 5-20-02 5-22-02 5-30-02 6-07-02 6-09-02 6-11-02 6-13-02 6-17-02	no flow d no flow 0.32 4.6 7.4 8.3 8.5 7.3 18 6.3 5.7 6.8 4.3 2.7
15052484 Jordan Creek at Juneau Airport near Auke Bay	Gastineau Channel	Lat $58^{\circ}21'26''$, long $134^{\circ}34'14''$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$ $SE^{1}/_{4}$, sec. 31 , T. 40 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, at Juneau International Airport, 150 ft downstream from culvert behind fire center, 0.35 mi upstream from mouth, and 3.5 mi southeast of Auke Bay.	3.04	1999	3-19-02	0.72

			Drainage	Measured	Measur	rements
Stream	Tributary to	Location	area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		SOUTHEAST ALASKA—Continue	d			
15052796 Montana Creek at Montana Creek Road near Auke Bay	Mendenhall River	Lat 58°25′32″, long 134°32′46″, in NW¹/4 SW¹/4 SE¹/4, sec. 2, T. 40 S., R. 65 E. (Juneau B-2 NW quad), City and Borough of Juneau, in Tongass National Forest, at footbridge at end of Montana Creek Road, 4.1 mi upstream from mouth, and 2.85 mi north of Auke Bay.		1999-00	+4-18-02 +5-07-02 +6-15-02	13 29 164
15052815 Montana Creek at Mouth near Auke Bay	Mendenhall River	Lat $58^{\circ}22'54''$, long $134^{\circ}35'53''$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$, sec 24, T. 40 S., R. 65 E. (Juneau B-2 NW quad), City and Borough of Juneau, at footbridge 200 ft upstream of mouth, 2 mi east of Auke Bay.	16.2	1965-66, 1968, 2000-01	+4-18-02 +5-07-02 +6-15-02	16 31 165
15052900 + Mendenhall River at Brotherhood Bridge near Auke Bay	Fritz Cove	Lat $58^{\circ}22'15''$, long $134^{\circ}36'00''$, in $NW^{1}/_{4}$ $SE^{1}/_{4}$, sec. 25, T. 40 S., R. 65 E. (Juneau B-2 SW quad), City and Borough of Juneau, at Egan Expressway bridge, 1.0 mi upstream from mouth, and 2.3 mi southeast of Auke Bay.	104	1950, 1961- 66, 1968, 1984, 1989, 1997, 1999- 2001	+11-15-01 12-05-01 12-20-01 +3-06-02 3-13-02 +6-04-02 +8-07-02	193 116 85 116 76 2520 4060
15053170 Duck Creek at Taku Boulevard near Auke Bay	Mendenhall River	Lat $58^{\circ}23'46''$, long $134^{\circ}33'56''$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$, sec. 18, T. 40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, 3.1 mi upstream from mouth, 3.1 mi east of Auke Bay, and 8 mi northwest of Juneau.	0.49	1988, 1993-01	3-24-02 6-13-02	0.32 0.18
15053185 Duck Creek at Duran Street near Auke Bay	Mendenhall River	Lat $58^{\circ}23'24''$, long $134^{\circ}34'25''$, in $NE^{1}/_{4}$ $SW^{1}/_{4}NE^{1}/_{4}$, sec. 19, T. 40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, 2.9 mi upstream from mouth, 3.0 mi east of Auke Bay, and 8 mi northwest of Juneau.	0.78	2000-01	3-24-02 6-13-02	1.2 1.0
15053188 Duck Creek Tributary at El Camino Street near Auke Bay	Mendenhall River	Lat $58^{\circ}23'20''$, long $134^{\circ}34'11''$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ $NE^{1}/_{4}$, sec. 19, T. 40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, 3.0 mi upstream from mouth, 3.0 mi east of Auke Bay, and 8 mi northwest of Juneau.	0.04	2000	3-24-02 6-13-02	0.05 0.29
15053190 Duck Creek at Steven Richards Blvd near Auke Bay	Mendenhall River	Lat 58°23′03″, long 134°34′31″, in NW¹/ ₄ SE¹/ ₄ , sec. 19, T. 40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, 2.1 mi upstream from mouth, 2.7 mi east of Auke Bay and 8 mi northwest of Juneau.	0.88	1988,1993- 1998, 2000-01	11-06-01	2.9
15053200 Duck Creek below Nancy Street near Auke Bay	Mendenhall River	Lat 58°22′31″, long 134°34′38″, in SW¹/4 NE¹/4, sec. 30, T.40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, 50 ft south of intersection of Nancy Street and Mendenhall Loop Road, 0.4 mi north of intersection of Egan Drive and Mendenhall Loop Road, 1.4 mi upstream from mouth, 2.7 mi southeast of Auke Bay, and 8 mi northwest of Juneau. Currently operated as a continuous-record station.	1.30	(‡)1994-2001	10-30-01 11-15-01 2-14-02 2-14-02 2-15-02 2-22-02 3-11-02 5-17-02 6-06-02 6-18-02 7-24-02 8-21-02	8.0 3.4 13 13 20 2.6 1.7 1.2 3.4 1.9 4.5

			Drainage	Measured	Measur	rements
Stream	Tributary to	Location	area (mi ²)	previously - (water years)	Date	Discharge (ft ³ /s)
		SOUTHEAST ALASKA—Continue	ed			
15053210 Duck Creek at Mendenhall Mall Road near Auke Bay	Mendenhall River	Lat $58^{\circ}22'21''$, long $134^{\circ}35'02''$ in $NW^{1}/_{4}$ $NE^{1}/_{4}$ $SW^{1}/_{4}$, sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, 1.1 mi upstream from mouth, 2.6 mi southeast of Auke Bay, and 8 mi northwest of Juneau.	1.40	1993, 1995, 1997-98	6-06-02 6-13-02	2.8 1.4
15053215 Duck Creek at Egan Drive near Auke Bay	Mendenhall River	Lat $58^{\circ}22'13''$, long $134^{\circ}35'06''$, in $SE^{1}/_{4}$ $NW^{1}/_{4}$ $SW^{1}/_{4}$, sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, at Egan Drive, 1.0 mi upstream from mouth, 2.6 mi southeast of Auke Bay and 8 mi northwest of Juneau.	1.44	1997-98, 2000	3-24-02 6-13-02	d no flow 1.1
15053220 Duck Creek at Delrae Rd near Auke Bay	Mendenhall River	Lat $58^{\circ}22'04''$, long $134^{\circ}35'16''$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, 0.8 mi upstream from mouth, 2.6 mi southeast of Auke Bay, and 8 mi northwest of Juneau.	1.49	1988-89, 1993-00	3-24-02 6-06-02 6-13-02	d no flow b no flow b no flow
15053230 Duck Creek at Berners Avenue near Auke Bay	Mendenhall River	Lat 58°21′50″, long 134°35′08″, in NW¹/₄ NW¹/₄, sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, 0.5 mi upstream from mouth, 2.8 mi southeast of Auke Bay, and 8 mi northwest of Juneau.	1.52	1994-00	3-24-02 4-16-02 5-23-02 5-27-02 6-01-02 6-03-02 6-10-02 6-25-02 6-25-02 6-26-02 7-02-02 8-08-02 8-21-02 9-18-02	d no flow d no flow d no flow d no flow b no flow b no flow b no flow b no flow e > 0.1 b no flow b no flow 0.07 6.6 5.2 9.8
15053235 Duck Creek below Cessna Drive near Auke Bay	Mendenhall River	Lat 58°21′43″, long 134°35′12″, in NW¹/₄ NW¹/₄, sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, at the corner of Alex Holden Way and Cessna Drive, 0.4 mi upstream from mouth, 2.9 mi southeast of Auke Bay, and 8 mi northwest of Juneau.	1.66	1997-00	3-24-02 4-16-02 5-23-02 5-27-02 5-30-02 6-01-02 6-03-02 6-06-02 6-09-02 6-11-02	d no flow d no flow b no flow
15056200 West Creek near Skagway	Taiya River	Lat $59^{\circ}31'35''$, long $135^{\circ}21'10''$, in $SE^{1}/_{4}$ NW $^{1}/_{4}$ NE $^{1}/_{4}$, sec. 15, T. 27 S., R. 59 E. (Skagway C-1 quad), 700 ft upstream from highway bridge, 0.2 mi upstream from mouth at Taiya River, and 5 mi northwest of Skagway.	43.2	1962-77, 1994	7-25-02	1570
15056210 Taiya River near Skagway	Taiya Inlet	Lat 59°30′43″, long 135°20′40″, in NE¹/ ₄ SE¹/ ₄ , sec. 22, T. 27 S., R. 59 E. (Skagway B-1 quad), downstream side of highway bridge, 1 mi downstream from West Creek, 2.2 mi above mouth at Taiya Inlet, and 4 mi north of Skagway.	179	1969-77	7-25-02	5230

			Drainage	Measured	Measu	rements
Stream	Tributary to	Location	area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		SOUTHEAST ALASKA—Continue	ed			
15081607 Threemile Creek Tributary below canyon near Klawock	Threemile Creek	Lat 55°32′26″, long 132°57′08″, in $SE^1/_4$ $SW^1/_4$ $NE^1/_4$, sec. 16, T. 73 S., R. 82 E. (Craig C-3 quad), on Prince of Wales Island, in Tongass National Forest, at mouth of canyon, 0.37 mi upstream from mouth, and 5.2 mi east of Klawock.	1.41	2000-2001	10-30-01 2-07-02 4-03-02 6-20-02	19 3.4 2.1 7.5
15081611 Threemile Creek below Highway near Klawock	Klawock Lake	Lat 55°31′54″, long 132°59′05″, in $NE^1/_4$ $NE^1/_4$ $NW^1/_4$, sec. 20, T. 73 S., R. 82 E. (Craig C-3 quad), on Prince of Wales Island, in Tongass National Forest, at Hollis Highway crossing, 3,000 ft upstream from mouth, and 4.0 mi east of Klawock.	8.05	2000-2001	10-30-01 2-07-02 4-03-02 6-20-02	105 14 10 40
15081616 Halfmile Creek below Highway near Klawock	Klawock Lake	Lat $55^{\circ}32'59''$, long $133^{\circ}01'44''$, in $SW^1/_4$ $SW^1/_4$ $SE^1/_4$, sec. 12, T. 73 S., R 81 E.(Craig C-4 quad) On Prince of Whales Island, in Tongas National Forest, at Hollis Highway crossing, about 800 ft upstream from mouth, and 2.7 mi east of Klawock.	5.26	2000-2001	10-30-01 2-07-02 4-02-02 6-20-02	50 9.6 6.9 9.6
15087638 Granite Creek at Sitka	Western Channel	Lat 57°06′05″, long 135°23′52″, in $SE^1/_4$ $SW^1/_4$ $NE^1/_4$, sec. 16, T. 55 S., R. 63 E. (Sitka A-5 quad), on Baranof Island, in the Tongass National Forest, 200 ft downstream from Granite Creek Road Bridge, 400 ft upstream from mouth, and about 3.9 mi northwest of Sitka.			8-14-02	16
15088400 Cupola Peak Creek at Bear Cove near Sitka	Bear Cove	Lat 57°00′39″, long 135°09′11″, in $NE^1/_4$ $SE^1/_4$ $SE^1/_4$, sec. 13, T. 56 S., R. 64 E. (Sitka A-4 quad), on Baranof Island, in the Tongass National Forest, 200 ft downstream from Green Lake Road crossing, 400 ft upstream from mouth at south shore of Bear Cove in Silver Bay, and about 7.1 mi southeast of Sitka.	0.43	†2000-2001	10-01-01 11-21-01 5-29-02 8-12-02 9-4-02	d no flow d no flow 2.9 0.87 d no flow
15109029 Upper Peterson Creek near Auke Bay	Stephens Passage	Lat $58^{\circ}16'27''$, long $134^{\circ}38'58''$, in $NE^{1}_{/4}$ $SW^{1}_{/4}$ $NE^{1}_{/4}$, sec. 32, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, 2.20 mi upstream from mouth, 7.4 mi south of Auke Bay, and 9.0 mi west of Douglas.	0.43	2001	+11-6-01 +3-12-02	1.9 0.56
15109031 Peterson Creek Tributary No. 8 near Auke Bay	Peterson Creek	Lat 58°16′25″, long 134°39′02″, in NE¹/ ₄ SW¹/ ₄ NE¹/ ₄ , sec. 32, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest. 10 ft upstream from mouth at a point 2.11 mi upstream from mouth of Peterson Creek, 7.4 mi south of Auke Bay, and 9.0 mi west of Douglas.	0.39	2001	+11-06-01 +3-12-02	0.56 0.09
15109033 Peterson Creek Tributary No, 7 near Auke Bay	Peterson Creek	Lat $58^{\circ}16'30''$, long $134^{\circ}39'06''$, in $NE^{1}/_{4}$ $SW^{1}/_{4}$ $NE^{1}/_{4}$, sec. 32, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, 10 ft upstream from mouth at a point 2.03 mi upstream from mouth of Peterson Creek, 7.4 mi south of Auke Bay, and 9.1 mi west of Douglas.	0.82	2001	+11-06-01 +3-12-02	0.07 0.09

			Drainage	Measured previously	Measur	rements
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
		SOUTHEAST ALASKA—Continue	d			
15109035 Peterson Creek Tributary No. 6 near Auke Bay	Peterson Creek	Lat 58°16′36″, long 134°39′11″, in SW¹/4 NW¹/4 NE¹/4, sec. 32, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, 10 ft upstream from mouth, at a point 1.85 mi upstream from mouth of Peterson Creek, 7.4 mi south of Auke Bay, and 9.1 mi west of Douglas.	0.16	2001	+11-06-01 +3-12-02	0.48 0.16
15109037 Peterson Creek Tributary no. 5 near Auke Bay	Peterson Creek	Lat $58^{\circ}16'38''$, long $134^{\circ}39'18''$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ $NW^{1}/_{4}$, sec. 32 , T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, 10 ft upstream from mouth, at a point 1.75 mi upstream from mouth of Peterson Creek, 7.4 mi south of Auke Bay, and 9.1 mi west of Douglas.	0.02		+11-06-01 3-12-02	e0.02 d no flow
15109039 Peterson Creek Tributary No. 4 near Auke Bay	Peterson Creek	Lat $58^{\circ}16'43''$, long $134^{\circ}39'26''$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ $NW^{1}/_{4}$, sec. 32, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, 8 ft upstream from mouth, at a point 1.65 mi upstream from mouth of Peterson Creek, 7.4 mi south of Auke Bay, and 9.2 mi west of Douglas.	1.04	2001	+11-06-01 +3-12-02	1.1 0.26
15109041 Peterson Creek Tributary No. 3 near Auke Bay	Peterson Creek	Lat $58^{\circ}16'51''$, long $134^{\circ}39'35''$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ $SW^{1}/_{4}$, sec. 29, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, 10 ft upstream from mouth, at a point 1.48 mi upstream from mouth of Peterson Creek, 7.3 mi south of Auke Bay, and 9.3 mi west of Douglas.	0.48	2001	+11-06-01 +3-12-02	1.2 0.35
15109043 Peterson Creek Tributary No. 2 near Auke Bay	Peterson Creek	Lat $58^{\circ}16'56''$, long $134^{\circ}39'42''$, in $NE^{1}_{/4}$ $SW^{1}_{/4}$, sec. 29, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, 8 ft upstream from mouth, at a point 1.39 mi upstream from mouth of Peterson Creek, 7.3 mi south of Auke Bay, and 9.4 mi west of Douglas.	0.08	2001	+11-06-01 3-12-02	0.10 d no flow
15109045 North Fork Peterson Creek near Auke Bay	Peterson Creek	Lat $58^{\circ}16'49''$, long $134^{\circ}39'28''$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ $SW^{1}/_{4}$, sec. 29, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, 300 ft upstream from mouth, 7.3 mi south of Auke Bay, and 9.5 mi west of Douglas.	1.59	(†)1985-87, (†)1997-2001	10-11-01 11-6-01 +3-12-02 +5-31-02 7-08-02 9-24-02	2.1 1.9 0.37 3.2 1.4 4.0
15129130 East Alsek River 2.0 mi. at Mouth near Yakutat	Dry Bay	Lat 59°08′33″, long 138°22′40″, in $NE^1/_4$ $NW^1/_4SW^1/_4$, sec. 16, T. 32 S., R. 42 E. (Yakutat A-2), in Glacier Bay National Park, 2.0 mi upstream from Johnny's East River Lodge, and 56 mi southwest of Yakutat.			8-30-02 8-31-02	141.32 151.27
15129135 East Alsek River 1.4 mi. at Mouth near Yakutat	Dry Bay	Lat 59°08′03″, long 138°22′47″, in $NE^1/_4$ $NW^1/_4$ $NW^1/_4$, sec. 21, T. 32 S., R. 42 E. (Yakutat A-2), in Glacier Bay National Park, 1.4 mi upstream from Johnny's East River Lodge, and 56 mi southwest of Yakutat.			8-30-02 8-31-02	180.3 174.32

			Drainage	Measured	Measu	rements
Stream	Tributary to	Location	area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		SOUTHEAST ALASKA—Continue	ed			
15129140 East Alsek River 1.0 mi at Mouth near Yakutat	Dry Bay	Lat 59°07'42", long 138°23'23", in $SE^1/_4$ $SE^1/_4$ $NE^1/_4$, sec. 20, T. 32 S., R. 42 E. (Yakutat A-2), in Glacier Bay National Park, 1.0 mi upstream from Johnny's East River Lodge, and 56 mi southwest of Yakutat.			6-2-02 6-3-02 6-4-02 6-5-02 6-6-02 6-7-02 6-8-02 6-10-02 6-11-02 6-12-02 8-29-02 8-30-02 8-31-02	100 90 96 96 105 105 91 102 120 116 116 228 231 229
15129540 Drain at Airport Approach 29 near Yakutat	Lost River	Lat $59^{\circ}29'42''$, long $139^{\circ}37'56''$, in $SE^{1}/_{4}$ $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec. 15, T. 28 S. R. 34 E. (Yakutat B-5 quad), at Yakutat Airport, in Tongass National Forest, 1.5 mi upstream from mouth, and 5.5 mi southeast of Yakutat.	-	-	7-11-02 8-29-02	0.19 5.6
15129550 Drain at Airport Approach 2 near Yakutat	Tawah Creek	Lat $59^{\circ}29'35''$, $\log 139^{\circ}41'17''$, $\inf SW^1/_4 NW^1/_4 NE^1/_4$, sec. 17, T. 28 S., R. 34 E. (Yakutat B-5 quad), at Yakutat Airport, $\inf Tongass National Forest$, 0.4 mi upstream from mouth, and 5.3 mi southeast of Yakutat.	-	-	7-11-02 8-30-02	7.2 24
15129585 Ophir Creek at gravel pit road near Yakutat	Tawah Creek	Lat $59^{\circ}32'26''$, long $139^{\circ}42'06''$, in $SW^1/_4 SW^1/_4 SW^1/_4 sec. 29, T.27S., R34E. (Yakutat C-5 SW quad), in Tongass National Forest, at gravel road crossing, 3.5 mi upstream from Summit Lake, and 1.4mi southeast of Yakutat.$		1992-2000	12-10-01	1.9
15129592 Ophir Creek abv. new excavation site near Yakutat	Tawah Creek	Lat59°32′17″,long 139°43′48″,in NW¹/₄ NW¹/₄ NW¹/₄ NW¹/₄sec.31,T.27S.,R34E.(Yakutat C-5 SW quad), in Tongass National Forest, about 200ft. upstream from tributary entering left bank, 2.1 mi upstream from Summit Lake, and 1.0mi south of Yakutat.		1998,1999	12-10-01	1.7
15129593 Ophir Creek Tributary at new excavation near Yakutat	Ophir Creek	Lat59°32′14″,long 139°43′45″,in SW¹/₄ NW¹/₄ NW¹/₄ sec.31,T.27S.,R34E.(Yakutat C-5 SW quad), in Tongass National Forest, 50 ft upstream from Summit Lake road, 100 ft upstream from mouth, and 1.1 mi south of Yakutat.		1998-2000	12-10-01	0.09
15129600 Ophir Creek near Yakutat	Tawah Creek	Lat $59^{\circ}31'26''$, long $139^{\circ}44'37''$, in $SW^{1}/_{4}$ $NW^{1}/_{4}$ $NE^{1}/_{4}$, sec. 1, T. 28 S., R. 33 E. (Yakutat C-5 SW quad), in Tongass National Forest, 0.8 mi upstream from Summit Lake, and 2 mi south of Yakutat. Currently operated as a continuous-record station.	a2.5	(‡)1992-2001	10-24-01 12-9-01 3-13-02 4-17-02 7-11-02 8-29-02	26 7.8 5.1 1.7 2.5 24
15129615 Ophir Creek tributary at confluence near Yakutat	Ophir Creek	$Lat59^{\circ}31'04'',long~139^{\circ}44'43'',inNW^{1}/_{4}~NW^{1}/_{4}\\NE^{1}/_{4}sec.1,T.28S.,R33E.(Yakutat~C-5~SW~quad),~in~Tongass~National~Forest,at~confluence~with~Ophir~Creek,~and~2.3~mi~south~of~Yakutat.$		1992-2001	12-10-01	0.59

			Drainage	Measured		
Stream	Tributary to	Location	area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		SOUTH-CENTRAL ALASKA				
625120143405500 Slana Slough near Tok	Slana River	Lat 62°51′20″, long 143°40′55″, in SE¹/₄, sec. 34, T. 13 N., R. 10 W. (Nabesna D-6 quad), at bridge, mile 75.7 Tok Cutoff, 50 mi south of Tok.			8-27-02	240
625110143413000 Slana River near Tok	Copper River	Lat $62^{\circ}51'10''$, long $143^{\circ}41'30''$, in NE ¹ / ₄ , sec. 3, T. 12 N., R. 9 W. (Nabesna D-6 quad), at bridge, mile 75.2 Tok Cutoff, 50 mi south of Tok.	327		8-27-02	1,360
15200400 Gulkana River at Gulkana	Copper River	Lat $62^{\circ}16'08''$, long $145^{\circ}23'52''$, in $SE^{1}/_{4}$, sec. 27, T. 6 N., R. 1 W. (Gulkana B-3 quad), at mile 126.9 Richardson Highway.	1,966	1948-50 1954 1957-60 1965-66 1970-71 1998 2001	8-26-02	4,750
15201000 Dry Creek near Glennallen	Copper River	Lat 62°08′49″, long 145°28′31″, in NE¹/₄, sec. 7, T. 4 N., R. 1 W. (Gulkana A-3 quad), 135 ft upstream from culvert at mi 119 Richardson Highway and 3.3 mi north of Glennallen.	11.4	†1963-2001	5-30-02	48
15202000 Tazlina River near Glennallen	Copper River	Lat $62^{\circ}03'18''$, long $145^{\circ}25'30''$, in SW $^{1}/_{4}$, sec. 9, T. 3 N., R. 1 W. (Gulkana A-3 quad), at bridge, 115.3 Richardson Highway, 5 mi southeast of Glennallen.	a2,670	‡1949-72 1997-99 2001	8-26-02	14,500
15210025 McCarthy Creek at McCarthy	Kennicott River	Lat 61°25′54″, long 142°55′02″, in NW¹/ ₄ NW¹/ ₄ NE¹/ ₄ , sec. 19, T. 5 S., R. 14 E. (McCarthy B-6 quad), 1100 ft upstream from large boulder near footbridge at trail crossing at McCarthy, 0.8 mi upstream from mouth.	79.0	†1993-2001	5-16-02 6-04-02 7-25-02	93 319 682
15212500 Boulder Creek near Tiekel	Tiekel River	Lat $61^{\circ}20'08''$, long $145^{\circ}18'26''$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ $NW^{1}/_{4}$, sec. 19, T. 6 S., R. 1 E. (Valdez B-4 quad), at mi 51.4 on the former Richardson Highway.	9.80	†1964-2001	8-29-02	18
15212800 Ptarmigan Creek Tributary near Valdez	Ptarmigan Creek	Lat $61^{\circ}08'12''$, long $145^{\circ}44'32''$, $NW^{1}/_{4}$ $NE^{1}/_{4}$, sec 34 , T. 8 S., R. 3 W. (Valdez A-5 quad), 275 ft upstream from Richardson Highway, 21 mi east of Valdez.	0.72	†1965-70 †1995-2001	8-29-02	2.5
15227500 Mineral Creek near Valdez	Port Valdez	Lat $61^{\circ}08'30''$, long $146^{\circ}21'42''$, in SW 1 / ₄ NE 1 / ₄ SE 1 / ₄ , sec. 30, T. 8 S., R. 6 W. (Valdez A-7 quad), 120 ft upstream from bridge, 1.8 mi above mouth, and 0.5 mi northwest of Valdez.	44.0	1913, 1948-50, 1972-73, †1990-2001	7-24-02	1,160
15236200 Shakespeare Creek at Whittier	Passage Channel	Lat 60°46′35″, long 148°43′35″, in $NE^1/_4$, sec.22, T. 8 N., R. 4 E. (Seward D-5 quad), at bridge 0.5 mi upstream from mouth, and 1.8 mi west of the Alaska Railroad terminal building at Whittier.	1.61	1969, †1970-80, †1985-2001	6-13-02 7-30-02 9-25-02	58 58 107
601105149385100 Exit Glacier Creek Tributary at mile 0.6 of Harding Trail near Seward	Exit Glacier Creek	Lat 60°11′05″, long 149°38′51″, in $NW^1/_4$ $NW^1/_4$ $NW^1/_4$, sec. 16, T. 1 N., R. 2 W. (Seward A-8 quad), Kenai Peninsula Borough, at footbridge at mi. 0.64 Harding Ice Field Trail, 8 mi. northwest of Seward.		2001	10-02-01	3.0

Discharge measurements made at partial-record stations and miscellaneous sites during water year 2002 [Footnotes at end on table on page 318]

			Drainage	Measured	Measurements	
Stream	Tributary to	Location	area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		SOUTH-CENTRAL ALASKA—Contin	nued			
601105149382400 Exit Glacier Creek channel at mile 0.1 of Harding Trail near Seward	Resurrection River	Lat 60°11′05″, long 149°38′24″, in NE¹/4 NW¹/4 NW¹/4, sec. 16, T. 1 N., R. 2 W. (Seward A-8 quad), Kenai Peninsula Borough, 50 ft. west of mi. 0.05 of Harding Ice Field Trail, 8 mi. northwest of Seward.		2001	10-02-01	1.5
15239500 Fritz Creek near Homer	Kachemak Bay	Lat 59°42′30″, long 151°20′35″, in SW 1 / $_{4}$ SW 1 / $_{4}$, sec. 28, T. 5 S., R. 12 W. (Seldovia C-4 quad), 25 ft downstream from culvert under East Road, and 8 mi northeast of Homer.	10.4	†1963-66, †f 1967-70, †1971-77, †f 1978-80 †+1981-85, ‡1986-92 †1993-2001	5-21-02	46
15239900 Anchor River near Anchor Point	Cook Inlet	Lat $59^{\circ}44'50''$, long $151^{\circ}45'11''$, in $NE^{1}/_{4}$, sec. 13, T. 5 S., R. 15 W. (Seldovia C-5 quad), Kenai Peninsula Borough, at bridge on Sterling Highway, 4.3 mi southeast of Anchor Point.	137	‡1965-73 †1974 ‡1978-86 †1987 ‡1991-92 1996, 1999, 2001	7-16-02 8-21-02	92 167
15242000 Kasilof River near Kasilof	Cook Inlet	Lat $60^{\circ}19'05''$, long $151^{\circ}15'35''$, in SW $^{1}/_{4}$, sec. 30, T. 3 N., R. 11 W. (Kenai B-4 quad), Kenai Peninsula Borough, at bridge, mi 67.1 Sterling Highway, 5 mi south of Kasilof.	738	‡ 1949 - 70	7-11-02	4,750
15274796 + South Branch of South Fork Chester Creek at tank trail near Anchorage	South Fork Chester Creek	Lat $61^{\circ}11'25''$, long $149^{\circ}42'13''$ in SE $^{1}/_{4}$ NW $^{1}/_{4}$, sec. 30, T. 13 N., R. 2 W. (Anchorage A-8 quad), Municipality of Anchorage, 100 ft upstream from bridge on tank trail (Bulldog Trail), and 6.5 mi east of Anchorage.	4.30	1968, 72 1980 1998-2001	4-19-02 5-13-02 5-16-02 6-01-02 7-25-02 8-16-02 8-30-02 9-04-02	1.3 3.6 3.8 7.3 3.7 3.3 3.4 3.3
611142149430300 South Branch of South Fork Chester Creek near Brookridge Drive at Anchorage	South Fork Chester Creek	Lat 61°11′42″, long 149°43′03″ in NW¹/ ₄ NW¹/ ₄ , sec. 30, T. 13 N., R. 2 W. (Anchorage A-8 quad), Municipality of Anchorage, 500 ft east of Brookridge Drive, underneath intersection of electrical transmission lines.			5-16-02	5.3
15275100 Chester Creek at Arctic Boulevard at Anchorage	Knik Arm	Lat 61°12′19″, long 149°53′43″, on line between sec. 19, R. 3 W., and sec. 24, R. 4 W., T. 13 N. (Anchorage A-8 quad), Municipality of Anchorage, 50 ft downstream from bridge on Arctic Boulevard in Anchorage and 0.8 mi upstream from mouth.	27.4	1966-2001	10-02-01 3-13-02 4-18-02	20 7.1 16
15276250 Ship Creek below Cottonwood Park near Anchorage	Knik Arm	Lat 61°14′29″, long 149°42′14″, in $SE^1/_4 SW^1/_4$, sec. 6, T. 13 N., R. 2 W. (Anchorage A-8 quad), Municipality of Anchorage, 0.4 mi downstream from Glenn Hwy bridge, and 6.1 mi east of Anchorage		2000	5-30-02	555

			Drainage	Measured	Measur	urements	
Stream	Tributary to	Location	area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)	
		SOUTH-CENTRAL ALASKA—Contin	nued				
15280100 Eklutna River above Thunderbird Creek near Eklutna	Knik Arm	Lat 61°26′44″, long 149°21′16″, in NW¹/ ₄ SW¹/ ₄ , sec. 30, T. 16 N., R. 1 E. (Anchorage B-7 quad), Municipality of Anchorage, 800 ft upstream from Thunder Bird Creek, 3.3 mi upstream from mouth, and 1.6 mi southeast of Eklutna.		1954-56	5-01-02 5-10-02 6-03-02 7-11-02 8-30-02 9-25-02	24 13 8.9 7.9 6.7 7.5	
15283600 Premier Creek near Sutton	Moose Creek	Lat 61°42′40″ long 149°05′12″, in SE¹/ ₄ NE¹/ ₄ , sec. 28, T. 19 N., R. 2 E. (Anchorage C-6 quad), Matanuska-Susitna Borough, 10 ft downstream from culvert on Buffalo Mine Road (named Moose Creek Road on Anchorage C-6 quad), 4 mi north of Glenn Highway, 6 mi west of Sutton, and 7 mi northeast of Palmer.	3.38	†1996-2001	5-07-02 9-27-02	8.3 12	
15283700 Moose Creek near Palmer	Matanuska River	Lat 61°41′00″, long 149°02′36″, in $\mathrm{NE^{1}}/_{4}$ $\mathrm{NE^{1}}/_{4}$ sec. 2, T. 18 N., R. 2 E. (Anchorage C-6 quad), Matanuska-Susitna Borough, 0.2 mi upstream from Glenn Highway bridge, 0.8 mi upstream from mouth and 6.5 mi north of Palmer.	47.3	‡1998-2001	10-05-01 11-20-01	66 32	
15285000 Wasilla Creek near Palmer	Knik Arm	Lat 61°38′37″, long 149°11′46″, in $SE^1/_4 SW^1/_4$, sec. 13, T. 18 N., R. 1 E. (Anchorage C-6 quad), Matanuska-Susitna Borough, 20 ft downstream from culverts on Palmer-Fishhook Road, and 4.1 mi northeast of Palmer.	16.8	†1971, f†1976-83, †1984-2001	5-07-02	55	
15290200 Nancy Lake Tributary near Willow	Nancy Lake	Lat 61°41′17″, long 149°57′58″, in $SE^{1}_{/4}$ $SE^{1}_{/4}$, sec. 34, T. 19 N., R. 4 W. (Tyonek C-1 quad), Matanuska-Susitna Borough, 150 ft upstream from culvert at Parks Highway, 0.3 mi upstream from mouth, and 4.5 mi southeast of Willow.	8.00	f1978-79, †1980, f1981, †1983-86, †1990-2001	5-07-02	40	
15291100 Raft Creek near Denali	Susitna River	Lat 63°03′04″, long 147°16′22″, in SE¹/4, sec. 36, T. 21 S., R. 2 E., (Healy A-1 quad), Matanuska-Susitna Borough, 30 ft upstream from culvert at mi 68.9 Denali Highway, and 10.7 mi southeast of Denali.	4.33	†1963-67, †1971-75, †1977-82, †1984-90, †1993-2001	7-17-02	6.8	
15292400 Chulitna River near Talkeetna	Susitna River	Lat 62°33′31″, long 150°14′02″, in SE¹/₄, sec. 32, T. 29 S., R. 5 W., (Talkeetna C-1 quad), Matanuska-Susitna Borough, 0.5 mi downstream from Parks Highway Bridge, 4.5 mi downstream from Troublesome Creek, 18 mi upstream from mouth, and 16 mi northwest of Talkeetna.	2,570	‡1958-1986	8-30-02	17,400	
15297200 Myrtle Creek near Kodiak	Kalsin Bay	Lat 57°36′12″, long 152°24′12″ in $NW^1/_4 SW^1/_4$, sec. 6, T. 30 S., R. 19 W. (Kodiak C-2 quad), Kodiak Island Borough, 0.1 mi upstream from bridge, 0.3 mi upstream from mouth, and 13 mi south of Kodiak.	4.74	‡1963-86, †1987-89, †1991-2001	4-23-02 5-29-02 6-26-02	29 220 260	

			Drainage	Measured previously	Measurements	
Stream	Tributary to		area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
		SOUTHWEST ALASKA				
15297609 Stapp Creek near Cold Bay	Cold Bay	Lat $55^{\circ}11'17''$, long $162^{\circ}42'47''$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ $NW^{1}/_{4}$, sec. 1, T.58 S., R. 89 W. (Cold Bay A-3 quad), Aleutians East Borough, 0.9 mi upstream from mouth, and 1 mi south of Cold Bay.	1.68	†2001	4-30-02 6-20-02 9-03-02	1.6 1.7 0.72
15297810 Frosty Creek near Cold Bay	Izembek Lagoon	Lat 55°09′59″, long 162°48′22″, in $SE^1/_4$ $SW^1/_4$ $SE^1/_4$, sec. 8, T.58 S., R. 89 W. (Cold Bay A-3 quad), Aleutians East Borough, 2.8 mi upstream from mouth, and 4.5 mi southwest of Cold Bay.	5.92	†2001	4-30-02 6-20-02 9-03-02	69 62 43
15300350 Chinkelyes Creek tributary near Pedro Bay	Chinkelyes Creek	Lat $59^{\circ}44'02''$, long $153^{\circ}48'40''$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$, sec. 23, T. 5 S., R. 27 W. (Iliamna C-3 quad), Lake and Peninsula Borough, 60 ft upstream from culvert, 8 mi east of Pile Bay and 11 mi east of Pedro Bay.	0.40	†1998-2001	10-02-01 6-24-02	2.2 4.6
15302900 Moody Creek at Aleknagik	Wood River	Lat $59^{\circ}16'34''$, long $158^{\circ}35'42''$, in $SE^{1}_{/4}$, sec. 30, T. 10 S., R. 55 W. (Dillingham B-7 quad), 500 ft upstream from mouth at Wood River at the Aleknagik Mission.	1.28	1968 †1969-73, †1975-83, †1988-89 †1993-2001	5-15-02 7-09-02	o20 1.9
15303660 Gold Creek at Takotna	TakotnaRiver	Lat $62^{\circ}59'20''$, long $156^{\circ}04'08''$, in $SE^1/_4$ $SE^1/_4$, sec. 34, T. 34 N., R. 36 W. (Iditarod D-1 quad), at Takotna, 350 ft upstream from bridge, and 400 ft upstream from mouth.	6.31	†1987-2001	7-23-02	3.4
		YUKON ALASKA				
15305900 Dennison Fork near Tetlin Junction	South Fork Forty Mile River	Lat 63°25′24″, long 142°29′00″, in SW1/4 sec. 14, T. 19 N., R. 15 E. (Tanacross B-3 quad), 10 ft downstream from culvert at mi 10.7 Taylor Highway and 8.3 mi northeast of Tetlin Junction.	2.93	†1964-70, †1972-75, †1977, †1979, †1981-84, †1983-90, †1992-2001	6-10-02	35
15344000 King Creek near Dome Creek	O'Brien Creek	Lat $64^{\circ}23'38''$, long $141^{\circ}24'43''$, in $NE^{1}/_{4}$ SW $^{1}/_{4}$ sec. 16, T. 6 S., R. 32 E. (Eagle B-1 quad), at mi 120 Taylor Highway, 1,100 ft upstream from culvert at mi 119.9, 0.4 mi upstream from mouth, 4.9 mi east of Dome Creek, and 28 mi south of Eagle.	5.87	†1975-77 †1979-80 †1982 †1983-1990 †1991-2001	5-23-02 7-9-02	4.1 46
15388060 Kandik River near Nation	Yukon River	Lat 65°23′44″,long 142°25′41″ in NW¹/4 NE¹/4, sec. 32, T. 6N., R. 25E., (Charley River B-3 quad), in Yukon-Charley Rivers National Preserve, on right bank, 0.75 mi upstream of mouth of Threemile Creek, 3.75 mi above mouth of the Kandik River, 23 mi northwest of Nation townsite and 55 mi north-northwest of Eagle.	1084	‡1994-2001	06-15-02 6-20-02 8-5-02 8-24-02 9-21-02	2320 660 512 3220 825

			Drainage	Measured		
Stream	Tributary to	Location	area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		YUKON ALASKA—Continued				
15389000 Porcupine River near Fort Yukon	Yukon River	Lat $66^{\circ}59'26''$, long $143^{\circ}08'16''$ in $NE^{1}/_{4}$ $SW^{1}/_{4}$, sec. 16, T. 25N., R. 21E., (Black River D-5 quad), 1,000 ft upstream from John Herberts Village, and 65 mi northeast of Fort Yukon.	a29,500	‡1964-79, 2001	3-11-02 6-6-02 6-18-02 6-26-02 8-13-02 9-27-02	806 28,800 43,700 48,900 18,500 10,700
15389980 Ptarmigan Creek near mouth near Central	Birch Creek	Lat $65^{\circ}26'24''$, long $145^{\circ}31'34''$, in $NE^{1}/_{4}$, sec. 17, T. 7 N., R. 10 E. (Circle B-4 quad), at mi 101.5 Steese Highway, 0.2 mi upstream from mouth, 10.5 mi southeast of Miller House site, 11.7 mi west of Mastodon Dome, and 22.6 mi southwest of Central.	19.2		7-26-01	g9.6
15393900 North Fork 12 Mile Creek near Miller House	Birch Creek	Lat 65°24′03″, long 145°44′18″, in SW¹/4, sec. 29, T. 7 N., R. 10 E. (Circle B-4 quad), at mi 93.4 Steese Highway, 0.5 mi upstream from confluence with Twelvemile Creek, 1.3 mi upstream from mouth of Twelvemile Creek, 17.2 mi southwest of Miller House site, 11.7 mi west of Mastodon Dome, and 29.4 mi southwest of Central.	23.2	1963-67	7-26-01	g9.7
15395900 Upper Frying Pan Creek near Central	Birch Creek	Lat 65°19'37", long 145°33'01", in SE¹/₄, sec. 19, T. 6 N., R. 10 E. (Circle B-4 quad), 0.3 mi upstream of the confluence with Frying Pan Creek, mi upstream from the mouth of Frying Pan Creek, 16.6 mi southwest of Miller House site, 9.4 mi southwest of Mastodon Dome, and 27.4 mi southwest of Central.	8.00	2001	8-22-01 7-26-02	g7.8 46
15396100 Frying Pan Creek at mouth near Central	Birch Creek	Lat $65^{\circ}16'58''$, long $145^{\circ}33'33''$, in $SE^{1}/_{4}$, sec. 6, T. 5 N., R. 10 E. (Circle B-4 quad), 0.2 mi upstream from mouth, 19.4 mi southwest of Miller House site, 12.0 mi southwest of Mastodon Dome, and 29.6 mi southwest of Central.	12.5		7-26-02	112
15397500 Great Unknown Creek near Central	Birch Creek	Lat 65°17′38″, long 145°24′00″, in NW¹/₄, sec. 1, T. 5 N., R. 11 E. (Circle B-3 quad), 0.7 mi upstream from mouth of E. Fork Great Unkown Creek, 2.6 mi upstream from mouth of Great Unkown Creek, 16.8 mi south of Miller House site, 9.6 mi south of Mastodon Dome, and 25.9 mi southwest of Central.	18.6	2001	8-21-01 7-26-02	g22 52
15397700 East Fork Great Unknown Creek near Central	Birch Creek	Lat 65°17'36", long 145°23'20", in NW¹/4, sec. 1, T. 5 N., R. 11 E. (Circle B-3 quad), 0.8 mi upstream from mouth. 2.8 mi upstream from mouth of of Great Unkown Creek, 16.7 mi south of Miller House site, 9.6 mi south of Mastodon Dome, and 25.7 mi southwest of Central.	20.4	2001	8-21-01 7-26-02	g20 17
15403000 Volcano Creek near Central	Clums Fork	Lat $65^{\circ}08'09''$, long $145^{\circ}28'39''$, in $NE^{1}/_{4}$, sec. 34, T. 4 N., R. 11 E. (Circle A-3 quad), 0.7 mi upstream from mouth, 27.9 mi south of Miller House site, 20.8 mi south of Mastodon Dome, and 36.0 mi southwest of Central.	5.59	2001	8-20-01 7-24-02	g11 4.5

			Drainage	Measured	Measurements	
Stream	Tributary to	Location	area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		YUKON ALASKA—Continued				
15404800 Anvil Creek near Central	Clums Fork	Lat 65°12′42″, long 145°14′25″, in SE¹/4, sec. 34, T. 5 N., R. 12 E. (Circle A-3 quad), 2.4 mi upstream from mouth, 21.7 mi south of Miller House site, 15.4 mi south of Mastodon Dome, and 28.0 mi southwest of Central.	20.4	2001	8-20-01 7-24-02	g29 14
15407200 South Fork Harrison Creek near Central	Birch Creek	Lat 65°21′52″, long 145°15′25″, in NW¹/4, sec. 10, T. 6 N., R. 12 E. (Circle B-3 quad), 4.0 mi upstream from confluence with North Fork Harrison Creek, 20.0 mi upstream from mouth of Harrison Creek, 11.1 mi south of Miller House site, 5.1 mi southeast of Mastodon Dome, and 19.5 mi southwest of Central.	9.11	2001	8-20-01 7-24-02	g20 3.9
15407500 Harrison Creek near Central	Birch Creek	Lat $65^{\circ}22'45''$, long $144^{\circ}49'58''$, in NE $^{1}/_{4}$, sec. 3, T. 8 N., R. 14 E. (Circle B-2 quad), 0.4 mi upstream of mouth of Bottom Dollar Creek, 5.3 mi upstream from mouth of Harrison Creek, 15.0 mi southeast of Miller House site, 15.0 mi east of Mastodon Dome, and 13.5 mi south of Central.	71.6	2001	8-20-01 7-24-02	g100 34
15439800 Boulder Creek near Central	Crooked Creek	Lat 65°34′05″, long 144°53′13″, in $NW^1_{/4}$, sec. 32, T. 9 N., R. 14 E. (Circle C-2 quad), 2000 ft upstream from bridge at mi 125.4 Steese Highway, 0.7 mi upstream from mouth, and 2.3 mi west of Central.	31.3	†1964-65, ‡1966-82, †1983, ‡1984-86, †1988-2001	6-12-02	97
15442500 Quartz Creek near Central	Crooked Creek	Lat 65°37′09″, long 144°28′55″, in SW¹/₄, sec. 7, T. 9 N., R. 16 E. (Circle C-2 quad), at mi 138.1 Steese Highway, 1 mi upstream from mouth, and 10 mi east of Central.	17.2	†1990, †1992-2001	6-12-02 8-20-02	8.3 13
15453610 Ray River Tributary near Stevens Village	Ray River	Lat $65^{\circ}56'57''$, long $149^{\circ}54'50''$ in $SE^1/_4$, sec.17, T.13 N., R. 11 W. (Livengood D-6 quad), at mi 63.8 Dalton Highway and 22 mi west of Stevens Village.	8.00	†1977, †1979-80 †1982 †1987-88 †1990-2001	5-25-02	26
15470300 Little Jack Creek near Nabesna	Jack Lake	Lat $62^{\circ}32'39''$, long $143^{\circ}19'22''$, in $SW^{1}_{/4}$ $NW^{1}_{/4}$ $SE^{1}_{/4}$, sec. 22 T. 9 N., R. 11 E. (Nabesna C-5 quad), mi 25.8 Nabesna Road, and 15.6 mi northwest of Nabesna.	6.73	†1975-77 †1980 †1982-83 †1985-88 †1990-95 †1997-2001	5-30-02	16
6306301431730 Tok River near Tok	Tanana River	Lat $63^{\circ}06'30''$, long $143^{\circ}17'30''$ in $SE^{1}/_{4}$, sec. 3, T. 15 N., R. 11 E. (Tanacross A-5 quad), at bridge, 102.5 mi Tok cutoff, 20 mi south of Tok.	762		8-27-02	1,570
15476300 Berry Creek near Dot Lake	Tanana River	Lat 63°41′23″, long 144°21′47″, in NW¹/₄, sec. 13 T. 22 N., R. 5 E. (Mt. Hayes C-1 quad), 100 ft upstream from former bridge site at mi 1371.4 on abandoned section of Alaska Highway, 1.9 mi upstream from mouth, and 6.0 mi west of Dot Lake.	65.1	†1963-71, †1972-81, †1982,1984, †1988 †1990-94 †1997-2001	5-21-02	282

			Drainage	Measured	Measurements	
Stream	Tributary to	Location	area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		YUKON ALASKA—Continued				
15478093 Suzy Q Creek near Pump Station 10	Delta River	Lat 63°29'43", long 145°51'27", in SW¹/₄, sec. 29, T. 16 S., R. 10 E. (Mt. Hayes B-4 quad), at mi 224.8 Richardson Highway, 0.1 mi upstream from mouth, and 6 mi north of Pump Station 10.	1.29	†1987, †1991-94, †1997-2001	5-29-02 7-25-02 9-27-02	3.6 1.0 7.9
15478499 Ruby Creek above Richardson Highway near Donnelly	Delta River	Lat 63°37′54″, long 145°52′14″, in NE¹/₄, sec. 7, T. 15 S., R. 10 E. (Mt. Hayes C-4 quad), 0.2mi upstream from trans-Alaska Pipeline, 0.5 mi upstream from bridge at mi 234.8 Richardson Highway, 2.2 mi upstream from mouth, and 2.3 mi south of Donnelly.	4.89	†1987-88, †1991-97, †1999-2000	5-29-02 7-19-02 9-27-02	11 1.3 10
15480000 Banner Creek at Richardson	Tanana River	Lat $64^{\circ}17'24''$ long $146^{\circ}20'56''$, in $SW^{1}/_{4}$, sec. 22, T. 7 S., R. 7 E. (Big Delta B-5 quad), 400 ft upstream from bridge at mi 295.4 Richardson Highway 0.2 mi upstream from mouth, and 0.4 mi northwest of Richardson.	20.2	†1964-67, †1969-70, †1972, †1974-75, †1977, †1982-84, †1989-93, †1995-96	5-16-02 7-25-02 9-27-02	23 4.1 9.1
1551400425 Noyes Slough at Minnie Street Bridge at Fairbanks	Chena River	Lat 64°50'57", long 147°42'15", in NW¹/4, sec. 11, T.1 S., R.1 W., Fairbanks North Star Borough, (Fairbanks D-2 Quad), Hydrologic Unit 19040506. 900 ft. downstream from Noyes Slough entrance 0.3 mi downstream from Wendell Street Bridge, 5.6 mi upstream from mouth, and 11.3 mi downstream from Chena Slough entrance.		1967,1971, 1989,1990, 1992-1994 2000,2001	5-03-00 5-10-00 5-11-00 5-20-00 5-21-00 5-24-00 5-27-00 5-30-00 6-06-00 6-15-00 6-19-00 8-12-00	g14 g67 g34 g37 g90 g311 g431 g90 g117 g34 g0.54 g2.0
1551400435 Noyes Slough at Illinois Street Bridge at Fairbanks	Chena River	Lat $64^{\circ}51'16''$, long $147^{\circ}42'50''$, in $SW^1/_4NE^1/_4SE^1/_4$, sec. 3, T.1 S., R.1 W., Fairbanks North Star Borough, (Fairbanks D-2 Quad), at Illinois Street Bridge at Fairbanks.		1993,1994, 2000	5-20-94 5-25-94 7-07-94 5-21-00 5-30-00 6-06-00 8-12-00	g0.49 r0.48 r133 g95 g88 g116 g,b no flow
1551400455 Noyes Slough at OConnor Road Bridge at Fairbanks	Chena River	Lat $64^{\circ}51'26''$, long $147^{\circ}43'21''$, in $SW^1/_4SW^1/_4NE^1/_4$, sec. 3, T.1 S., R.1 W., Fairbanks North Star Borough, (Fairbanks D-2 Quad), at O'Conner Road bridge at Fairbanks.		1993, 2000	5-10-00 5-21-00 5-30-00 6-06-00 6-18-00	g80 g125 g97 g117 g,b no flow
1551400465 Noyes Slough at Isabella Creek at Fairbanks	Chena River	Lat $64^{\circ}51'26''$, long $147^{\circ}43'47''$, in $SE^{1}/_{4}SE^{1}/_{4}$ NW $^{1}/_{4}$, sec. 3, T.1 S., R.1 W., Fairbanks North Star Borough, (Fairbanks D-2 Quad), 2,500ft downstream of O'Conner Road Bridge, Fairbanks.		1993, 1994	7-29-94	r3.7

			Drainage	Measured	Measurements	
Stream	Tributary to	Location	area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		YUKON ALASKA—Continued				
1551400550 Noyes Slough at Danby Street Bridge at Fairbanks	Chena River	Lat $64^{\circ}51'41''$, long $147^{\circ}44'30''$, in $SW^1/_4$ $NW^1/_4$ $NW^1/_4$, sec. 3, T.1 S., R.1 W., Fairbanks North Star Borough, (Fairbanks D-2 Quad), at Danby Street Bridge at Fairbanks.		1993,1994 2000	5-10-00 5-21-00 5-30-00 6-06-00 6-18-00 6-22-00 8-20-02	g74 g113 g101 g126 g,b no flow g0.93 486
1551400650 Noyes Slough at Aurora Drive Bridge at Fairbanks	Chena River	Lat 64°51′42″, long 147°45′32″, in SW¹/ ₄ NW¹/ ₄ NE¹/ ₄ , sec. 4, T.1 S., R.1 W., Fairbanks North Star Borough, (Fairbanks D-2 Quad), at Aurora Drive Bridge at Fairbanks.		1993,1994 2000	6-22-00	g1.2
1551401550 Noyes Slough at West Johansen Expressway Bridge at Fairbanks	Chena River	Lat $64^{\circ}50'57''$, long $147^{\circ}48'18''$, in $NE^{1}/_{4}$ $NW^{1}/_{4}$, sec. 8, T.1 S., R.1 W., Fairbanks North Star Borough, (Fairbanks D-2 Quad), at West Johansen Expressway Bridge at Fairbanks.		1993,2000	5-11-00 5-20-00 5-21-00 5-30-00 6-06-00 6-19-00 6-22-00	g98 g14 g100 g145 g115 g7.1 g3.7
1551401570 Noyes Slough at Indiana Avenue at Fairbanks	Chena River	Lat $64^{\circ}50'52''$, long $147^{\circ}48'23''$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ NW $^{1}/_{4}$, sec. 8, T.1 S., R.1 W., Fairbanks North Star Borough, (Fairbanks D-2 Quad), at Indiana Avenue Bridge at Fairbanks.		1993,1994 2000	6-22-00	g3.0
1551401580 Noyes Slough at Goldizen Avenue Bridge at Fairbanks	Chena River	Lat $64^{\circ}50'38''$, long $147^{\circ}48'24''$, in $NW^{1}/_{4}$ $SW^{1}/_{4}$ $NW^{1}/_{4}$, sec. 8, T.1 S., R.1 W., Fairbanks North Star Borough, (Fairbanks D-2 Quad), at Goldizen Avenue Bridge at Fairbanks.		2000	5-11-00 5-30-00 6-06-00 6-18-00 6-22-00	g112 g97 g131 g6.0 g2.9
15516200 Slime Creek near Cantwell	Nenana River	Lat $63^{\circ}30'34''$, long $148^{\circ}48'39''$, in $SE^{1}/_{4}$, sec. 24, T. 16 S., R. 7 W. (Healy C-4 quad), 25 ft. down stream of culverts at mi 219.9 George Parks Highway, 9.1 mi northeast of Cantwell.	6.90	†1990-2001	5-28-02	55
634405149542000 Nenana River at Park Station		Lat 63°44′05″, long 149°54′20″, in NE¹/₄, sec. 25, T. 15 S., R. 7 W., Denali Borough (Healy D-4 quad), at bridge, mile 202.4 Parks Highway, 8 mi south of Healy.	1,870		8-30-02	8,250
15517980 Dragonfly Creek near Healy	Nenana River	Lat $63^{\circ}47'45''$, long $148^{\circ}55'19''$, in SW $^{1}/_{4}$, sec. 9, T.13 S., R. 7 W., (Healy D-4 quad), at mi 242.6 George Parks Highway, 6 mi southeast of Healy.	0.71	†1990-95, †1997-2001	7-9-02 8-21-02	1.2 2.2
15541600 Globe Creek near Livengood	Tatilina River	Lat $65^{\circ}17'08''$, long $148^{\circ}07'56''$, in $SE^1/_4$, sec. 3, T. 5 N., R. 3 W. (Livengood B-3 quad), 0.2 mi upstream from culvert at mi 36.7 Elliott Highway.	23.0	†1964-70, †1972-74, †1976, †1982-83, †1985-86, †1989-91, †1993, †1995-2001	5-23-02	32

			Drainage	Measured previously	Measu	rements
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
		YUKON ALASKA—Continued				
15564868 Snowden Creek near Wiseman	Dietrich River	Lat 67°44′20″, long 149°44′24″, in SW¹/₄, sec. 26, T. 34 N., R. 10 W. (Chandalar C-6 quad), upstream from culvert at mi 213.5 Dalton Highway and 24.5 mi northeast of Wiseman.	16.7	†1977-80, †1982, †1984-85, †1987-94, †1996-2001	5-24-02 9-11-02	143 13
15564872 Nugget Creek near Wiseman	Middle Fork Koyukuk River	Lat $67^{\circ}29'25''$, long $149^{\circ}52'20''$, in $NW^{1}/_{4}$, sec. 30, T. 31 N., R. 10 W. (Chandalar B-6 quad), upstream from culvert at mi 195.6 Dalton Highway, and 8.7 mi northeast of Wiseman.	9.47	†1975-79, †1982, †1985, †1987, †1989-2001	5-24-02	63
15564884 Prospect Creek near Prospect Camp	Jim River	Lat $66^{\circ}46'56''$, long $150^{\circ}41'06''$, in NW $^{1}/_{4}$, sec. 31, T. 23 N., R. 14 W. (Bettles D-2 quad), at mi 135.2 Dalton Highway, 0.4 mi downstream from Trans-Alaska Pipeline crossing, 1.5 mi upstream from mouth .	110	†1975-78, †1980 †1982 †1989 †1992-2001	5-25-02	798
15564887 Bonanza Creek Tributary near Prospect Camp	Bonanza Creek	Lat $66^{\circ}36'52''$, long $150^{\circ}41'24''$, in $SE^{1}/_{4}$, sec. 25, T. 21 N., R. 15 W., 0.3 mi downstream from culverts at mi 121.2 Dalton Highway, 3.4 mi upstream from mouth, and 13.5 mi south of pump station 5.	11.7	†1975-76, †1982, †1985-86, †1989-95, †1997-2001	5-25-02	52
15564950 Indian River at Utopia	Koyukuk River	Lat $65^{\circ}59'49''$, long $153^{\circ}41'31''$, in NW $^{1}/_{4}$, sec. 19, T. 7 N., R. 25 E. (Melozitna D-2 quad), at mi 0.2 on road to Indian Mountain, and 1.8 mi upstream from mouth of Flat Creek.	38.8	†1998-2001	5-28-02 9-3-02	119 14
15564960 Utopia Creek at Utopia	Indian River	Lat $65^{\circ}59'19''$, long $153^{\circ}42'18''$, in $SE^{1}/_{4}$, sec. 24, T. 7 N., R. 24 E. (Melozitna D-2 quad), 0.3 mi south of landing strip at Utopia, and 1.2 mi upstream from mouth.	5.18	†1998-2001	5-28-02 9-3-02	20 4.2
15565400 Anvik River near Anvik	Yukon River	Lat $62^{\circ}47'22''$, long $160^{\circ}41'49''$, in NW $^{1}/_{4}$ SE $^{1}/_{4}$, sec. 10, T. 31 N., R. 61 W. (Holy Cross D-4 quad), approx. 25 river mi upstream from mouth and 18 mi northwest of Anvik.		2001	3-20-02 6-25-02 7-30-02 9-03-02	171 1490 1140 530
15565449 Municipal Reserve Creek at Pilot Station.	Yukon River	Lat $61^{\circ}56'19''$, long $162^{\circ}52'53''$, in $NW^1/_4$ $SE^1/_4$, sec. 5, T. 21 N., R. 74 W. (Marshall D-3 quad), 0.3 mile upstream from mouth, and 0.1 mile north of Village of Pilot Station.	1.43	†1993-97, †2001	6-11-02 7-16-02 9-25-02	0.10 0.61 0.33
		NORTHWEST ALASKA				
15565730 Chiroskey River near Unalakleet	Unalakleet River	Lat 63°55′06″, long 160°18′58″, in NW¹/₄, sec. 19, T. 18 S., R. 8 W. (Unalakleet D-3 quad), on left bank, 3/4 mi upstream from mouth, 14 mi northeast of Unalakleet.	296	†1998, †2001	6-18-02	215
15581000 Hugh Rowe Creek near Council	Fox River	Lat 64°44′35″, long 163°53′44″, in NW¹/ ₄ NW¹/ ₄ NW¹/ ₄ , sec. 4, T. 9 S., R 26 W. (Solomon C-4 quad), 150 ft upstream from Nome-Council Road, 0.1 mi upstream from mouth, and 60 mi East of Nome.	2.34		6-19-02 7-17-02 8-21-02	4.8 .85 .58

			Drainage	Measured previously	Measu	rements
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
		NORTHWEST ALASKA—Continue	ed			
15583500 Etta Creek near Council	East Fork Solomon River	Lat 64°41′56″, long 164°09′57″, in NE¹/4 NE¹/4, sec. 24, T. 9 S., R 28 W. (Solomon C-5 quad), 100 ft upstream from Nome-Council Road, 0.2 mi upstream from mouth, and 25 mi southwest of Council.	1.33	2001	7-17-02 8-21-02	.59 .36
15585000 Goldengate Creek near Nome	Norton Sound	Lat $64^{\circ}26'51''$, long $165^{\circ}03'14''$, in SW $^{1}/_{4}$, sec. 15, T. 12 S., R. 32 W. (Nome B-1 quad), 80 ft upstream from culvert on Nome-Council Road and 11 mi southeast of Nome.	1.55	†1965 1966 †1986-88 †1990-2001	5-28-02	5.4
15624998 Arctic Creek above tributary near Nome	Cripple River	Lat $64^{\circ}38'16''$, long $165^{\circ}42'42''$, in NE 1 / $_{4}$, sec. 8, T. 10 S., R. 35 W. (Nome C-2 quad), 300 ft upstream from culvert on Nome-Teller Road, 2 mi upstream from mouth, and 13 mi northwest of Nome.	1.13	† 1975, †1979-84, †1986-2001	8-20-02	.19
15633000 Washington Creek near Nome	Sinuk River	Lat 64°42′52″, long 165°49′13″, in NW¹/4, sec. 14, T. 9 S., R. 35 W. (Nome C-2 quad), 400 ft upstream from culvert on Nome-Teller Road, and 19 mi northwest of Nome.	6.34	†1964-66, †1968-78, †1980-2001	5-29-02	17
15635000 Eldorado Creek near Teller	Tisuk River	Lat $64^{\circ}57'38''$, long $166^{\circ}11'59''$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$, sec. 20, T.6 S., R.37 W. (Nome D-3 quad), 30 ft downstream from bridge at mi 46.3 of Nome-Teller Road, 0.5 mi upstream from mouth at Tisuk River and 21 mi south of Teller.	5.83	1986-87 ‡1988-90 1991 ‡1992-1998 †1999-2001	08-22-02	4.6
15746850 Square Creek near Kivalina	Wulik River	Lat $68^{\circ}09'42''$, long $163^{\circ}07'59''$, in $NE^{1}/_{4}$, sec. 24, T. 32 N., R. 19 W. (DeLong Mts. A-2 quad), 1.4 mi above mouth, 9 mi northwest of Red Dog Mine, 41 mi north of Noatak and 47 mi northeast of Kivalina. TeckCominco Station 214.	9.37		7-3-02	9.6
15746890 Competition Creek near Kivalina	Wulik River	Lat 68°07′58″, long 163°04′07″, in NW¹/₄, sec. 32, T. 32 N., R. 19 W. (DeLong Mts A-2 quad), 600 ft upstream from mouth, 7 mi northwest of Red Dog Mine, 39 mi north of Noatak, and 48 mi northeast of Kivalina. TeckCominco station 202.	6.85	2000-01	7-3-02	7.3
15746950 West Fork Upper Ikalukrok Creek near Kivalina	Ikalukrok Creek	Lat 68°10′19″, long 162°54′32″, in SE¹/4, sec. 13, T. 32 N., R. 19 W. (DeLong Mts. A-2 quad), 7.6 mi above Red Dog Creek, 7 mi north of Red Dog Mine, 42 mi north of Noatak and 52 mi northeast of Kivalina. TeckCominco Station 205.	3.18		7-4-02	3.8
15746960 Upper Ikalukrok Creek near Kivalina	Wulik River	Lat 68°09′20″, long 162°51′41″, in SE¹/4, sec. 19, T. 32 N., R. 18 W. (DeLong Mts. A-2 quad), 5.8 mi above Red Dog Creek, 6 mi north of Red Dog Mine, 40 mi north of Noatak and 52 mi northeast of Kivalina. TeckCominco Station 207.	14.0		7-3-02	20

			Drainage	Measured previously	Measur	rements
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
		NORTHWEST ALASKA—Continu	ed			
15746980 Ikalukrok Creek above Red Dog Creek near Kivalina	Wulik River	Lat 68°05′38″, long 162°56′47″, in SE¹/4, sec. 11, T. 31 N., R. 19 W. (DeLong Mts A-2 quad), 300 ft upstream from Red Dog Creek, 3 mi northwest of Red Dog Mine, 36 mi north of Noatak, and 50 mi northeast of Kivalina. Teck-Cominco Station 9.		‡1991-92, 1993-2001	6-2-02 7-3-02	240 100
15746983 Red Dog Mine Clean Water Ditch near Kivalina	Ikalukrok Creek	Lat 68°04′28″, long 162°51′35″, in NE¹/4, sec. 19, T. 31 N., R. 18 W. (DeLong Mts A-2 quad), 500 ft downstream from outfall of clean water ditch, 300 ft northwest of Red Dog Mine mill site, 0.4 mi upstream from South Fork Red Dog Creek, 36 mi north of Noatak, and 50 mi northeast of Kivalina. TeckCominco station 140.	(contribut-	‡1991-92, 1993-2001	6-4-02 7-5-02 9-5-02	19 3.5 92
15746988 North Fork Red Dog Creek near Kivalina	Ikalukrok Creek	Lat 68°05′03″, long 162°52′52″, in SW¹/₄, sec. 18, T. 31 N., R. 18 W. (DeLong Mts. A-2 quad), 500 ft upstream from mouth, 1.1 mi northwest of Red Dog Mine, 36 mi north of Noatak, and 50 mi northeast of Kivalina. Teck-Cominco station 12.	15.9	‡1991-94, †1995-2001	6-4-02 7-5-02 9-5-02	53 7.6 199
15746990 Red Dog Creek above Mouth near Kivalina	Ikalukrok Creek	Lat 68°05′20″, long 162°55′30″, in NW¹/₄, sec. 13, T. 31 N., R. 19 W. (DeLong Mts. A-2 quad), 1000 ft upstream from mouth, 2.3 mi northwest of Red Dog Mine, 36 mi north of Noatak, and 50 mi northeast of Kivalina. Teck-Cominco Station 10.	24.6 (total) 21.4 (contributing)	‡1991-92, 1993-2001	6-5-02 7-2-02 7-4-02	96 48 29
1574699020 Ikalukrok Creek 0.6 mi below Red Dog Creek near Kivalina	Wulik River	Lat 68°05′09″, long 162°58′07″, in NE¹/₄, sec. 15, T. 31 N., R. 19 W. (DeLong Mts. A-2 quad), 0.6 mi downstream from Red Dog Creek, 3 mi northwest of Red Dog Mine, 36 mi north of Noatak, and 48 mi northeast of Kivalina. TeckCominco Station 150.	n	2001	7-2-02 9-8-02	193 849
15746995 Ikalukrok Creek 4.3 mi below Dudd Creek near Kivalina	Wulik River	Lat 67°58′06″, long 163°09′44″, in SE¹/₄, sec. 26, T. 30 N., R. 20 W. (Noatak. D-3 quad), 4.3 mi blw Dudd Creek, 11 mi southwest of Red Dog Mine, 28 mi north of Noatak and 39 mi northeast of Kivalina. TeckCominco Station 160.	147 (total) 140 (contribut- ing)		6-2-02 7-2-02 9-8-02	347 328 1500
15746998 Tutak Creek near Kivalina	Wulik River	Lat 67°52′28″, long 163°40′14″, in NE¹/4, sec. 34, T. 29 N., R. 22 W. (Noatak D-4 quad), 1,000 ft upstream from mouth, 28 mi northwest of Noatak, and 25 mi northeast of Kivalina.	119	1991, †1992-2001	6-3-02 6-30-02	147 10
		ARCTIC SLOPE ALASKA				
15875000 Colville River at Umiat	Beaufort Sea	Lat 69°21′38″, long 152°07′18″, in $NW^1/_4$, sec. 15, T. 1 S., R. 1 W. (Umiat B-4 quad), 1.0 mi upstream from Seabee Creek, and 1 mi east of Umiat.	13830	1953	6-15-02 8-20-02 8-21-02 8-21-02	m19,800 37,300 29,200 31,500

Stream			Drainage	Measured	Measurements		
	Tributary to		area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)	
ARCTIC SLOPE ALASKA—Continued							
15904900 Atigun River Tributary near Pump Station 4	Atigun River	Lat 68°22′25″, long 149°18′48″, in SE¹/4, sec. 28, T. 12 S., R. 12 E. (Phillip Smith Mts. B-4 quad), 0.2 mi upstream from culvert at mi 265 on Dalton Highway, 0.9 mi upstream from mouth, and 4 mi south of Pump Station 4.	32.6	‡1977-86, †1987-91, †1994, †1996-99, †2001	5-24-02	192	
15910300 Sagavanirktok River Tributary near Happy Valley Camp	Sagavanirk- tok River	Lat 69°09′38″, long 148°49′40″, in NE¹/₄, sec. 30, T. 3 S., R. 14 E. (Sagavanirktok A-4 quad), 500 ft upstream from culvert at mi 335.2 on Dalton Highway, 0.8 mi upstream from mouth, and 16 mi south of Sagwon.		†1997-2001	6-5-02 9-13-02	2.7 14	

FOOTNOTES

- † Operated as a crest-stage partial-record station
- ‡ Operated as a continuous-record station
- + See analysis of samples collected at miscellaneous water-quality sites
- * Operated as a stage-only partial-record station
- a Approximately
- b Ponded water but no flow
- d Channel dry
- e Estimated

- f Low-flow partial-record station
- g Not previously published
- h Previously published as 15052482 Jordan Creek at Trout Street Bridge near Auke Bay
- m Discharge measurement provided by the Bureau of Land Management
- n To be determined
- o Discharge measurement provided by U.S. Fisha and Wildlife Service
- p Peak flow
- Revised

SOUTHEAST ALASKA

15049900 GOLD CREEK NEAR JUNEAU

Date	Time	Medium code	Sample type	STREAM WIDTH (FT) (00004)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)
NOV 16	1230	9	9	24.2	32	20		149	7.9	2.0	3.5	8	. 4
JAN 03	0930	9	9	34.0	29	20	3044	156	7.2	1.0	1.0	<1	.9
MAR 07	1430	9	9	16.1	9.4	10	3044	186	7.4	-5.0	.5		. 4
MAY 06	1345	9	9	21.0	21	10	3044	134	7.5	9.5	4.5	2	.6
JUL 17	1150	9	9	44.5	170	10	3044	66	7.4	11.5	5.0	<1	.6
SEP 10	1050	9	9	47.8	118	10	3044	79	8.5	10.5	6.5	2	2.1
30	1030	9	7	39.0	107	10	3044	116	7.8	.5	4.5	E5	1.7
Date	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
NOV 16	738	13.2	103	70	19.3	5.33	.96	33	40	33	33.8	1.38	<.1
JAN 03				69	19.2	5.15	.92	34	40	33	33.1	.93	<.1
MAR 07	750			87	23.1	7.15	1.34	36	42	34	46.6	.85	<.1
MAY 06	755			61	17.2	4.29	1.01	30	37	30	27.4	.88	<.10
JUL 17	747	12.6	101	29	8.60	1.70	.48	19	22	18	12.8	.62	.04
SEP 10	750	11.6	96	39	11.4	2.49	.63	22	26	21	16.2	.53	.08
30	752	12.3	96	55	15.3	3.95	.78	27	31	26	24.9	.39	<.10
Date	BROMIDE DIS- SOLVED (MG/L AS BR) (71870)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)
Date NOV 16	DIS- SOLVED (MG/L AS BR)	DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	GEN, NITRITE DIS- SOLVED (MG/L AS N)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHATE, DIS- SOLVED (MG/L AS P)	DIS- SOLVED (UG/L AS AS)	DIS- SOLVED (UG/L AS BA)	LIUM, DIS- SOLVED (UG/L AS BE)	DIS- SOLVED (UG/L AS CD)	MIUM, DIS- SOLVED (UG/L AS CR)	DIS- SOLVED (UG/L AS CO)
NOV 16 JAN 03	DIS- SOLVED (MG/L AS BR) (71870)	DIS- SOLVED (MG/L AS SIO2) (00955)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	DIS- SOLVED (UG/L AS AS) (01000)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)
NOV 16 JAN 03 MAR 07	DIS- SOLVED (MG/L AS BR) (71870)	DIS- SOLVED (MG/L AS SIO2) (00955)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	DIS- SOLVED (UG/L AS AS) (01000)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)
NOV 16 JAN 03 MAR 07 MAY 06	DIS- SOLVED (MG/L AS BR) (71870) <.03	DIS- SOLVED (MG/L AS SIO2) (00955)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.008	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .40	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671)	DIS- SOLVED (UG/L AS AS) (01000)	DIS- SOLVED (UG/L AS BA) (01005) 33.0	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.5	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035) <13
NOV 16 JAN 03 MAR 07 MAY 06 JUL 17	DIS- SOLVED (MG/L AS BR) (71870) <.03 <.03	DIS- SOLVED (MG/L AS SIO2) (00955) 2.76 2.82 2.92	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 92 90	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.008 <.008	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .40 E.51	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671) <.02 <.02	DIS- SOLVED (UG/L AS AS) (01000) <4 <2 E1	DIS- SOLVED (UG/L AS BA) (01005) 33.0 35.1 37.4	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.5 <.5	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8	DIS- SOLVED (UG/L AS CO) (01035) <13 <13
NOV 16 JAN 03 MAR 07 MAY 06 JUL 17 SEP 10	DIS- SOLVED (MG/L AS BR) (71870) <.03 <.03 <.03 <.03 <.01	DIS- SOLVED (MG/L AS SIO2) (00955) 2.76 2.82 2.92 2.89 1.50 1.97	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 92 90 104 70 37 48	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.008 <.008 <.008 <.008	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .40 E.51 .50 .75	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671) <.02 <.02 <.02 <.02 <.02 <.02	DIS- SOLVED (UG/L AS AS) (01000) <4 <2 E1 <2 <2 <2	DIS- SOLVED (UG/L AS BA) (01005) 33.0 35.1 37.4 36.4 20.3 26.7	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.5 <.5 <.5 <.5 <.5 <.5 <.5	DIS- SOLVED (UG/L AS CD) (01025) <8 <8 <8 <8 <8	MIUM, DIS-' SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8	DIS- SOLVED (UG/L AS CO) (01035) <13 <13 <13 <13 <13 <13 <13 <13
NOV 16 JAN 03 MAR 07 MAY 06 JUL 17	DIS- SOLVED (MG/L AS BR) (71870) <.03 <.03 <.03 <.03	DIS- SOLVED (MG/L AS SIO2) (00955) 2.76 2.82 2.92 2.89 1.50	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 92 90 104 70 37	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.008 <.008 <.008	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .40 E.51 .50 .75	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671) <.02 <.02 <.02 <.02	DIS- SOLVED (UG/L AS AS) (01000) <4 <2 E1 <2 <2	DIS- SOLVED (UG/L AS BA) (01005) 33.0 35.1 37.4 36.4 20.3	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.5 <.5 <.5 <.5	DIS- SOLVED (UG/L AS CD) (01025) <8 <8 <8 <8 <8	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8	DIS- SOLVED (UG/L AS CO) (01035) <13 <13 <13 <13
NOV 16 JAN 03 MAR 07 MAY 06 JUL 17 SEP 10	DIS- SOLVED (MG/L AS BR) (71870) <.03 <.03 <.03 <.03 <.01	DIS- SOLVED (MG/L AS SIO2) (00955) 2.76 2.82 2.92 2.89 1.50 1.97	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 92 90 104 70 37 48	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.008 <.008 <.008 <.008	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .40 E.51 .50 .75	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04	PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) <.02 <.02 <.02 <.02 <.02 <.02 <.02	DIS- SOLVED (UG/L AS AS) (01000) <4 <2 E1 <2 <2 <2	DIS- SOLVED (UG/L AS BA) (01005) 33.0 35.1 37.4 36.4 20.3 26.7	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.5 <.5 <.5 <.5 <.5 <.5 <.5	DIS- SOLVED (UG/L AS CD) (01025) <8 <8 <8 <8 <8	MIUM, DIS-' SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8	DIS- SOLVED (UG/L AS CO) (01035) <13 <13 <13 <13 <13 <13 <13
NOV 16 JAN 03 MAR 07 MAY 06 JUL 17 SEP 10 30	DIS- SOLVED (MG/L AS BR) (71870) <.03 <.03 <.03 <.01 <.01 <.03	DIS- SOLVED (MG/L AS SIO2) (00955) 2.76 2.82 2.92 2.89 1.50 1.97 2.36 IRON, DIS- SOLVED (UG/L AS FE) (01046)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 92 90 104 70 37 48 70 LEAD, DIS- SOLVED (UG/L AS PB) (01049)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.008 <.008 <.008 <.008 <.008 <.008 LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	GEN, NO2+NO3 DIS-SOLVED (MG/L AS N) (00631) .40 E.51 .50 .75 .08 .16 .23 MANGA-NESE, DIS-SOLVED (UG/L AS MN) (01056)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 MERCURY DIS- SOLVED (UG/L AS HG) (71890)	PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0	DIS- SOLVED (UG/L AS AS) (01000) <4 <2 E1 <2 <2 <2 <2 <2 <1 <1 CD C C C C C C C C C C C C C C C C C C	DIS- SOLVED (UG/L AS BA) (01005) 33.0 35.1 37.4 36.4 20.3 26.7 31.4 SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.	DIS- SOLVED (UG/L AS CD) (01025) <8 <8 <8 <8 <8 <8 <8 <8 CB <b cb="" cb<="" td=""><td>MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 (.8</td><td>DIS- SOLVED (UG/L AS CO) (01035) <13 <13 <13 <13 <13 <13 <14 <13 <13 <13 <13 <13 <13 <13 <13 <13 <13</td>	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 (.8	DIS- SOLVED (UG/L AS CO) (01035) <13 <13 <13 <13 <13 <13 <14 <13 <13 <13 <13 <13 <13 <13 <13 <13 <13
NOV 16 JAN 03 MAR 07 MAY 06 JUL 17 SEP 10 30 Date	DIS- SOLVED (MG/L AS BR) (71870) <.03 <.03 <.03 <.01 <.01 <.03 COPPER, DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (MG/L AS SIO2) (00955) 2.76 2.82 2.92 2.89 1.50 1.97 2.36 IRON, DIS- SOLVED (UG/L AS FE) (01046)	RESIDUE AT 180 DEG. C DIS-SOLVED (MG/L) (70300) 92 90 104 70 37 48 70 LEAD, DIS-SOLVED (UG/L) AS PB) (01049)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.008 <.008 <.008 <.008 <.008 <.008 <.008 C.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .40 E.51 .50 .75 .08 .16 .23 MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 MERCURY DIS- SOLVED (UG/L AS HG) (71890) <.01	PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0	DIS- SOLVED (UG/L AS AS) (01000) <4 <2 E1 <2 <2 <2 <2 <2 <1 COLUMN COLU	DIS- SOLVED (UG/L AS BA) (01005) 33.0 35.1 37.4 36.4 20.3 26.7 31.4 SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.	DIS- SOLVED (UG/L AS CD) (01025) <8 <8 <8 <8 <8 <8 <8 <8 CHANCE OF CONTROL O	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.	DIS- SOLVED (UG/L AS CO) (01035) <13 <13 <13 <13 <13 <18 ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
NOV 16 JAN 03 MAR 07 MAY 06 JUL 17 SEP 10 30 Date NOV 16 JAN 03 MAR	DIS- SOLVED (MG/L AS BR) (71870) <.03 <.03 <.03 <.01 <.01 <.03 COPPER, DIS- SOLVED (UG/L AS CU) (01040) <66 <66	DIS- SOLVED (MG/L AS SIO2) (00955) 2.76 2.82 2.92 2.89 1.50 1.97 2.36 IRON, DIS- SOLVED (UG/L AS FE) (01046)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 92 90 104 70 37 48 70 LEAD, DIS- SOLVED (UG/L AS PB) (01049) <.08	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .40 E.51 .50 .75 .08 .16 .23 MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056) <2.0	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 MERCURY DIS- SOLVED (UG/L AS HG) (71890) <.01	PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0	DIS- SOLVED (UG/L AS AS) (01000) <4 <2 E1 <2 <2 <2 <2 <2 <2 <1 COLUMN	DIS- SOLVED (UG/L AS BA) (01005) 33.0 35.1 37.4 36.4 20.3 26.7 31.4 SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145) <4 <2	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.	DIS- SOLVED (UG/L AS CD) (01025) <8 <8 <8 <8 <8 <8 <8 <8 CB STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080) 101 103	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.	DIS- SOLVED (UG/L AS CO) (01035) <13 <13 <13 <13 <13 <13 <23 <13 <23 <13 <24 <24 ZINC, DIS- SOLVED (UG/L AS ZN) (01090) <24 <24
NOV 16 JAN 03 MAR 07 MAY 06 JUL 17 SEP 10 30 Date NOV 16 JAN 03 MAR 07 MAR	DIS- SOLVED (MG/L AS BR) (71870) <.03 <.03 <.03 <.01 <.01 <.01 <.03 COPPER, DIS- SOLVED (UG/L AS CU) (01040) <6 <6 <6	DIS- SOLVED (MG/L AS SIO2) (00955) 2.76 2.82 2.92 2.89 1.50 1.97 2.36 IRON, DIS- SOLVED (UG/L AS FE) (01046) <10 <10	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 92 90 104 70 37 48 70 LEAD, DIS- SOLVED (UG/L AS PB) (01049) <.08 <.08	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.008 <.008 <.008 <.008 <.008 <.008 <.008 C.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <	GEN, NO2+NO3 DIS-SOLVED (MG/L AS N) (00631) .40 E.51 .50 .75 .08 .16 .23 MANGA-NESE, DIS-SOLVED (UG/L AS MN) (01056) <2.0 <2.0	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 MERCURY DIS- SOLVED (UG/L AS HG) (71890) <.01 <.01 E.01	PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0	DIS- SOLVED (UG/L AS AS) (01000) <4 <2 E1 <2 <2 <2 <2 <2 <2 <12 <10 NICKEL, DIS- SOLVED (UG/L AS NI) (01065) <30 <30 <30	DIS- SOLVED (UG/L AS BA) (01005) 33.0 35.1 37.4 36.4 20.3 26.7 31.4 SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145) <4 <2 <2	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.	DIS- SOLVED (UG/L AS CD) (01025) <8 <8 <8 <8 <8 <8 <8 <8 CB STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080) 101 103 126	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.	DIS- SOLVED (UG/L AS CO) (01035) <13 <13 <13 <13 <13 <13 <14 <13 <13 <13 <13 <13 <13 <13 <13 <13 <13
NOV 16 JAN 03 MAR 07 MAY 06 JUL 17 SEP 10 30 Date NOV 16 JAN 03 MAR 07 MAY 06 JUL 17 JAN 03 MAY 06 JUL 16 JUL	DIS- SOLVED (MG/L AS BR) (71870) <.03 <.03 <.03 <.01 <.01 <.03 COPPER, DIS- SOLVED (UG/L AS CU) (01040) <6 <6 <6 <6 <6	DIS- SOLVED (MG/L AS SIO2) (00955) 2.76 2.82 2.92 2.89 1.50 1.97 2.36 IRON, DIS- SOLVED (UG/L AS FE) (01046) <10 <10 <10	RESIDUE AT 180 DEG. C DIS-SOLVED (MG/L) (70300) 92 90 104 70 37 48 70 LEAD, DIS-SOLVED (UG/L AS PB) (01049) <.08 <.08 <.08	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.408 <.408 <.404 <4 <4	GEN, NO2+NO3 DIS-SOLVED (MG/L AS N) (00631) .40 E.51 .50 .75 .08 .16 .23 MANGA-NESE, DIS-SOLVED (UG/L AS MN) (01056) <2.0 <2.0 <2.0	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 MERCURY DIS- SOLVED (UG/L AS HG) (71890) <.01 <.01 E.01 <.01	PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0	DIS- SOLVED (UG/L AS AS) (01000) <4 <2 E1 <2 <2 <2 <2 <2 <2 <1 <1 Colored to the	DIS- SOLVED (UG/L AS BA) (01005) 33.0 35.1 37.4 36.4 20.3 26.7 31.4 SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145) <4 <2 <2 <2 <2	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.	DIS- SOLVED (UG/L AS CD) (01025) <8 <8 <8 <8 <8 <8 <8 <8 CB <8 CB	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.	DIS- SOLVED (UG/L AS CO) (01035) <13 <13 <13 <13 <13 <14 <13 <14 <15 <15 <16 <17 <17 <18
NOV 16 JAN 03 MAR 07 MAY 16 JUL 17 SEP 10 30 Date NOV 16 JAN 03 MAR 07 MAY 06	DIS- SOLVED (MG/L AS BR) (71870) <.03 <.03 <.03 <.01 <.01 <.01 <.03 COPPER, DIS- SOLVED (UG/L AS CU) (01040) <6 <6 <6	DIS- SOLVED (MG/L AS SIO2) (00955) 2.76 2.82 2.92 2.89 1.50 1.97 2.36 IRON, DIS- SOLVED (UG/L AS FE) (01046) <10 <10	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 92 90 104 70 37 48 70 LEAD, DIS- SOLVED (UG/L AS PB) (01049) <.08 <.08	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.008 <.008 <.008 <.008 <.008 <.008 <.008 C.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <	GEN, NO2+NO3 DIS-SOLVED (MG/L AS N) (00631) .40 E.51 .50 .75 .08 .16 .23 MANGA-NESE, DIS-SOLVED (UG/L AS MN) (01056) <2.0 <2.0	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 MERCURY DIS- SOLVED (UG/L AS HG) (71890) <.01 <.01 E.01	PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0	DIS- SOLVED (UG/L AS AS) (01000) <4 <2 E1 <2 <2 <2 <2 <2 <2 <12 <10 NICKEL, DIS- SOLVED (UG/L AS NI) (01065) <30 <30 <30	DIS- SOLVED (UG/L AS BA) (01005) 33.0 35.1 37.4 36.4 20.3 26.7 31.4 SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145) <4 <2 <2	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.	DIS- SOLVED (UG/L AS CD) (01025) <8 <8 <8 <8 <8 <8 <8 <8 CB STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080) 101 103 126	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.	DIS- SOLVED (UG/L AS CO) (01035) <13 <13 <13 <13 <13 <13 <14 <13 <13 <13 <13 <13 <13 <13 <13 <13 <13

SOUTHEAST ALASKA—Continued

15052900 MENDENHALL RIVER AT BROTHERHOOD BRIDGE AT AUKE BAY

Date	Time	Medium code	Sample type	STREAM WIDTH (FT) (00004)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)
NOV	0010	0		110	T 60	100	1.0	2044	2000		0.0	0 5	0.5
15 DEC	0910	9	9	119	7.62	193	10	3044	2000	7.0	2.0	2.5	27
05 MAR	1100	9	9	81.0	7.29	116	10	3044	2800	7.1	-3.0	.5	25
06 JUN	1145	9	9	83.0	7.23	115	10	3044	740	7.0	-1.5	2.5	15
04	1415	9	9	220	10.16	2450	10	3054	49	7.5	11.0	4.5	58
AUG 07	1420	9	9	220	12.78	4060	10	3054	18	7.4	12.5	4.5	40
Date	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)
NOV 15	733	11.1	85	21.8	32.5	36	44	36	.18	<.1	1.4	2650	М
DEC													
05 MAR	741	11.0	79	26.7	50.8	43	51	41	.21	<.2	1.3	2220	<1
06 JUN	770			18.0	27.4	43	51	42	.24	<.1	1.3	2080	<1
04 AUG	756	13.0	101	6.28	2.09	30	34	28	<.10	<.1	2.7	4390	M
07	758	12.3	96	2.87	1.48	7	7	9	.12	E.1	3.8	3300	2
Date	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)									
NOV				700									
15 DEC	69.7	<2	<.3	E20									
05 MAR	67.5	<2	<.3	E30									
06 JUN	66.1	<2	<.3	<20									
04 AUG	63.8	<2	<.3	<20									
07	60.7	<2	<.3	<20									

15109029 UPPER PETERSON CREEK NEAR AUKE BAY

Date	Time	Medium code	Sample type	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	STREAM WIDTH (FT) (00004)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
NOV 2001													
06	1220	9	9	1.9	10	5.90	756	12.6	100	7.7	56	5.0	2.0
DEC													
27	1052	H	9										
JAN 2002													
02	1030	F	9				760	6.2					
MAR		_	_									_	
12	1150	9	9	.60	10	4.80	747	12.5	88	7.1	56	. 5	1.0
MAY													
17	1150	H	9										
JUL													
02	1450	9	9				763	12.2	100	7.2	49	7.0	
02	1455	F	9				763	8.6					

SOUTHEAST ALASKA—Continued

15109029 UPPER PETERSON CREEK NEAR AUKE BAY—Continued

	SEDI-	BED											
	MENT,	MAT.											
	DIS-	SIEVE											
	CHARGE,	DIAM.											
	SUS-	% FINER	SAMPLER										
Date	PENDED	THAN	TYPE										
	(T/DAY)	.062 MM	.125 MM	.250 MM	.500 MM	1.00 MM	2.00 MM	4.00 MM	8.00 MM	16.0 MM	32.0 MM	64.0 MM	(CODE)
	(80155)	(80164)	(80165)	(80166)	(80167)	(80168)	(80169)	(80170)	(80171)	(80172)	(80173)	(80174)	(84164)
NOV 2001													
06	.01												
DEC													
27		0	1	2	8	17	26	37	53	72	90	100	8010
JAN 2002													
02													
MAR													
12	.0												8010
MAY													
17			0	2	6	11	16	23	36	55	82	100	8010
JUL													
02													
02													

15109031 PETERSON CREEK TRIBUTARY NUMBER 8 NEAR AUKE BAY

Date	Time	Medium code	Sample type	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	STREAM WIDTH (FT) (00004)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
NOV 06	1205	9	9	.60	10	4.10	756	12.2	92	7.6	37	3.0	6.0
DEC 27	1056	Н	9										
JAN 02	1000	F	9				760	1.4					
MAR 12 MAY	1215	9	9	.10	10	6.00	747	9.5	66	6.7	49	.0	27
17	1155	H	9										
02	1420 1425	9 F	9 9				763 763	12.2 8.4	105	7.1	34	9.0	
Date	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	BED MAT. SIEVE DIAM. % FINER THAN .125 MM (80165)	BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	BED MAT. SIEVE DIAM. % FINER THAN .500 MM (80167)	BED MAT. SIEVE DIAM. FINER THAN 1.00 MM (80168)	BED MAT. SIEVE DIAM. FINER THAN 2.00 MM (80169)	BED MAT. SIEVE DIAM. % FINER THAN 4.00 MM (80170)	BED MAT. SIEVE DIAM. % FINER THAN 8.00 MM (80171)	BED MAT. SIEVE DIAM. % FINER THAN 16.0 MM (80172)	BED MAT. SIEVE DIAM. % FINER THAN 32.0 MM (80173)	BED MAT. SIEVE DIAM. % FINER THAN 64.0 MM (80174)	SAMPLER TYPE (CODE) (84164)	
NOV 06	.01											8010	
DEC 27		0	1	5	11	18	25	37	55	82	100	8010	
JAN 02													
MAR 12 MAY	.01											8010	
17 JUL							0	13	38	87	100	8010	
02													

15109033 PETERSON CREEK TRIBUTARY NUMBER 7 NEAR AUKE BAY

Date	Time	Medium code	Sample type	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	STREAM WIDTH (FT) (00004)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
NOV													
06	1207	9	9	.07	10	1.10	756	11.4	87	7.2	47	4.0	3.0
JAN													
02	1100	F	9				760	5.5					
MAR													
12	1242	9	9	.10	10	1.50	747	9.0	63	6.8	53	. 0	27
JUL													
02	1345	9	9				763	11.7	99	7.4	44	8.0	
02	1350	F	9				763	8.4					

SOUTHEAST ALASKA—Continued

15109033 PETERSON CREEK TRIBUTARY NUMBER 7 NEAR AUKE BAY—Continued

	SEDI-	
	MENT,	
	DIS-	
	CHARGE,	
	SUS-	SAMPLER
Date	PENDED	TYPE
	(T/DAY)	
	(80155)	(84164)
NOV		
06	. 0	8010
JAN		
02		
MAR		
12	.01	8010
JUL		
02		
02		

15109034 PETERSON CREEK BELOW TRIBUTARY 7 NR AUKE BAY AK

Date	Time	Medium code	Sample type	BED MAT. SIEVE DIAM. % FINER THAN .125 MM (80165)	BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	BED MAT. SIEVE DIAM. % FINER THAN .500 MM (80167)	BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM (80168)	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM (80169)	BED MAT. SIEVE DIAM. % FINER THAN 4.00 MM (80170)	BED MAT. SIEVE DIAM. % FINER THAN 8.00 MM (80171)	BED MAT. SIEVE DIAM. % FINER THAN 16.0 MM (80172)	BED MAT. SIEVE DIAM. % FINER THAN 32.0 MM (80173)	BED MAT. SIEVE DIAM. % FINER THAN 64.0 MM (80174)
DEC 2001 27 MAY 2002 17	1103 1225	н	9	0	1	4	10	20 14	32 22	47 35	66 54	89 82	100
Date	SAMPLER TYPE (CODE) (84164)												
DEC 2001 27 MAY 2002 17	8010 8010												

15109035 PETERSON CREEK TRIBUTARY NUMBER 6 NEAR AUKE BAY

Date	Time	Medium code	Sample type	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	STREAM WIDTH (FT) (00004)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
NOV 06 JAN	1214	9	9	.50	10	3.10	756	11.8	95	7.5	21	6.0	9.0
02	1130	F	9				760	5.6					
MAR 12 JUL	1305	9	9	.20	10	3.50	747	10.8	76	7.1	56	. 5	2.0
02 02	1330 1335	9 F	9 9				763 763	11.8 8.8	98 	7.2	43	7.5	

	SEDI- MENT,	
Date	DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	
NOV		
06	.01	8010
JAN		
02		
MAR		
12	. 0	8010
JUL		
02		
02		

SOUTHEAST ALASKA—Continued

15109036 PETERSON CREEK BELOW TRIBUTARY 6 NEAR AUKE BAY

Date	Time	Medium code	Sample type	BED MAT. SIEVE DIAM. % FINER THAN .125 MM (80165)	BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	BED MAT. SIEVE DIAM. % FINER THAN .500 MM (80167)	BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM (80168)	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM (80169)	BED MAT. SIEVE DIAM. % FINER THAN 4.00 MM (80170)	BED MAT. SIEVE DIAM. % FINER THAN 8.00 MM (80171)	BED MAT. SIEVE DIAM. % FINER THAN 16.0 MM (80172)	BED MAT. SIEVE DIAM. % FINER THAN 32.0 MM (80173)	SAMPLER TYPE (CODE) (84164)
DEC 2001 27	1111	Н	9	0	2	12	26	36	48	69	95	100	8010
MAY 2002 17	1255	Н	9	0	2	10	22	36	49	66	88	100	8010
15109037 PETERSON CREEK TRIBUTARY NUMBER 5 NEAR AUKE BAY													
Date	Time	Medium code	Sample type	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
NOV 06 JAN	1226	9	9	.02	10	756	9.6	72	6.9	15	3.0	16	.0
02 JUL	1200	F	9			760	5.0						
02	1240 1245	9 F	9 9			763 763	11.8 8.9	98 	7.3	42	7.5		
NOV 06 JAN 02 JUL 02	SAMPLER TYPE (CODE) (84164) 8010 												

15109038 PETERSON CREEK BELOW TRIBUTARY 5 NEAR AUKE BAY

				עמם	עמם	עמם	עמם	עמם	עשם	עמם	עשם	DED	DED	
				MAT.										
				SIEVE										
				DIAM.										
		Medium	Sample	% FINER										
Date	Time	code	type	THAN										
				.062 MM	.125 MM	.250 MM	.500 MM	1.00 MM	2.00 MM	4.00 MM	8.00 MM	16.0 MM	32.0 MM	
				(80164)	(80165)	(80166)	(80167)	(80168)	(80169)	(80170)	(80171)	(80172)	(80173)	
DEC 2001														
27	1115	H	9	0	1	3	9	14	22	32	45	64	89	
MAY 2002														
17	1320	H	9		0	1	4	7	15	25	42	68	95	

Date	MAT. SIEVE DIAM. % FINER THAN 64.0 MM (80174)	SAMPLER TYPE (CODE) (84164)	
DEC 2001 27 MAY 2002 17	100 100	8010 8010	

BED

SOUTHEAST ALASKA—Continued

15109039 PETERSON CREEK TRIBUTARY NUMBER 4 NEAR AUKE BAY

Date	Time	Medium code	Sample type	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	STREAM WIDTH (FT) (00004)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
NOV													
06 JAN	1233	9	9	1.1	10	3.80	756	12.2	93	7.2	56	3.5	5.0
02 MAR	1230	F	9				760	5.8					
12	1345	9	9	.30	10	2.90	747	11.2	78	7.0	59	.0	1.0
JUL 02	1215	9	9				763	11.8	97	7.2	43	7.0	
02	1220	F	9				763	8.8					
Date	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SAMPLER TYPE (CODE) (84164)											
NOV													
06 JAN	.01	8010											
02 MAR													
12 JUL	.0	8010											
02													
02													

15109040 PETERSON CREEK BELOW TRIBUTARY 4 NEAR AUKE BAY

Date	Time	Medium code	Sample type	BED MAT. SIEVE DIAM. % FINER THAN .125 MM (80165)	BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	BED MAT. SIEVE DIAM. % FINER THAN .500 MM (80167)	BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM (80168)	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM (80169)	BED MAT. SIEVE DIAM. % FINER THAN 4.00 MM (80170)	BED MAT. SIEVE DIAM. % FINER THAN 8.00 MM (80171)	BED MAT. SIEVE DIAM. % FINER THAN 16.0 MM (80172)	BED MAT. SIEVE DIAM. % FINER THAN 32.0 MM (80173)	BED MAT. SIEVE DIAM. % FINER THAN 64.0 MM (80174)
DEC 2001 27 MAY 2002 17	1119 1345	н	9	0	1	2 5	6 12	12 22	20 34	35 51	68 84	96 100	100
Date	SAMPLER TYPE (CODE) (84164)												
DEC 2001 27 MAY 2002 17	8010 8010												

15109041 PETERSON CREEK TRIBUTARY NUMBER 3 NEAR AUKE BAY

				DIS-			BARO-		OXYGEN,	PH			
				CHARGE,			METRIC		DIS-	WATER	SPE-		
				INST.			PRES-		SOLVED	WHOLE	CIFIC		SEDI-
				CUBIC	SAM-		SURE	OXYGEN,	(PER-	FIELD	CON-	TEMPER-	MENT,
	_	Medium	Sample	FEET	PLING	STREAM	(MM)	DIS-	CENT	(STAND-	DUCT-	ATURE	SUS-
Date	Time	code	type	PER	METHOD,	WIDTH	OF	SOLVED	SATUR-	ARD	ANCE	WATER	PENDED
				SECOND	CODES	(FT)	HG)	(MG/L)	ATION)	UNITS)	(US/CM)	(DEG C)	(MG/L)
				(00061)	(82398)	(00004)	(00025)	(00300)	(00301)	(00400)	(00095)	(00010)	(80154)
NOV													
06	1240	9	9	1.2	10	4.60	756	12.0	95	7.5	60	5.0	3.0
JAN													
02	1300	F	9				760	.3					
MAR													
12	1430	9	9	.40	10	3.90	747	10.7	75	7.2	60	. 0	.0
JUL													
02	1120	9	9				763	11.6	97	7.8	47	7.5	
02	1125	F	9				763	8.5					

SOUTHEAST ALASKA—Continued

15109041 PETERSON CREEK TRIBUTARY NUMBER 3 NEAR AUKE BAY—Continued

	SEDI- MENT, DIS-	
Date	CHARGE, SUS- PENDED (T/DAY) (80155)	
NOV 06	.01	8010
JAN 02		
MAR		
12	.0	8010
JUL 02		
02		

15109042 PETERSON CREEK BELOW TRIBUTARY 3 NEAR AUKE BAY

				BED									
				MAT.									
				SIEVE									
				DIAM.									
		Medium	Sample	% FINER									
Date	Time	code	type	THAN									
				.062 MM	.125 MM	.250 MM	.500 MM	1.00 MM	2.00 MM	4.00 MM	8.00 MM	16.0 MM	32.0 MM
				(80164)	(80165)	(80166)	(80167)	(80168)	(80169)	(80170)	(80171)	(80172)	(80173)
DEC 2001													
27	1140	Н	9	0	1	6	15	22	35	53	75	95	100
MAY 2002	1140	п	2	U	1	0	13	22	33	33	75	90	100
17	1410	Н	9		0	3	8	20	27	44	67	94	100
±/	1410	11	,		U	3	0	20	27		0 /	24	100

Date	SAMPLER TYPE (CODE) (84164)
DEC 2001 27 MAY 2002	8010
17	8010

15109043 PETERSON CREEK TRIBUTARY NUMBER 2 NEAR AUKE BAY

Date	Time	Medium code	Sample type	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	STREAM WIDTH (FT) (00004)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
NOV													
06	1245	9	9	.10	10	1.70	756	11.7	88	7.0	36	3.0	11
JAN 03	0920	F	9				760	2.2					
JUL	0920	r	9				760	2.2					
02	1040	9	9				763	11.5	96	7.9	45	7.5	
02	1045	F	9				763	8.7					

	SEDI- MENT, DIS-	
Date	CHARGE, SUS- PENDED (T/DAY) (80155)	SAMPLE TYPE (CODE) (84164
NOV		
06	.0	8010
JAN		
03		
JUL		
02		
02		

SOUTHEAST ALASKA—Continued

15109044 PETERSON CREEK BELOW TRIBUTARY 2 NEAR AUKE BAY

Date DEC 2001	Time 1148	Medium code H	Sample type	BED MAT. SIEVE DIAM. % FINER THAN .125 MM (80165)	BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	BED MAT. SIEVE DIAM. % FINER THAN .500 MM (80167)	BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM (80168)	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM (80169)	BED MAT. SIEVE DIAM. % FINER THAN 4.00 MM (80170)	BED MAT. SIEVE DIAM. % FINER THAN 8.00 MM (80171)	BED MAT. SIEVE DIAM. % FINER THAN 16.0 MM (80172)	BED MAT. SIEVE DIAM. % FINER THAN 32.0 MM (80173)	SAMPLER TYPE (CODE) (84164) 8010
MAY 2002 17	1440	Н	9	0	1	9	22	41	57	76	94	100	8010
1/	1440	н	9	U	1	9	22	41	5/	76	94	100	8010
	1510	904480 N	NORTH F	ORK PET	TERSON (CREEK B	ELOW BI	EAVER SI	LOUGH N	JEAR AU	KE BAY		
Date	Time	Medium code	Sample type	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	STREAM WIDTH (FT) (00004)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
JAN 17 MAY	0930	Н	9										
31	1200	Н	9										
JUL 02	1547	9	9		8010		763	11.9	100	8.1	45	8.0	
Date	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	BED MAT. SIEVE DIAM. % FINER THAN .125 MM (80165)	BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	BED MAT. SIEVE DIAM. % FINER THAN .500 MM (80167)	BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM (80168)	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM (80169)	BED MAT. SIEVE DIAM. % FINER THAN 4.00 MM (80170)	THAN	BED MAT. SIEVE DIAM. % FINER THAN 16.0 MM (80172)	BED MAT. SIEVE DIAM. % FINER THAN 32.0 MM (80173)	BED MAT. SIEVE DIAM. % FINER THAN 64.0 MM (80174)	SAMPLER TYPE (CODE) (84164)	
JAN													
17 MAY		3	6	9	11	15	22	35	53	87	100	8010	
31		1	3	6	9	13	18	26	45	72	100	8010	
JUL 02													

15109045 NORTH FORK PETERSON CREEK NEAR AUKE BAY

Date	Time	Medium code	Sample type	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	STREAM WIDTH (FT) (00004)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
NOV													
06 DEC	1345	9	9	1.9	10	8.10	756	12.2	91	7.2	43	3.0	7
27	0945	H	9										
27	1000	F	9				755	4.8					
MAR													
12	1515	9	9	.40	10	7.80	747	11.9	83	6.8	56	.0	14
MAY													
31	1145	H	9	3.2		9.00						5.5	
JUL													
02	1555	9	9				763	11.5	99	7.2	37	9.0	
02	1600	F	9				763	7.4					

SOUTHEAST ALASKA—Continued

15109045 NORTH FORK PETERSON CREEK NEAR AUKE BAY—Continued

Date	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	BED MAT. SIEVE DIAM. % FINER THAN .125 MM (80165)	BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	BED MAT. SIEVE DIAM. % FINER THAN .500 MM (80167)	BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM (80168)	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM (80169)	BED MAT. SIEVE DIAM. % FINER THAN 4.00 MM (80170)	BED MAT. SIEVE DIAM. % FINER THAN 8.00 MM (80171)	BED MAT. SIEVE DIAM. % FINER THAN 16.0 MM (80172)	BED MAT. SIEVE DIAM. % FINER THAN 32.0 MM (80173)	BED MAT. SIEVE DIAM. % FINER THAN 64.0 MM (80174)	SAMPLER TYPE (CODE) (84164)
NOV												
06	.04											
DEC												
27		.0	1	4	14	28	43	61	80	100		8010
27												
MAR												
12	.02											
MAY												
31		. 0	1	4	9	13	20	33	54	92	100	8010
JUL												
02												
02												

SOUTH-CENTRAL ALASKA

601105149385100 EXIT GLACIER CREEK TRIBUTARY AT MILE .6 HARDING TRAIL NEAR SEWARD

Date	Time	Medium code	Sample type	STREAM WIDTH (FT) (00004)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	PURPOSE SITE VISIT, (CODE) (50280)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER - ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)
OCT 02	1340	9	9	11.5	3.0	70	8010	1006	112	7.0	4.5	746	12.5
Date	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
OCT 02	99	<1	<1	5	54	20.0	.991	1.52	.19	7.9	.59	<.1	5.16
Date	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)		
OCT 02	62	<.002	.068	<.015	<.10	<.10	<.004	.005	<.007	<10	<2.0		

601105149382400 EXIT GLACIER CREEK CHANNEL AT MILE .1 HARDING TRAIL NEAR SEWARD

Date	Time	Medium code	Sample type	STREAM WIDTH (FT) (00004)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	PURPOSE SITE VISIT, (CODE) (50280)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)
OCT 02	1415	9	9	5.00	1.5	70	8010	1006	112	7.8	8.0	5.0	753
Date	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)								
OCT 02	12.4	98	1	<1	4								

15274796 SOUTH BRANCH OF SOUTH FORK CHESTER CREEK AT TANK TRAIL NEAR ANCHORAGE

Date	Time	Medium code	Sample type	STREAM WIDTH (FT) (00004)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	PURPOSE SITE VISIT, (CODE) (50280)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)
APR													
19	1210	9	9	6.00	1.3	50	8010	1004	129	7.7	1.0	752	
MAY													
13	1500	9	9	9.00	3.6				116	7.5	6.5	752	12.0
JUN													
01	1140	9	9	4.60	7.3	8010	3045		94	7.3	5.0	753	12.4
JUL													
10	1220	9	7	7.50	E3.0	10	3045		123	7.7	7.0	755	11.9
10	1230	H	9	7.50		8010	8010		123	7.7	7.0	755	11.9
25	1500	9	9	7.50	3.7	70			123	7.6	8.0	751	11.6
AUG													
16	1426	9 9	9 9	7.30	3.3	70			123	7.2	7.5	760	12.0
30	1536	9	9	7.40	3.4	8010	210		123	7.3	7.5	749	11.6
SEP													
04	1230	9	9	7.50	3.3	10	3045		123	7.4	7.0	760	11.6

SOUTH-CENTRAL ALASKA—Continued

15274796 SOUTH BRANCH OF SOUTH FORK CHESTER CREEK AT TANK TRAIL NEAR ANCHORAGE—Continued

Date	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)
APR 19					60	18.3	3.56	1.91	59	.50	51		49
MAY													
JUN	99	S6	S7	S1	54	16.4	3.19	1.70	46	.64	54		45
01 JUL	98	S2	<1		42	12.9	2.46	1.43	32	.46	37		31
10 10	99 99	S6 	S3 	S9 					46		52		43
25 AUG	99												
16 30	100 98												
SEP 04	96	E13	S7		58	17.8	3.27	1.84	46	.39	57	.0	46
					SOLIDS,	SOLIDS,	NITRO-	NITRO-	NITRO-	NITRO-	NITRO-		
Date	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)
APR 19	13.3	.37	E.06	11.1	87	77	<.002	.554	<.015	.10	<.10	.010	.005
MAY 13	9.1	.74	<.10	10.4	88	74	<.002	1.12	<.015	.23	.10	.015	.005
JUN 01	8.6	.46	<.10	9.65	63	59	<.002	1.18	<.015	.18	.12	.010	E.004
JUL 10													
10 25													
AUG 16													
30 SEP													
04	13.0	.41	E.07	11.0	85	78	<.002	.500	<.015	.73	E.10	.006	E.004
Date	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ALUM- INUM BOT MAT <63U WS FIELD PERCENT (34790)	ANTI- MONY BOT MAT <63U WS FIELD (UG/G) (34795)	ARSENIC BOT MAT <63U WS FIELD (UG/G) (34800)	BARIUM BOT MAT <63U WS FIELD (UG/G) (34805)	BERYL- LIUM BOT MAT <63U WS FIELD (UG/G) (34810)	BISMUTH BOT MAT <180UWS FIELD (UG/G) (34816)	CADMIUM BOT MAT <63U WS FIELD (UG/G) (34825)	CHRO- MIUM BOT MAT <63U WS FIELD (UG/G) (34840)	COPPER BOT MAT <63U WS FIELD (UG/G) (34850)
APR 19	E.005	<10	<2.0	.9									
MAY 13	<.007												
JUN 01		11	E1.1	3.7									
	<.007	11 12	E1.1 <2.0	3.7									
JUL 10		12	<2.0							 	 	 	
	<.007 			2.9					 1.2			 	
10		12	<2.0	2.9	 6.1	 .5	 12	 500	 1.2	 <1	 .2	 110	 31
10 10 25 AUG 16 30		12	<2.0	2.9	 6.1	 .5	 12	 500	 1.2	 <1	 .2	 110	 31
10 10 25 AUG 16		12	<2.0 	2.9	 6.1 	 .5 	 12 	 500 	 1.2 	 <1 	 .2	 110 	 31
10 10 25 AUG 16 30 SEP 04	 	12	<2.0 	2.9	 6.1 	 .5 	 12 	 500 	 1.2 	 <1 	 .2	 110 	 31
10 10 25 AUG 16 30 SEP 04 Date		12 E7 COBALT BOT MAT <63U WS FIELD (UG/G)	<2.0	2.9 2.0 EURO- PIUM BOT MAT <63U WS FIELD (UG/G)	GOLD BOT MAT <63U WS FIELD (UG/G)	GALLIUM BOT MAT <63U WS FIELD (UG/G)	 12 HOLMIUM BOT MAT <63U WS FIELD (UG/G)	IRON BOT MAT <63U WS FIELD PERCENT	 1.2 LANTHA- NUM BOT MAT <63U WS FIELD (UG/G)	 <1 LEAD BOT MAT <63U WS FIELD (UG/G)	LITHIUM BOT MAT <63U WS FIELD (UG/G)	MAGNE-SIUM BOT MAT <63U WS FIELD PERCENT	MANGA-NESE BOT MAT <63U WS FIELD (UG/G)
10 10 25 AUG 16 30 SEP 04 Date APR 19 MAY 13		12 E7 COBALT BOT MAT <63U WS FIELD (UG/G)	<2.0	2.9 2.0 EURO- PIUM BOT MAT <63U WS FIELD (UG/G) (34855)	GOLD BOT MAT <63U WS FIELD (UG/G) (34870)	GALLIUM BOT MAT <63U WS FIELD (UG/G) (34860)	 12 HOLMIUM BOT MAT <63U WS FIELD (UG/G)	IRON BOT MAT <63U WS FIELD PERCENT	 1.2 LANTHA- NUM BOT MAT <63U WS FIELD (UG/G)	 <1 LEAD BOT MAT <63U WS FIELD (UG/G)	LITHIUM BOT MAT <63U WS FIELD (UG/G)	MAGNE-SIUM BOT MAT <63U WS FIELD PERCENT	MANGA-NESE BOT MAT <63U WS FIELD (UG/G)
10 10 25 AUG 16 30 SEP 04 Date APR 19 MAY 13 JUN 01		12	<2.0	2.9 2.0 EURO- PIUM BOT MAT <63U WS FIELD (UG/G) (34855)	GOLD BOT MAT <-33U WS FIELD (UG/G) (34870)	GALLIUM BOT MAT <63U WS FIELD (UG/G) (34860)	 12 HOLMIUM BOT MAT <63U WS FIELD (UG/G)	IRON BOT MAT <63U WS FIELD PERCENT	 1.2 LANTHA- NUM BOT MAT <63U WS FIELD (UG/G) (34885)	<1 LEAD BOT MAT <-33U WS FIELD (UG/G) (J4890)	 .2 LITHIUM BOT MAT <63U WS FIELD (UG/G) (34895)	110 110 MAGNE- SIUM BOT MAT <63U WS FIELD PERCENT (34900)	MANGA-NESE BOT MAT <63U WS FIELD (UG/G)
10 10 25 AUG 16 30 SEP 04 Date APR 19 MAY 13 JUN 01 JUL 10	CALCIUM BOT MAT <63U WS FIELD PERCENT (34830)	12	<2.0	2.9 2.0 EURO- PIUM BOT MAT <63U WS FIELD (UG/G) (34855)	GOLD BOT MAT <63U WS FIELD (UG/G) (34870)	GALLIUM BOT MAT <63U WS FIELD (UG/G) (34860)	HOLMIUM BOT MAT <63U WS FIELD (UG/G) (34875)	 500 IRON BOT MAT <63U WS FIELD PERCENT (34880)	1.2 NUM BOT MAT <63U WS FIELD (UG/G) (34885)	<1 LEAD BOT MAT <53U WS FIELD (UG/G) (J4890)	LITHIUM BOT MAT <63U WS FIELD (UG/G) (34895)	110 110 MAGNE- SIUM BOT MAT <63U WS FIELD PERCENT (34900)	MANGA- NESE BOT MAT <-33U WS FIELD (UG/G) (34905)
10 10 25 AUG 16 30 SEP 04 Date APR 19 MAY 13 JUN 01 JUL 10 10 10		12	<2.0	2.9 2.0 EURO- PIUM BOT MAT <63U WS FIELD (UG/G) (34855)	GOLD BOT MAT <63U WS FIELD (UG/G) (34870)	GALLIUM BOT MAT <63U WS FIELD (UG/G) (34860)	 12 HOLMIUM BOT MAT <63U WS FIELD (UG/G)	500 IRON BOT MAT <63U WS FIELD PERCENT (34880)	 1.2 LANTHA- NUM BOT MAT <63U WS FIELD (UG/G) (34885)	 <1 LEAD BOT MAT <63U WS FIELD (UG/G) (34890)	LITHIUM BOT MAT <63U WS FIELD (UG/G) (34895)	110 110 MAGNE- SIUM BOT MAT <63U WS FIELD PERCENT (34900)	MANGA- NESE BOT MAT <63U WS FIELD (UG/G) (34905)
10 10 25 AUG 16 30 SEP 04 Date APR 19 MAY 13 JUN 01 JUL 10 25 AUG 16		12	<2.0	2.9 2.0 EURO- PIUM BOT MAT <63U WS FIELD (UG/G) (34855) <1	GOLD BOT MAT <63U WS FIELD (UG/G) (34870)	GALLIUM BOT MAT <63U WS FIELD (UG/G) (34860)	HOLMIUM BOT MAT <63U WS FIELD (UG/G) (34875)	500 IRON BOT MAT <63U WS FIELD PERCENT (34880) 3.7	1.2 LANTHA- NUM BOT MAT <63U WS FIELD (UG/G) (34885) 16	<1 LEAD BOT MAT <53U WS FIELD (UG/G) (J4890)	LITHIUM BOT MAT <63U WS FIELD (UG/G) (34895)	110 110 MAGNE- SIUM BOT MAT <63U WS FIELD PERCENT (34900) 1.2	31 MANGA- NESE BOT MAT <63U WS FIELD (UG/G) (34905) 980
10 10 25 AUG 16 30 SEP 04 Date APR 19 MAY 13 JUN 01 JUL 10 10 25 AUG		12	<2.0	2.9 2.0 EURO- PIUM BOT MAT <63U WS FIELD (UG/G) (34855) <1 <1	GOLD BOT MAT <63U WS FIELD (UG/G) (34870)	GALLIUM BOT MAT <63U WS FIELD (UG/G) (34860)	HOLMIUM BOT MAT <63U WS FIELD (UG/G) (34875)	500 IRON BOT MAT <63U WS FIELD PERCENT (34880) 3.7	1.2 LANTHA- NUM BOT MAT <63U WS FIELD (UG/G) (34885) 16	<1 LEAD BOT MAT <53U WS FIELD (UG/G) (J4890)	LITHIUM BOT MAT <63U WS FIELD (UG/G) (34895)	110 110 110 MAGNE- SIUM BOT MAT <63U WS FIELD PERCENT (34900) 1.2	31 MANGA- NESE BOT MAT <63U WS FIELD (UG/G) (34905) 980

SOUTH-CENTRAL ALASKA—Continued

15274796 -- SOUTH BRANCH OF SOUTH FORK CHESTER CREEK AT TANK TRAIL NEAR ANCHORAGE—Continued

Date	MERCURY BOT MAT <63U WS FIELD (UG/G) (34910)	MOLYB- DENUM BOT MAT <63U WS FIELD (UG/G) (34915)	NEODYM- IUM BOT MAT <63U WS FIELD (UG/G) (34920)	NICKEL BOT MAT <63U WS FIELD (UG/G) (34925)	NIOBIUM BOT MAT <63U WS FIELD (UG/G) (34930)	PHOS- PHORUS BOT MAT <63U WS FIELD PERCENT (34935)	SCAN- DIUM BOT MAT <63U WS FIELD (UG/G) (34945)	SELE- NIUM BOT MAT <63U WS FIELD (UG/G) (34950)	SILVER BOT MAT <63U WS FIELD (UG/G) (34955)	SODIUM BOT MAT <63U WS FIELD PERCENT (34960)	STRON- TIUM BOT MAT <63U WS FIELD (UG/G) (34965)	SULFUR BOT MAT <63U WS FIELD PERCENT (34970)	TANTA- LUM BOT MAT <63U WS FIELD (UG/G) (34975)
APR													
19													
MAY													
13													
JUN 01													
JUL													
10													
10	.19	1.5	17	33	11	.150	16	2.2	.1	1.8	320	.12	<1
25 AUG													
16													
30													
SEP 04													
04													
Date	THORIUM BOT MAT <63U WS FIELD (UG/G) (34980)	TIN BOT MAT <63U WS FIELD (UG/G) (34985)	WS,<63U	URANIUM BOT MAT <63U WS FIELD (UG/G) (35000)	VANA- DIUM BOT MAT <63U WS FIELD (UG/G) (35005)	YTTRIUM BOT MAT <63U WS FIELD (UG/G) (35010)	YTTER- BIUM BOT MAT <63U WS FIELD (UG/G) (35015)	ZINC BOT MAT <63U WS FIELD (UG/G) (35020)		INORG,	INORG, SED, BM		
APR													
19 MAY													
MAY 13													
JUN													
01													
JUL													
10					120								
10 25	3	2	.480	2.0	130	15	1	87	7.2	.08	7.2		
AUG													
16													
30 SEP													
04													

15276250 SHIP CREEK BELOW COTTONWOOD PARK NEAR ANCHORAGE

Date	Time	STREAM WIDTH (FT) (00004)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	START- ING TIME (2400 HOURS) (82073)	END- ING TIME (2400 HOURS (82074)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
MAY 30	1230	50.6	29.0	1048.00	1230.00	555	20	3054	17.0	6.0	15	22.5	68
Date	SEDI- MENT DIS- CHARGE, BEDLOAD (TONS/ DAY) (80225)	DISCH, BEDLOAD AV UNIT FOR COM POSITE SAMPLE T/D/FT (04122)	COMPSTD SAMPLES IN X-SEC BEDLOAD MEASMNT (NUM) (04118)	NUMBER OF SAM- PLING POINTS (COUNT) (00063)	VER- TICALS IN COM- POSITE SAMPLE (NUM) (04119)	HORI-ZONTAL WIDTH OF VER- TICAL (FEET) (04121)	TIME ON BED FOR BED LOAD SAMPLE (SEC) (04120)	BAG MESH SIZE BEDLOAD SAMPLER (MM) (30333)	TETHER LINE USED IN SAMPLNG (YES=1) (CODE) (04117)	SED. BEDLOAD SIEVE DIAM. % FINER THAN .250 MM (80228)	SED. BEDLOAD SIEVE DIAM. % FINER THAN .500 MM (80229)	SED. BEDLOAD SIEVE DIAM. % FINER THAN 1.00 MM (80230)	SED. BEDLOAD SIEVE DIAM. % FINER THAN 2.00 MM (80231)
MAY 30	40	2.05	2	1	21	1.0	60	.250	.0	.0	12	38	69
Date	SED. BEDLOAD SIEVE DIAM. FINER THAN 4.00 MM (80232)	SED. BEDLOAD SIEVE DIAM. % FINER THAN 8.00 MM (80233)	SED. BEDLOAD SIEVE DIAM. % FINER THAN 16.0 MM (80234)	SED. BEDLOAD SIEVE DIAM. % FINER THAN 32.0 MM (80235)									
MAY 30	85	92	96	100									

SOUTH-CENTRAL ALASKA—Continued

15283550 MOOSE CREEK ABOVE WISHBONE HILL NEAR SUTTON

Date	Time	Medium code	Sample type	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)		PURPOSE SITE VISIT, (CODE) (50280)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER - ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	
OCT 12	1130	9	9	45	10	3045	1099	90	7.3	.3	<1	1.2	721
Date	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	DIS-	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	DIS- SOLVED	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)		WATER DIS IT FIELD MG/L AS HCO3	TOT IT FIELD	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
OCT 12	14.0	102	38	13.2	1.33	2.35	30	.38	36	28	9.4	2.23	<.1
Date	DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF	DIS-	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	DIS- SOLVED (MG/L AS N)	MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS-	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	DIS-	RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS) (01002)
OCT 12	5.43	54	53	<.002	.170	<.015	E.05	<.10	<.004	<.004	<.007	E20	E1
Date	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	(UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)
OCT 12	27.8	<2	<.1	<.8	<1.0	E10	<10	<1	<2.4	<2.0	<.01	<2.0	<2
Date	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC	NITRO- GEN, PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570)	CYANIDE TOTAL (MG/L AS CN) (00720)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)					
OCT 12	<.3	<20	.5	. 2	<.02	<.01	1.0	.12					

SOUTH-CENTRAL ALASKA—Continued

15283700 MOOSE CREEK NEAR PALMER

Date	Time	Medium code	Sample type	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	PURPOSE SITE VISIT, (CODE) (50280)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)		TURBID- ITY LAB HACH 2100AN (NTU) (99872)	BARO- METRIC PRES- SURE (MM OF HG) (00025)
OCT 12	1330	9	9	62	10	3045	1099	105	7.7	.6	<1	.9	749
Date	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	DIS- SOLVED	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	TOT IT FIELD	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
OCT 12	14.1	100	45	14.5	2.02	3.96	40	.44	51	39	8.4	1.98	<.1
Date	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI-	DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	DIS- SOLVED (MG/L AS N)	MONIA +	ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105)	ARSENIC TOTAL (UG/L AS AS) (01002)
OCT 12	5.80	64	63	<.002	.201	<.015	E.07	<.10	<.004	<.004	<.007	E30	E1
Date	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)
OCT 12	25.7	<2	<.1	<.8	E1.0	50	18	<1	E1.9	E1.2	<.01	<2.0	<2
Date	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC	NITRO- GEN, PAR TICULTE WAT FL SUSP (MG/L AS N) (49570)	CYANIDE TOTAL (MG/L AS CN) (00720)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SUS-					
OCT 12	<.3	E20	. 9	. 2	<.02	<.01	1.0	.17					

YUKON ALASKA

15389000 PORCUPINE RIVER NEAR FORT YUKON

Date	Time	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK)	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	(MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)				
		(00009)	(72103)	(00095)	(00400)	(00010)	(00025)	(00300)	(00301)				
MAR 11 11 11 JUN	1705 1720 1728		280.0 220.0 160.0	405 382 377	7.2 7.4 7.4	.0	755 755 755	6.0 6.1 6.2	41 42 43				
06 06 06 06	1627 1628 1630 1632 1634	1010 890 780 630 420	 	140 142 144 145 145	7.8 7.8 7.8	13.6 13.4 13.3 13.5 13.5	760 760 760 760 760	8.8 8.8 8.8 8.8	85 84 84 85				
18 18 18 18 26	1605 1610 1612 1631 1634 1420 1423	 	1094 861.0 618.0 415.0 205.0 950.0 705.0	135 136 138 139 141 125 128	7.8 7.8 7.8 7.8	11.7 11.6 11.5 11.6 11.7 11.9	757 757 757 757 757 746 746	10.6 10.3 10.3 10.3 10.3 11.2 11.5	98 95 95 95 96 106 109				
26 26 26 AUG	1425 1427 1428		485.0 295.0 105.0	130 131 132	7.8 7.8 7.8	11.9 12.0 12.0	746 746 746	11.6 11.3 11.6	110 107 110				
13 13 13 13	1556 1600 1604 1608 1610	 	1120 850.0 700.0 540.0 365.0	216 216 217 217 217	8.1 8.0 8.0 8.0	11.7 11.6 11.7 11.7	754 754 754 754 754	9.9 9.9 9.9 9.9	92 92 92 93 93				
SEP 27 27 27 27 27	1315 1322 1330 1337 1345	 	1050 850.0 650.0 450.0 250.0	242 242 243 243 243	8.0 8.0 8.0 8.0	5.5 5.3 5.3 5.3 5.3	743 743 743 743 743	12.4 12.2 12.3 12.2 12.3	101 99 99 99 100				
Date	Time	Medium code	Sample type	STREAM WIDTH (FT) (00004)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	QUALITY ASSUR- ANCE DATA INDICA- TOR CODE (99111)	REP- LICATE TYPE (CODE) (99105)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)
MAR 11 JUN	1730	9	9	500	806	60	3060			399	7.6	-13.0	.0
06 18 26 AUG	1500 1430 1310	9 9 9	9 9 9	1120 1440 	28800 43700 48900	20 20 20	3055 3055 3055	30 30 30	10.00	143 138 130	7.8 7.8 7.8		13.5 11.7 11.9
13 26	1430 1400	9 9	9 9	1270	18500	20 20	3055 3055	30 100		217	8.0 7.9		11.7
SEP 27	1200	9	9	1100	10700	20	3045	30		243	8.0		5.3
Date	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	UV ABSORB- ANCE 254 NM, WTR FLT (UNITS /CM) (50624)	ANCE	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)
MAR 11	4.2	.046	.031	755	6.1	42	200	58.8	12.3	4.24	160	.54	190
JUN 06 18 26	41 57 80	.302 .478 .504	.225 .354 .374	760 757 746	8.8 10.3 11.6	85 96 110	70 68 71	21.4 19.8 21.8	3.92 4.57 4.07	1.38 1.83 1.30	51 41 48	.70 .45 .38	62 50 56
AUG 13 26	21 27	.222	.163 .271	754	9.9	92	110 99	28.9 28.8	7.99 6.44	2.45 1.96	56 60	.52 .35	68 72
SEP 27	9.8	.271	.198	743	12.3	100	120	37.3	7.63	2.54	96	.42	116

YUKON ALASKA—Continued

15389000 PORCUPINE RIVER NEAR FORT YUKON—Continued

Date	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
MAR 11	. 0	160	34.2	3.53	E.1	4.28	230	213	<.002	.218	<.015	E.09	E.06
JUN 06	. 0	51	15.1	.71	E.07	2.39	103	76	E.002	.030	<.015	.53	.27
18	. 0	41 46	20.9 16.9	.41 .67	E.08	3.11 3.18	110 108	76 76	E.002 .003	E.011 .026	<.015 <.015	.54 .65	.35 .31
AUG 13 26 SEP	.0	56 59	47.8 30.5	.83	E.11 <.10	3.16 4.04	147 136	126 108	E.002 E.002	.037	<.015 <.015	.26	.19 .25
27	.0	95	34.6	1.02	E.08	3.77	160	145	E.002	.017	<.015	.21	.23
Date	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	NITRO- GEN, TOTAL, SEDIMNT SUSP, (WEIGHT PERCNT) (62845)	PHOS- PHORUS SEDI- MENT SUSP. PERCENT (30292)	ALUM- INUM SED, SUS PERCENT (30221)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	AN- TIMONY SED. SUSP. (UG/G) (29816)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC SED. SUSP. (UG/G) (29818)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM SED. SUSP. (UG/G) (29820)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)
MAR 11 JUN	E.003	E.003	<.007				3		.06		1.4		91
06 18 26	.080 .070 .146	.008 .008 .010	<.007 <.007 <.007	.31 .28 .23	.100 .090 .100	7.2 7.4 7.2	19 52 41	1.1 1.4 1.2	.14 .12 .12	14 16 17	.4	910 1200 870	40 39 40
AUG 13 26	.036	.005	<.007 <.007	.35	.120 .110	8.6 7.4	16 46	1.0	.06	16 15	.3	1000 1100	50 49
SEP 27	.008	E.003	<.007		.140	7.3	33	1.6	.14	25	.3	1200	58
Date	BERYL- LIUM SED. SUSP. (UG/G) (29822)	BERYL- LIUM, DIS- SOLVED (UG/L	BORON, DIS- SOLVED (UG/L	CADMIUM SED.	CADMIUM DIS- SOLVED	CHRO- MIUM SED.	CHRO- MIUM, DIS- SOLVED	COBALT SEDI- MENT	COBALT, DIS-	COPPER SED.	COPPER, DIS-	IRON SEDI-	IRON, DIS- SOLVED
MAR 11	(25022)	AS BE) (01010)	AS B) (01020)	SUSP. (UG/G) (29826)	(UG/L AS CD) (01025)	SUSP. (UG/G) (29829)	(UG/L AS CR) (01030)	SUSP. (UG/G) (35031)	SOLVED (UG/L AS CO) (01035)	SUSP. (UG/G) (29832)	SOLVED (UG/L AS CU) (01040)	MENT SUSP. PERCENT (30269)	(UG/L AS FE) (01046)
			AS B)	(UG/G)	AS CD)	SUSP.	(UG/L AS CR)	SUSP.	(UG/L AS CO)	SUSP.	(UG/L AS CU)	SUSP. PERCENT	AS FE)
JUN 06 18 26		(01010)	AS B) (01020)	(UG/G) (29826)	AS CD) (01025)	SUSP. (UG/G) (29829)	(UG/L AS CR) (01030)	SUSP. (UG/G) (35031)	(UG/L AS CO) (01035)	SUSP. (UG/G) (29832)	(UG/L AS CU) (01040)	SUSP. PERCENT (30269)	AS FE) (01046)
JUN 06 18 26 AUG 13 26	 2 2	(01010) <.06 <.06 <.06	AS B) (01020) 11 E6 E5	(UG/G) (29826) .7 .6	AS CD) (01025) E.04 <.04 <.04	SUSP. (UG/G) (29829) 110 120	(UG/L AS CR) (01030) <.8 <.8 <.8	SUSP. (UG/G) (35031)	(UG/L AS CO) (01035) .15 .07	SUSP. (UG/G) (29832) 30 30	(UG/L AS CU) (01040) .8 1.7 2.8	SUSP. PERCENT (30269)	AS FE) (01046) 11 135 204
JUN 06 18 26 AUG 13	 2 2 2 2	<.06 <.06 <.06 <.06 <.06 <.06	AS B) (01020) 11 E6 E5 E4	(UG/G) (29826) .7 .6 .5	AS CD) (01025) E.04 <.04 <.04 <.04	SUSP. (UG/G) (29829) 110 120 110	(UG/L AS CR) (01030) <.8 <.8 <.8 <.8	SUSP. (UG/G) (35031) 16 17 16	(UG/L AS CO) (01035) .15 .07 .11 .12	SUSP. (UG/G) (29832) 30 30 29 31	(UG/L AS CU) (01040) .8 1.7 2.8 2.6	SUSP. PERCENT (30269) 3.9 3.8 4.0 4.8	AS FE) (01046) 11 135 204 178
JUN 06 18 26 AUG 13 26 SEP	2 2 2 2 2	(01010) <.06 <.06 <.06 <.06 <.06 <.06	AS B) (01020) 11 E6 E5 E4 E6 E7	(UG/G) (29826) .7 .6 .5 .7 1.0	AS CD) (01025) E.04 <.04 <.04 <.04 <.04 E.02	SUSP. (UG/G) (29829) 110 120 110 130 150	(UG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8	SUSP. (UG/G) (35031) 16 17 16 19 22	(UG/L AS CO) (01035) .15 .07 .11 .12	SUSP. (UG/G) (29832) 30 30 29 31 43	(UG/L AS CU) (01040) .8 1.7 2.8 2.6 1.6 1.9	SUSP. PERCENT (30269) 3.9 3.8 4.0 4.8 4.3	AS FE) (01046) 11 135 204 178 66 173
JUN 06 18 26 AUG 13 26 SEP 27	2 2 2 2 2 2 2 3 3 LEAD SED. SUSP. (UG/G) (29836)	(01010) <.06 <.06 <.06 <.06 <.06 <.06 <.06 <.06 <.06 .06	AS B) (01020) 11 E6 E5 E4 E6 E7 7 LITHIUM SEDI- MENT SUSP. (UG/G) (35050)	(UG/G) (29826) .7 .6 .5 .7 1.0 2.0 LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	AS CD) (01025) E.04 <.04 <.04 <.04 <.04 <.04 E.02 <.04 MAN- GANESE SED. SUSP. (UG/G) (29839)	SUSP. (UG/G) (29829) 110 120 110 130 150 210 MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	(UG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.9 <.9 <.9 <.9 <.9 <.9 <.9 <.9	SUSP. (UG/G) (35031) 16 17 16 19 22 35 MOLYB- DENUM SED. SUSP. (UG/G) (29843)	(UG/L AS CO) (01035) .15 .07 .11 .12 .12 .16 MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	SUSP. (UG/G) (29832) 30 30 29 31 43 83 NICKEL SED. SUSP. (UG/G) (29845)	(UG/L AS CU) (01040) .8 1.7 2.8 2.6 1.6 1.9 1.9 NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SUSP. PERCENT (30269) 3.9 3.8 4.0 4.8 4.3 7.2 SELE- NIUM SED. SUSP. (UG/G) (29847)	AS FE) (01046) 11 135 204 178 66 173 123 SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)
JUN 06 18 26 AUG 13 26 SEP 27	2 2 2 2 2 2 2 3 3 LEAD SED. SUSP. (UG/G)	(01010) <.06 <.06 <.06 <.06 <.06 <.06 <.06 <.06 A.06	AS B) (01020) 11 E6 E5 E4 E6 E7 7 LITHIUM SEDI- MENT SUSP. (UG/G)	(UG/G) (29826) .7 .6 .5 .7 1.0 2.0 LITHIUM DIS- SOLVED (UG/L AS LI)	AS CD) (01025) E.04 <.04 <.04 <.04 <.04 E.02 <.04 MAN- GANESE SED. SUUSP. (UG/G)	SUSP. (UG/G) (29829) 110 120 110 130 150 210 MANGA- NESE, DIS- SOLVED (UG/L AS MN)	(UG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.	SUSP. (UG/G) (35031) 16 17 16 19 22 35 MOLYB- DENUM SED. SUSP. (UG/G)	(UG/L AS CO) (01035) .15 .07 .11 .12 .12 .16 MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	SUSP. (UG/G) (29832) 30 30 29 31 43 83 NICKEL SED. SUSP. (UG/G)	(UG/L AS CU) (01040) .8 1.7 2.8 2.6 1.6 1.9 1.9 NICKEL, DIS- SOLVED (UG/L AS NI)	SUSP. PERCENT (30269) 3.9 3.8 4.0 4.8 4.3 7.2 SELE- NIUM SED. SUSP. (UG/G)	AS PE) (01046) 11 135 204 178 66 173 123 SELE- NIUM, DIS- SOLVED (UG/L AS SE)
JUN 06 18 26 AUG 13 26 SEP 27 Date MAR 11 JUN 06 18 26	2 2 2 2 2 2 3 3 LEAD SED. SUSP. (UG/G) (29836)	(01010) <.06 <.06 <.06 <.06 <.06 <.06 <.06 <.06 <.06 <.06 .29	AS B) (01020) 11 E6 E5 E4 E6 E7 7 LITHIUM SEDI-MENT SUSP. (UG/G) (35050)	(UG/G) (29826) .7 .6 .5 .7 1.0 2.0 LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	AS CD) (01025) E.04 <.04 <.04 <.04 E.02 <.04 MAN- GANESE SED. SUSP. (UG/G) (29839)	SUSP. (UG/G) (29829) 110 120 110 130 150 210 MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	(UG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8 <.8 <.8 (.9 (.9) (.9) (.9) (.9) (.9) (.9) (.9)	SUSP. (UG/G) (35031) 16 17 16 19 22 35 MOLYB- DENUM SED. SUSP. (UG/G) (29843)	(UG/L AS CO) (01035) .15 .07 .11 .12 .12 .16 MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	SUSP. (UG/G) (29832) 30 30 29 31 43 83 NICKEL SED. SUSP. (UG/G) (29845)	(UG/L AS CU) (01040) .8 1.7 2.8 2.6 1.6 1.9 1.9 NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SUSP. PERCENT (30269) 3.9 3.8 4.0 4.8 4.3 7.2 SELE- NIUM SED. SUSP. (UG/G) (29847)	AS PE) (01046) 11 135 204 178 66 173 123 SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)
JUN 06 18 26 AUG 13 26 SEP 27 Date MAR 11 JUN 06 18	2 2 2 2 2 2 3 3 LEAD SED. SUSP. (UG/G) (29836)	(01010) <.06 <.06 <.06 <.06 <.06 <.06 <.06 <.06 <.06 .01 LEAD, DIS- SOLVED (UG/L AS PB) (01049) .29 .11 E.05	AS B) (01020) 11 E6 E5 E4 E6 E7 7 LITHIUM SEDI-MENT SUSP. (UG/G) (35050)	UG/G) (29826) 7 .6 .5 .7 1.0 2.0 LITHIUM DIS- SOLVED (UG/L AS LI) (01130) 6.7 2.1 2.9	AS CD) (01025) E.04 <.04 <.04 <.04 <.04 E.02 <.04 MAN- GANESE SED. SUSP. (UG/G) (29839)	SUSP. (UG/G) (29829) 110 120 110 130 150 210 MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056) 15.7	(UG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8 <.8 <.8 (.9 (.9)	SUSP. (UG/G) (35031) 16 17 16 19 22 35 MOLYB- DENUM SED. SUSP. (UG/G) (29843)	(UG/L AS CO) (01035) .15 .07 .11 .12 .12 .12 .16 MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	SUSP. (UG/G) (29832) 30 30 29 31 43 83 NICKEL SED. SUSP. (UG/G) (29845)	(UG/L AS CU) (01040) .8 1.7 2.8 2.6 1.9 1.9 NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SUSP. PERCENT (30269) 3.9 3.8 4.0 4.8 4.3 7.2 SELE- NIUM SED. SUSP. (UG/G) (29847)	AS FE) (01046) 11 135 204 178 66 173 123 SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145) .5 E.3 <.3

YUKON ALASKA—Continued

15389000 PORCUPINE RIVER NEAR FORT YUKON—Continued

			153890	00 PORC	UPINE K	IVER NE.	AR FURI	IUKUN	—Continu	eu			
Date	SILVER SED. SUSP. (UG/G) (29850)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM SEDI- MENT SUSP. (UG/G) (35040)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	THAL- LIUM SUS SED (UG/G) (49955)	TITA- NIUM SEDI- MENT SUSP. PERCENT (30317)	VANA- DIUM SED. SUSP. (UG/G) (29853)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC SED. SUSP. (UG/G) (29855)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	URANIUM SEDI- MENT SUSP. (UG/G) (35046)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)
MAR 11		<1		160				<.2		4		.87	2.0
JUN 06 18 26	<.5 11 M	<1 <1 <1	110 120 120	58.3 61.7 63.0	<50 <50 <50	.420 .450 .470	180 200 170	.8 .3 .6	190 230 170	<1 2 1	<50 <50 <50	.29 .22 .28	8.2 13.0 14.0
AUG 13 26	M <1	<1 <1	150 140	107 93.0	<50 <100	.430	210 230	. 4	190 350	3	<50 <100	.24	7.7 11.0
SEP 27	2	<1	160	103	<100	.420	220	.2	680	3	<100	.51	8.8
Date	CARBON, INOR- GANIC, PARTIC. TOTAL (MG/L AS C)	CARBON, ORGANIC PARTIC- ULATE TOTAL (MG/L AS C)	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C)	CARBON SED. SUSP. PERCENT		WAT FLT SUSP (MG/L AS N)	SEDI- MENT SUSP., FLOW- THROUGH CENTRIF (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM			
MAD	(00688)	(00689)	(00694)	(30244)	(50465)	(49570)	(50279)	(80154)	(80155)	(70331)			
MAR 11 JUN	<.1	<.1	<.1			<.02		1.0	2.2				
06 18 26 AUG	.2 <.1 <.1	1.9 2.1 3.2	2.1 2.2 3.3	4.1 3.4 3.0	3.5 3.4 2.9	.16 .19 .26	65 75 127	68 76 130	5290 8970 17200	93 90 95			
13 26	<.1	1.1	1.1	3.7	3.8	.10	23 32	28 40	1400	99 90			
SEP 27	<.1	.3	.3			.02	2	6.0	173	88			
				15510	9020 HE	UV CDEI	TIZ ATT CII	NITD AND					
				13310	5020 REA	ALY CREI	EK AI SU	NIKANA	1				
Date	Time	STREAM WIDTH (FT) (00004)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	TEMPER - ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)		
Date OCT 05	Time 1315	WIDTH (FT)	HEIGHT (FEET)	CHARGE, INST. CUBIC FEET PER SECOND	PLING METHOD, CODES	TYPE (CODE)	ATURE WATER (DEG C)	ATURE AIR (DEG C)	MENT, SUS- PENDED (MG/L)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM		
OCT	1315	WIDTH (FT) (00004)	HEIGHT (FEET) (00065)	CHARGE, INST. CUBIC FEET PER SECOND (00061)	PLING METHOD, CODES (82398)	TYPE (CODE) (84164)	ATURE WATER (DEG C) (00010)	ATURE AIR (DEG C) (00020)	MENT, SUS- PENDED (MG/L) (80154)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)		
OCT	1315	WIDTH (FT) (00004)	HEIGHT (FEET) (00065) 18.79 CONTAC	CHARGE, INST. CUBIC FEET PER SECOND (00061) 145 CT CREE	PLING METHOD, CODES (82398)	TYPE (CODE) (84164) 3001	ATURE WATER (DEG C) (00010)	ATURE AIR (DEG C) (00020) 10.0	MENT, SUS- PENDED (MG/L) (80154) 71 X AT ANA PH WATER WHOLE	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	SPE- CIFIC CON-	TEMPER- ATURE WATER (DEG C) (00010)
OCT 05 Date JUN 18	1315	WIDTH (FT) (00004) 35.5 556488224 AGENCY COL- LECTING SAMPLE (CODE NUMBER)	HEIGHT (FEET) (00065) 18.79 CONTAC AGENCY ANA- LYZING SAMPLE (CODE NUMBER)	CHARGE, INST. CUBIC FEET PER SECOND (00061) 145 CT CREE ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD)	PLING METHOD, CODES (82398) 10 K BELOV DIS- CHARGE, INST. CUBIC FEET PER SECOND	TYPE (CODE) (84164) 3001 V LITTLE SAM- PLING METHOD, CODES	ATURE WATER (DEG C) (00010) 6.5 CONTAC BARO-METRIC PRES-SURE (MM OF HG)	ATURE AIR (DEG C) (00020) 10.0 CT CREEJ OXYGEN, DIS- SOLVED (MG/L)	MENT, SUS- PENDED (MG/L) (80154) 71 X AT ANA PH WATER WHOLE FIELD (STAND- ARD UNITS)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 27.8 KTUVUI PH WATER WHOLE LAB (STAND- ARD UNITS)	SUSP. SIEVE DIAM. FINER THAN .062 MM (70331) 57 K PASS SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	ATURE WATER (DEG C)
OCT 05 Date JUN 18 JUL 17	1315 15	WIDTH (FT) (00004) 35.5 556488224 AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	HEIGHT (FEET) (00065) 18.79 CONTAC AGENCY ANA-LYZING SAMPLE (CODE NUMBER) (00028)	CHARGE, INST. CUBIC FEET PER SECOND (00061) 145 CT CREE ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000)	PLING METHOD, CODES (82398) 10 K BELOV DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TYPE (CODE) (84164) 3001 V LITTLE SAM- PLING METHOD, CODES (82398)	ATURE WATER (DEG C) (00010) 6.5 CONTAC BARO-METRIC PRES-SURE (MM OF HG) (00025)	ATURE AIR (DEG C) (00020) 10.0 CT CREE OXYGEN, DIS- SOLVED (MG/L) (00300)	MENT, SUS- PENDED (MG/L) (80154) 71 X AT ANA PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	MENT, DIS- DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 27.8 AKTUVUI PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	SUSP. SIEVE DIAM. FINER THAN .062 MM (70331) 57 K PASS SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	ATURE WATER (DEG C) (00010)
OCT 05 Date JUN 18 JUL	1315 15 Time	WIDTH (FT) (00004) 35.5 556488224 AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	HEIGHT (FEET) (00065) 18.79 CONTACT ANA-LYZING SAMPLE (CODE NUMBER) (00028)	CHARGE, INST. CUBIC FEET PER SECOND (00061) 145 CT CREE ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000)	PLING METHOD, CODES (82398) 10 K BELOV DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 60	TYPE (CODE) (84164) 3001 V LITTLE SAM- PLING METHOD, CODES (82398)	ATURE WATER (DEG C) (00010) 6.5 CONTAC BARO-METRIC PRES-SURE (MM OF HG) (00025)	ATURE AIR (DEG C) (00020) 10.0 CT CREEI OXYGEN, DIS- SOLVED (MG/L) (00300)	MENT, SUS- PENDED (MG/L) (80154) 71 X AT ANA PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) 8.3	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 27.8 AKTUVUI PH WATER WHOLE LAB (STAND- ARD UNITS) (00403) 8.1	SUSP. SIEVE DIAM. \$ FINER THAN .062 MM (70331) 57 K PASS SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 110	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	ATURE WATER (DEG C) (00010)
OCT 05 Date JUN 18 JUL 17 SEP 10	1315 15 Time 1710 0940	WIDTH (FT) (00004) 35.5 56488224 AGENCY COL-LECTING SAMPLE (CODE NUMBER) (00027) 1028 1028 MAGNE-SIUM, DIS-	HEIGHT (FEET) (00065) 18.79 CONTACT AND AGENCY ANA-LYZING SAMPLE (CODE NUMBER) (00028) 80020	CHARGE, INST. CUBIC FEET PER SECOND (00061) 145 CT CREE ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000) 2250	PLING METHOD, CODES (82398) 10 K BELOV DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 60 107	TYPE (CODE) (84164) 3001 V LITTLE SAM- PLING METHOD, CODES (82398) 10 10	ATURE WATER (DEG C) (00010) 6.5 CONTACTOR (CONTACTOR (ATURE AIR (DEG C) (00020) 10.0 CT CREEL OXYGEN, DIS- SOLVED (MG/L) (00300) 12.2	MENT, SUS- PENDED (MG/L) (80154) 71 X AT ANA PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) 8.3 7.6	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 27.8 KTUVUI PH WATER WHOLE LAB (STAND-ARD UNITS) (00403) 8.1 8.0	SUSP. SIEP. SIEVE DIAM. FINER THAN .062 MM (70331) 57 K PASS SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) 110 118	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	ATURE WATER (DEG C) (00010) 6.7 5.9
Date JUN 18 JUL 17 SEP 10	1315 15 Time 1710 0940 1630 CALCIUM DIS- SOLVED (MG/L AS CA)	WIDTH (FT) (00004) 35.5 56488224 AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027) 1028 1028 MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	HEIGHT (FEET) (00065) 18.79 CONTAC AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028) 80020 80020 POTAS- SIUM, DIS- SOLVED (MG/L AS K)	CHARGE, INST. CUBIC FEET PER SECOND (00061) 145 CT CREE ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000) 2250 2250 2250 2250 SODIUM, DIS-SOLVED (MG/L AS NA)	PLING METHOD, CODES (82398) 10 K BELOV DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 60 107 62 ALKA-LINITY WAT.DIS FET LAB (MG/L CACO3)	TYPE (CODE) (84164) 3001 V LITTLE SAM- PLING METHOD, CODES (82398) 10 10 10 ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3	ATURE WATER (DEG C) (00010) 6.5 CONTAC BARO-METRIC PRES-SURE (MM OF HG) (00025) 702 706 697 ANC WATER UNFLTRD FET FIELD MG/L AS CACO3	ATURE AIR (DEG C) (00020) 10.0 CT CREEI OXYGEN, DIS- SOLVED (MG/L) (00300) 12.2 11.4 BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3	MENT, SUS- PENDED (MG/L) (80154) 71 X AT ANA PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) 8.3 7.6 7.9 CHLO-RIDE, DIS-SOLVED (MG/L AS CL)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 27.8 AKTUVUI PH WATER WHOLE LAB (STAND- ARD UNITS) (00403) 8.1 8.0 8.0 FLUO-RIDE, DIS- SOLVED (MG/L AS F)	SUSP. SIEVE DIAM. FINER THAN .062 MM (70331) 57 K PASS SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) 110 118 135 SILICA, DIS- SOLVED (MG/L AS SIO2)	SPE-CIFIC CON-DUCT-ANCE LAB (US/CM) (90095) 111 116 141 SULFATE DIS-SOLVED (MG/L AS SO4)	ATURE WATER (DEG C) (00010) 6.7 5.9 2.6 SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)

17... SEP 10...

18.8 22.4

22.4

3.44

.14 .33 66

63

63

82

< .30

1.45

E.07

7.9

77

YUKON ALASKA—Continued

1556488224 -- CONTACT CREEK BELOW LITTLE CONTACT CREEK AT ANAKTUVUK PASS—Continued

JUN 18 JUL 17	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) E.08	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITROGEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO-PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	SAMPLE PURPOSE CODE (71999)	SAMPLER TYPE (CODE) (84164) 3045
SEP	<.015	<.10			<.002	E.003	<.007	.006	1.0	<10			
10	<.015	E.08	<.10	.054	<.002	< .004	<.007	E.003	1.1	<10	<2.0		3045
		68083	715143500	00 CONT	ACT CRE	EEK AT M	IAIN STR	EET AT A	ANAKTU	VUK PAS	S		
Date	Time	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	TEMPER- ATURE WATER (DEG C) (00010)
JUN 18	2000	1028	80020	2250	49	10	702	12.1	8.4	8.1	115	118	6.2
JUL 17	1125	1028	80020	2250	93	10	708		8.0	8.0	112	118	7.3
SEP 10	1900	1028	80020	2250	23	10	697	10.8	8.0	8.0	133	141	2.6
Date	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB (MG/L CACO3) (29801)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
JUN 18	18.9	2.62	.11	.22	56	53	53	69	<.30	<.10	1.14	4.2	60
JUL 17	19.0	2.78	.11	.22	58	54	55	70	<.30	<.10	1.25	4.5	69
SEP 10	22.6	3.46	.14	.34	66	62	62	81	<.30	E.06	1.47	7.8	79
Date	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	SAMPLE PURPOSE CODE (71999)	SAMPLER TYPE (CODE) (84164)
JUN 18	<.015	<.10	E.06	.030	<.002	E.003	<.007	.006	. 9	<10	<2.0	10.00	3045
JUL 17	<.015	<.10	E.06	.013	<.002	E.002	<.007	.005	.9	<10	<2.0		3045
SEP 10	<.015	E.07	E.05	.049	<.002	< .004	<.007	E.003	1.0	<10	<2.0		3045
	6807	54151442	100 CON	TACT CR	EEK ABO	OVE INUI	KPASUGF	RUK CRE	EK AT AN	NAKTUV	UK PASS		
Date JUN	Time	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	TEMPER- ATURE WATER (DEG C) (00010)
19 JUL	1350	1028	80020	2050	35	10	704	12.6	8.4	8.1	139	146	5.3
16 SEP	1635	1028	80020	2050	107	10	708		8.0	8.0	130	141	8.0
11	1600	1028	80020	2050	42	10	696	12.0	8.1	7.7	167	170	3.0

YUKON ALASKA—Continued

680754151442100 CONTACT CREEK ABOVE INUKPASUGRUK CREEK AT ANAKTUVUK PASS—Continued

	0807341314	142100 C	ONTACT	CREEK	ADOVE	NUKFASU	JUNUNC	KEEK AI	ANAKI	UVUK PA	133—C01	itiliueu	
Date	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB (MG/L CACO3) (29801)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
JUN 19	23.4	3.45	.12	.25	69	66	66	86	<.30	<.10	1.33	5.8	76
JUL 16	23.1	3.40	.14	.26	67	63	64	82	<.30	<.10	1.38	5.8	80
SEP 11	27.7	4.19	.15	.42	81	76	78	99	<.30	<.10	1.57	9.9	91
Date	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	SAMPLE PURPOSE CODE (71999)	SAMPLER TYPE (CODE) (84164)
JUN 19	<.015	<.10	<.10	.063	<.002	< .004	<.007	.006	. 7	<10	<2.0	10.00	3045
JUL 16	<.015	<.10	<.10	.040	<.002	<.004	<.007	.006	.9	<10	<2.0		3045
SEP 11	<.015	E.08	<.10	.070	<.002	<.004	<.007	E.003	.8	<10	E.9		3045
		ć	68075215	1450200 .	JOHN RIV	VER TRIE	BUTARY A	AT ANAK	TUVUK I	PASS			
Date	Time	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	TEMPER- ATURE WATER (DEG C) (00010)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
SEP 11	1100	1028	80020	.70	10	696	11.4	6.6	7.5	94	103	2.9	15.4
Date	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB (MG/L CACO3) (29801)	TOT IT FIELD	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)
SEP 11	2.79	.22	.46	48	45	46	58	.34	<.10	1.84	3.8	66	<.015
11	2.75	.22	.40	40	43	40	50	.54	<.10	1.04	3.0	00	V.013
Date	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)			NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	SAMPLER TYPE (CODE) (84164)		
SEP	.14	.17	.180	<.002	<.004	<.007	E.003	4.7	46	E1.6	3045		
11	.14	.1/	.180	<.002	<.004	<.007	₽.003	4./	40	E1.0	3045		
			68073515	1444400	INUKPAS	SUGRUK	CREEK A	AT ANAK	TUVUK I	PASS			
		AGENCY	AGENCY ANA -	ELEV. OF LAND	DIS- CHARGE,		BARO- METRIC PRES-		PH WATER WHOLE	PH WATER WHOLE	SPE-	SPE- CIFIC	

				ELEV.	DIS-		BARO-		PH	PH		SPE-	
		AGENCY	AGENCY	OF LAND	CHARGE,		METRIC		WATER	WATER	SPE-	CIFIC	
		COL-	ANA-	SURFACE	INST.		PRES-		WHOLE	WHOLE	CIFIC	CON-	
		LECTING	LYZING	DATUM	CUBIC	SAM-	SURE	OXYGEN,	FIELD	LAB	CON-	DUCT-	TEMPER-
		SAMPLE	SAMPLE	(FT.	FEET	PLING	(MM)	DIS-	(STAND-	(STAND-	DUCT-	ANCE	ATURE
Date	Time	(CODE	(CODE	ABOVE	PER	METHOD,	OF	SOLVED	ARD	ARD	ANCE	LAB	WATER
		NUMBER)	NUMBER)	NGVD)	SECOND	CODES	HG)	(MG/L)	UNITS)	UNITS)	(US/CM)	(US/CM)	(DEG C)
		(00027)	(00028)	(72000)	(00061)	(82398)	(00025)	(00300)	(00400)	(00403)	(00095)	(90095)	(00010)
TTTN													
JUN												4.50	
19	1155	1028	80020	2050	93	10	704	13.1	8.2	7.9	148	153	4.4
JUL													
16	1445	1028	80020	2050	161	10	708		7.9	7.9	154	164	9.3
SEP													
11	1430	1028	80020	2050	137	10	696	12.1	8.0	7.9	185	191	1.9

YUKON ALASKA—Continued

680735151444400 INUKPASUGRUK CREEK AT ANAKTUVUK PASS—Continued

JUN 19 JUL 16 SEP	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB (MG/L CACO3) (29801)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
11	25.3	7.42	.32	1.13	60	56	57	73	<.30	<.10	2.07	37.3	117
Date	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	SAMPLE PURPOSE CODE (71999)	SAMPLER TYPE (CODE) (84164)
JUN 19	<.015	<.10	<.10	.052	<.002	< .004	<.007	.008	.7	<10	<2.0	10.00	3045
JUL 16	<.015	<.10	<.10	.033	<.002	<.004	<.007	.004	.8	<10	<2.0		3045
SEP 11	<.015	E.06	E.06	.044	<.002	< .004	<.007	E.002	1.0	<10	<2.0		3045
	68	07151514	63000 JO	HN RIVE	ER BELOV	W INUKP	ASUGRU	K CREEK	X AT ANA	.KTUVUI	K PASS		
Date	Time	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	TEMPER- ATURE WATER (DEG C) (00010)
JUN 19	1000	1028	80020	2050	171	10	704	13.4	8.0	7.9	156	162	3.6
JUL 16	1130	1028	80020	2050	270	10	710		8.0	7.8	150	160	8.7
SEP 11	1230	1028	80020	2050	179	10	696	11.8	7.8	7.9	185	192	2.4
11	1230	1020	00020	2030	175	10	050	11.0	7.0	7.5	103	132	2.4
Date	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB (MG/L CACO3) (29801)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
JUN 19	22.6	5.17	.51	.77	61	58	58	75	<.30	<.10	1.65	18.8	91
JUL 16	24.2	4.73	.22	.66	67	62	62	81	<.30	E.06	1.69	14.3	94
SEP 11	29.0	6.08	. 24	.92	78	74	75	96	E.19	<.10	1.91	23.3	115
Date	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	SAMPLE PURPOSE CODE (71999)	SAMPLER TYPE (CODE) (84164)
JUN 19	<.015	<.10	<.10	.068	<.002	<.004	<.007	.010	.7	<10	<2.0	10.00	3045
JUL 16	<.015	<.10	<.10	.068	<.002	E.003	<.007	E.004	. 9	E8	<2.0		3045
SEP 11	<.015	E.06	E.08	.084	<.002	<.004	<.007	E.002	1.1	<10	E.9		3045

NORTHWEST ALASKA

$673612163564000\,$ NEW HEART CREEK AT PORT ACCESS ROAD NEAR KIVALINA

Date	Time		AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)		ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000)		SAM- PLING METHOD, CODES (82398)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)		
JUL 29 29	1050 1230	9 H	1028 1028	80020 80020	175 175	.20	10	774 	12.0	7.0	7.9	376 	381
Date	TEMPER- ATURE WATER (DEG C) (00010)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	DIS- SOLVED	(MG/L AS NA)	BOT MAT <63U WS FIELD PERCENT	<63U WS FIELD	SIUM BOT MAT <63U WS FIELD PERCENT	BOT MAT	WAT.DIS FET LAB (MG/L CACO3)	FIELD MG/L AS CACO3	FET FIELD MG/L AS CACO3	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)
JUL 29 29	10.2	69.1	9.47	.32	1.77	2.2	.860	1.6	.390	165 	160	160	208
Date	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	(MG/L AS F)	(MG/L AS SIO2)	DIS- SOLVED (MG/L	BOT MAT <63U WS FIELD PERCENT	AT 180 DEG. C DIS- SOLVED (MG/L)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	MONIA + ORGANIC DIS. (MG/L AS N)	MONIA + ORGANIC TOTAL (MG/L AS N)	DIS- SOLVED (MG/L AS N)	DIS- SOLVED (MG/L AS N)	PHORUS DIS- SOLVED (MG/L AS P)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)
JUL 29 29	2.76	<.10	3.15	45.2	 .09	245	E.013	.14	.13	.071	<.002	E.002	<.007
Date	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS BOT MAT <63U WS FIELD PERCENT (34935)	DIS-	INORG, SED, BM WS,<63U	INORG, SED, BM WS,<63U DW, REC PERCENT	ORGANIC SED, BM WS,<63U DW, REC (PER- CENT)	DIS- SOLVED	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	DIS-	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)
JUL 29 29	E.002	.078	3.5	 .70	3.0	2.3	<20	.05	<.8	. 8	E6 	E.05	E2.0
Date	(UG/L AS ZN)		<63U WS		BOT MAT <63U WS FIELD (UG/G)	<63U WS FIELD	BOT MAT <180UWS FIELD (UG/G)	<63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G)	<63U WS FIELD (UG/G)	<63U WS FIELD (UG/G)	<63U WS FIELD	
JUL 29 29	5	 5.9	. 8	10	1100	2.1	<1	2.0	 50	100	 17	22	1
Date	GALLIUM BOT MAT <63U WS FIELD (UG/G) (34860)	GOLD BOT MAT <63U WS FIELD (UG/G) (34870)	HOLMIUM BOT MAT <63U WS FIELD (UG/G) (34875)	IRON BOT MAT <63U WS FIELD PERCENT (34880)		LEAD BOT MAT <63U WS FIELD (UG/G) (34890)			MERCURY BOT MAT <63U WS FIELD (UG/G) (34910)			NICKEL BOT MAT <63U WS FIELD (UG/G) (34925)	NIOBIUM BOT MAT <63U WS FIELD (UG/G) (34930)
JUL 29 29	 14	 <1	 <1	3.4	30	 79	 54	 720	.11	 .6	 27	 61	 8
Date	SCAN- DIUM BOT MAT <63U WS FIELD (UG/G) (34945)	FIELD (UG/G)	SILVER BOT MAT <63U WS FIELD (UG/G) (34955)	STRON- TIUM BOT MAT <63U WS FIELD (UG/G) (34965)	TANTA- LUM BOT MAT <63U WS FIELD (UG/G) (34975)	THAL- LIUM BED MAT D SIEVE <63 U TOTAL (UG/G) (04064)		TIN BOT MAT <63U WS FIELD (UG/G) (34985)	TITA- NIUM, SED, BM WS,<63U DRY WGT REC PERCENT (49274)	VANA- DIUM BOT MAT <63U WS FIELD (UG/G) (35005)	YTTER- BIUM BOT MAT <63U WS FIELD (UG/G) (35015)	YTTRIUM BOT MAT <63U WS FIELD (UG/G) (35010)	ZINC BOT MAT <63U WS FIELD (UG/G) (35020
JUL 29 29	13	1.2	.3	 160	 <1	 <1	 9	2	.230	 110	 2	 20	 500

NORTHWEST ALASKA—Continued

673612163564000 NEW HEART CREEK AT PORT ACCESS ROAD NEAR KIVALINA—Continued

673603163565900 SOUTH FORK NEW HEART CREEK AT PORT ACCESS ROAD NEAR KIVALINA

Date	Time	Medium code	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000)	CALCIUM BOT MAT <63U WS FIELD PERCENT (34830)	MAGNE- SIUM BOT MAT <63U WS FIELD PERCENT (34900)	POTAS- SIUM BOT MAT <63U WS FIELD PERCENT (34940)	SODIUM BOT MAT <63U WS FIELD PERCENT (34960)	SULFUR BOT MAT <63U WS FIELD PERCENT (34970)	PHOS- PHORUS BOT MAT <63U WS FIELD PERCENT (34935)	CARBON, INORG, SED, BM WS,<63U DW, REC (PER- CENT) (49269)	CARBON, ORG + INORG, SED, BM WS,<63U DW, REC PERCENT (49267)
JUL 29	1345	Н	1028	80020	175	2.2	.730	1.6	.320	.11	.088	.65	4.0
Date	CARBON, ORGANIC SED, BM WS,<63U DW, REC (PER- CENT) (49266)	ALUM- INUM BOT MAT <63U WS FIELD PERCENT (34790)	ANTI- MONY BOT MAT <63U WS FIELD (UG/G) (34795)	ARSENIC BOT MAT <63U WS FIELD (UG/G) (34800)	BARIUM BOT MAT <63U WS FIELD (UG/G) (34805)	BERYL- LIUM BOT MAT <63U WS FIELD (UG/G) (34810)	BISMUTH BOT MAT <180UWS FIELD (UG/G) (34816)	CADMIUM BOT MAT <63U WS FIELD (UG/G) (34825)	CERIUM BOT MAT <63U WS FIELD (UG/G) (34835)	CHRO- MIUM BOT MAT <63U WS FIELD (UG/G) (34840)	COBALT BOT MAT <63U WS FIELD (UG/G) (34845)	COPPER BOT MAT <63U WS FIELD (UG/G) (34850)	EURO- PIUM BOT MAT <63U WS FIELD (UG/G) (34855)
JUL 29	3.3	6.0	1.1	10	1100	2.2	<1	3.8	48	120	14	25	1
Date	GALLIUM BOT MAT <63U WS FIELD (UG/G) (34860)	GOLD BOT MAT <63U WS FIELD (UG/G) (34870)	HOLMIUM BOT MAT <63U WS FIELD (UG/G) (34875)	IRON BOT MAT <63U WS FIELD PERCENT (34880)	LANTHA- NUM BOT MAT <63U WS FIELD (UG/G) (34885)	LEAD BOT MAT <63U WS FIELD (UG/G) (34890)	LITHIUM BOT MAT <63U WS FIELD (UG/G) (34895)	MANGA- NESE BOT MAT <63U WS FIELD (UG/G) (34905)	MERCURY BOT MAT <63U WS FIELD (UG/G) (34910)	MOLYB- DENUM BOT MAT <63U WS FIELD (UG/G) (34915)	NEODYM- IUM BOT MAT <63U WS FIELD (UG/G) (34920)	NICKEL BOT MAT <63U WS FIELD (UG/G) (34925)	NIOBIUM BOT MAT <63U WS FIELD (UG/G) (34930)
JUL 29	14	<1	<1	3.6	25	140	52	710	.21	.8	25	51	9
Date	SCAN- DIUM BOT MAT <63U WS FIELD (UG/G) (34945)	SELE- NIUM BOT MAT <63U WS FIELD (UG/G) (34950)	SILVER BOT MAT <63U WS FIELD (UG/G) (34955)	STRON- TIUM BOT MAT <63U WS FIELD (UG/G) (34965)	TANTA- LUM BOT MAT <63U WS FIELD (UG/G) (34975)	THAL- LIUM BED MAT D SIEVE <63 U TOTAL (UG/G) (04064)	THORIUM BOT MAT <63U WS FIELD (UG/G) (34980)	TIN BOT MAT <63U WS FIELD (UG/G) (34985)	TITA- NIUM, SED, BM WS,<63U DRY WGT REC PERCENT (49274)	VANA- DIUM BOT MAT <63U WS FIELD (UG/G) (35005)	YTTER- BIUM BOT MAT <63U WS FIELD (UG/G) (35015)	YTTRIUM BOT MAT <63U WS FIELD (UG/G) (35010)	ZINC BOT MAT <63U WS FIELD (UG/G) (35020)
JUL 29	14	1.9	. 4	190	<1	<1	9	3	.240	120	2	21	890

NORTHWEST ALASKA—Continued

673641163554500 NORTH FORK NEW HEART CREEK AT PORT ACCESS ROAD NEAR KIVALINA

Date	Time	Medium code	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000)	<63U WS FIELD	MAGNE- SIUM BOT MAT <63U WS FIELD PERCENT (34900)		SODIUM BOT MAT <63U WS FIELD	<63U WS FIELD	PHORUS BOT MAT	CARBON, INORG, SED, BM WS,<63U DW, REC (PER- CENT) (49269)	ORG + INORG,
JUL 29	1415	Н	1028	80020	275	1.2	.780	1.7	.400	.16	.150	.34	4.3
Date	CARBON, ORGANIC SED, BM WS,<63U DW, REC (PER- CENT) (49266)	ALUM- INUM BOT MAT <63U WS FIELD PERCENT (34790)	<63U WS FIELD (UG/G)	<63U WS FIELD	BOT MAT <63U WS FIELD (UG/G)	BERYL- LIUM BOT MAT <63U WS FIELD (UG/G) (34810)	BOT MAT <180UWS FIELD	<63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G)	<63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD	<63U WS FIELD (UG/G)
JUL 29	4.0	6.1	1.1	13	1100	2.1	<1	2.1	52	150	14	76	1
Date	GALLIUM BOT MAT <63U WS FIELD (UG/G) (34860)			<63U WS FIELD		LEAD BOT MAT <63U WS FIELD (UG/G) (34890)					IUM BOT MAT	<63U WS FIELD (UG/G)	
JUL 29	15	<1	<1	3.1	30	66	52	580	.20	1.3	28	62	12
Date	SCAN- DIUM BOT MAT <63U WS FIELD (UG/G) (34945)	<63U WS FIELD (UG/G)		STRON- TIUM BOT MAT <63U WS FIELD (UG/G) (34965)		D SIEVE <63 U TOTAL (UG/G)	<63U WS FIELD	<63U WS FIELD (UG/G)		<63U WS FIELD (UG/G)	<63U WS FIELD (UG/G)	YTTRIUM BOT MAT <63U WS FIELD (UG/G) (35010)	
JUL 29	14	6.0	.8	160	<1	<1	10	3	.230	130	2	23	740
Date	URANIUM BOT MAT <63U WS FIELD (UG/G) (35000)												
JUL 29	3.6												

674326163375900 OMIKVIOROK RIVER AT PORT ACCESS ROAD NEAR KIVALINA

Date	Time	Medium code	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)
JUL 28 28	1015 1100	9 H	1028 1028	80020 80020	325 325	7.8	10	761 	11.0	7.1	7.9	177 	189
Date	TEMPER- ATURE WATER (DEG C) (00010)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	CALCIUM BOT MAT <63U WS FIELD PERCENT (34830)	MAGNE- SIUM BOT MAT <63U WS FIELD PERCENT (34900)	POTAS - SIUM BOT MAT <63U WS FIELD PERCENT (34940)	SODIUM BOT MAT <63U WS FIELD PERCENT (34960)	ALKA- LINITY WAT.DIS FET LAB (MG/L CACO3) (29801)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)
JUL 28 28	10.5	27.8	6.02	.23	1.61	 .660	 .770	1.3	 .770	90 	90 	90	117

NORTHWEST ALASKA—Continued

674326163375900 OMIKVIOROK RIVER AT PORT ACCESS ROAD NEAR KIVALINA—Continued

Date	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SULFUR BOT MAT <63U WS FIELD PERCENT (34970)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)
JUL 28 28	1.85	<.10	4.71	6.7	.05	108	<.015	E.08	E.07	.165	<.002	<.004	<.007
Date	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS BOT MAT <63U WS FIELD PERCENT (34935)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, INORG, SED, BM WS,<63U DW, REC (PER- CENT) (49269)	CARBON, ORG + INORG, SED, BM WS,<63U DW, REC PERCENT (49267)	CARBON, ORGANIC SED, BM WS,<63U DW, REC (PER- CENT) (49266)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)
JUL 28 28	E.003	.072	1.9	.07	2.5	 2.5	<20	E.03	< . 8	. 6	E8 	.18	E2.0
Date	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	ALUM- INUM BOT MAT <63U WS FIELD PERCENT (34790)	ANTI- MONY BOT MAT <63U WS FIELD (UG/G) (34795)		BARIUM BOT MAT <63U WS FIELD (UG/G) (34805)		BOT MAT		CERIUM BOT MAT <63U WS FIELD (UG/G) (34835)			COPPER BOT MAT <63U WS FIELD (UG/G) (34850)	
JUL 28 28	2	 5.8	. 8	10	960	1.8	<1	. 9	 58	 97	 17	 22	1
Date	GALLIUM BOT MAT <63U WS FIELD (UG/G) (34860)		HOLMIUM BOT MAT <63U WS FIELD (UG/G) (34875)		LANTHA- NUM BOT MAT <63U WS FIELD (UG/G) (34885)		LITHIUM BOT MAT <63U WS FIELD (UG/G) (34895)	MANGA- NESE BOT MAT <63U WS FIELD (UG/G) (34905)	MERCURY BOT MAT <63U WS FIELD (UG/G) (34910)	MOLYB- DENUM BOT MAT <63U WS FIELD (UG/G) (34915)		NICKEL BOT MAT <63U WS FIELD (UG/G) (34925)	NIOBIUM BOT MAT <63U WS FIELD (UG/G) (34930)
JUL 28 28	 14	<1	<1	3.8	30	 34	 45	800	.08	.5	28	 48	 8
Date	SCAN- DIUM BOT MAT <63U WS FIELD (UG/G) (34945)		SILVER BOT MAT <63U WS FIELD (UG/G) (34955)		TANTA- LUM BOT MAT <63U WS FIELD (UG/G) (34975)			TIN BOT MAT <63U WS FIELD (UG/G) (34985)	DRY WGT REC		<63U WS FIELD (UG/G)	YTTRIUM BOT MAT <63U WS FIELD (UG/G) (35010)	ZINC BOT MAT <63U WS FIELD (UG/G) (35020)
JUL 28 28	 14	.6	.1	 72	<1	<1	 9	2	.270	110	2	 16	200
Date	URANIUM BOT MAT <63U WS FIELD (UG/G) (35000)	SAMPLER TYPE (CODE) (84164)											
JUL 28 28	2.3	3045											

NORTHWEST ALASKA—Continued

674346163373600 MUD LAKE CREEK AT PORT ACCESS ROAD NEAR KIVALINA

Date	Time		AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)		DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	TEMPER- ATURE WATER (DEG C) (00010)
JUL 30 30	1100 1200	9 H	1028 1028	80020 80020	325 325	.23	767 	13.6	6.5	7.8	153	163	10.6
Date	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	(MG/L AS NA)	CALCIUM BOT MAT <63U WS FIELD PERCENT (34830)	FIELD	FIELD PERCENT	BOT MAT <63U WS FIELD PERCENT	FET LAB (MG/L CACO3)	TOT IT FIELD MG/L AS CACO3	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	WATER DIS IT FIELD MG/L AS HCO3	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)
JUL 30 30	27.5	3.72	.16	1.10	1.7	1.2	1.0	.720	82	78 	78 	101	1.93
Date	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	(MG/L AS SIO2)	DIS- SOLVED (MG/L AS SO4)	BOT MAT <63U WS FIELD PERCENT	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	DIS- SOLVED (MG/L AS N)	ORGANIC DIS. (MG/L AS N)	MONIA + ORGANIC TOTAL (MG/L AS N)	DIS- SOLVED (MG/L AS N)	DIS- SOLVED (MG/L AS N)	DIS- SOLVED (MG/L	DIS- SOLVED (MG/L AS P)	(MG/L AS P)
JUL 30 30	<.10	2.99	1.2	.15	95 	<.015	.23	.27	.101	E.002	.005	<.007	.013
Date	PHOS- PHORUS BOT MAT <63U WS FIELD PERCENT (34935)	DIS-		ORG + INORG,	ORGANIC SED, BM WS,<63U DW, REC (PER- CENT)	INUM, DIS-	DIS- SOLVED (UG/L AS CD)	MIUM, DIS-	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	DIS-	SOLVED (UG/L AS MN)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
JUL 30 30	.073	6.5	.60	3.3	2.7	<20	<.04	< . 8	1.1	457 	<.08	35.6	1
Date		<63U WS FIELD (UG/G)	<63U WS	BOT MAT <63U WS FIELD (UG/G)	BERYL- LIUM BOT MAT <63U WS FIELD (UG/G) (34810)	BOT MAT <180UWS FIELD (UG/G)	<63U WS FIELD	BOT MAT <63U WS FIELD (UG/G)		<63U WS FIELD (UG/G)	<63U WS FIELD (UG/G)	<63U WS FIELD	
JUL 30 30	4.6	1.1	7.2	1600	1.6	<1	3.4	 48	 78	23	18	1	11
Date	GOLD BOT MAT <63U WS FIELD (UG/G) (34870)	HOLMIUM BOT MAT <63U WS FIELD (UG/G) (34875)	IRON BOT MAT <63U WS FIELD PERCENT (34880)		LEAD BOT MAT <63U WS FIELD (UG/G) (34890)	LITHIUM BOT MAT <63U WS FIELD (UG/G) (34895)	MANGA- NESE BOT MAT <63U WS FIELD (UG/G) (34905)	MERCURY BOT MAT <63U WS FIELD (UG/G) (34910)		NEODYM- IUM BOT MAT <63U WS FIELD (UG/G) (34920)	NICKEL BOT MAT <63U WS FIELD (UG/G) (34925)	NIOBIUM BOT MAT <63U WS FIELD (UG/G) (34930)	SCAN- DIUM BOT MAT <63U WS FIELD (UG/G) (34945)
JUL 30 30	<1	<1	3.9	22	120	31	1700	.13	 <.5	22	40	 8	11
Date JUL	SELE- NIUM BOT MAT <63U WS FIELD (UG/G) (34950)	SILVER BOT MAT <63U WS FIELD (UG/G) (34955)	STRON- TIUM BOT MAT <63U WS FIELD (UG/G) (34965)	TANTA- LUM BOT MAT <63U WS FIELD (UG/G) (34975)	THAL- LIUM BED MAT D SIEVE <63 U TOTAL (UG/G) (04064)	THORIUM BOT MAT <63U WS FIELD (UG/G) (34980)	TIN BOT MAT <63U WS FIELD (UG/G) (34985)	TITA- NIUM, SED, BM WS,<63U DRY WGT REC PERCENT (49274)	VANA- DIUM BOT MAT <63U WS FIELD (UG/G) (35005)	YTTER- BIUM BOT MAT <63U WS FIELD (UG/G) (35015)	YTTRIUM BOT MAT <63U WS FIELD (UG/G) (35010)	ZINC BOT MAT <63U WS FIELD (UG/G) (35020)	URANIUM BOT MAT <63U WS FIELD (UG/G) (35000)
30 30	.3	.2	 76	<1	<1	7	2	.270	90	2	16	640	2.3

NORTHWEST ALASKA—Continued

673845163455600 DEADMAN CREEK AT PORT ACCESS ROAD NEAR KIVALINA

Date	Time	Medium code	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000)	CALCIUM BOT MAT <63U WS FIELD PERCENT (34830)	MAGNE- SIUM BOT MAT <63U WS FIELD PERCENT (34900)	POTAS- SIUM BOT MAT <63U WS FIELD PERCENT (34940)	BOT MAT <63U WS FIELD	SULFUR		CARBON, INORG, SED, BM WS,<63U DW, REC (PER- CENT) (49269)	CARBON, ORG + INORG, SED, BM WS,<63U DW, REC PERCENT (49267)
JUL 30	1400	Н	1028	80020	475	1.3	.740	1.6	.330	.25	.083	.45	3.4
Date	CARBON, ORGANIC SED, BM WS,<63U DW, REC (PER- CENT) (49266)	ALUM- INUM BOT MAT <63U WS FIELD PERCENT (34790)	ANTI- MONY BOT MAT <63U WS FIELD (UG/G) (34795)	<63U WS FIELD (UG/G)		FIELD (UG/G)	BISMUTH BOT MAT <180UWS FIELD (UG/G) (34816)	CADMIUM BOT MAT <63U WS FIELD (UG/G) (34825)	BOT MAT <63U WS FIELD (UG/G)	CHRO- MIUM BOT MAT <63U WS FIELD (UG/G) (34840)	COBALT BOT MAT <63U WS FIELD (UG/G) (34845)	FIELD (UG/G)	EURO- PIUM BOT MAT <63U WS FIELD (UG/G) (34855)
JUL 30	3.0	5.6	.8	9.4	960	1.9	<1	2.0	41	85	17	18	1
Date	GALLIUM BOT MAT <63U WS FIELD (UG/G) (34860)	GOLD BOT MAT <63U WS FIELD (UG/G) (34870)	HOLMIUM BOT MAT <63U WS FIELD (UG/G) (34875)	IRON BOT MAT <63U WS FIELD PERCENT (34880)	LANTHA- NUM BOT MAT <63U WS FIELD (UG/G) (34885)	LEAD BOT MAT <63U WS FIELD (UG/G) (34890)	LITHIUM BOT MAT <63U WS FIELD (UG/G) (34895)	MANGA- NESE BOT MAT <63U WS FIELD (UG/G) (34905)	MERCURY BOT MAT <63U WS FIELD (UG/G) (34910)	MOLYB- DENUM BOT MAT <63U WS FIELD (UG/G) (34915)	NEODYM- IUM BOT MAT <63U WS FIELD (UG/G) (34920)	NICKEL BOT MAT <63U WS FIELD (UG/G) (34925)	NIOBIUM BOT MAT <63U WS FIELD (UG/G) (34930)
JUL 30	13	<1	<1	3.9	20	64	47	1000	.10	.7	21	49	8
Date	SCAN- DIUM BOT MAT <63U WS FIELD (UG/G) (34945)	SELE- NIUM BOT MAT <63U WS FIELD (UG/G) (34950)	SILVER BOT MAT <63U WS FIELD (UG/G) (34955)	STRON- TIUM BOT MAT <63U WS FIELD (UG/G) (34965)	TANTA- LUM BOT MAT <63U WS FIELD (UG/G) (34975)	THAL- LIUM BED MAT D SIEVE <63 U TOTAL (UG/G) (04064)	THORIUM BOT MAT <63U WS FIELD (UG/G) (34980)	TIN BOT MAT <63U WS FIELD (UG/G) (34985)		VANA- DIUM BOT MAT <63U WS FIELD (UG/G) (35005)	YTTER- BIUM BOT MAT <63U WS FIELD (UG/G) (35015)	YTTRIUM BOT MAT <63U WS FIELD (UG/G) (35010)	ZINC BOT MAT <63U WS FIELD (UG/G) (35020)
JUL 30	13	1.0	. 2	100	<1	<1	8	2	.210	98	2	20	420
Date	URANIUM BOT MAT <63U WS FIELD (UG/G) (35000)												
JUL 30	2.3												

673756163503900 AUFEIS CREEK AT PORT ACCESS ROAD NEAR KIVALINA

Date	Time	Medium code	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	TEMPER- ATURE WATER (DEG C) (00010)
JUL													
28	1430	9	1028	80020	325	1.2	764	11.4	7.5	7.9	208	216	12.4
29	0915	H	1028	80020	325								
		MAGNE-	POTAS-			MAGNE-	POTAS-		ALKA- LINITY	ALKA- LINITY	ANC WATER	BICAR- BONATE	CHLO-
Date	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	CALCIUM BOT MAT <63U WS FIELD PERCENT (34830)	SIUM BOT MAT <63U WS FIELD PERCENT (34900)	SIUM BOT MAT <63U WS FIELD PERCENT (34940)	SODIUM BOT MAT <63U WS FIELD PERCENT (34960)	WAT.DIS FET LAB (MG/L CACO3) (29801)	WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	UNFLTRD FET FIELD MG/L AS CACO3 (00410)	WATER DIS IT FIELD MG/L AS HCO3 (00453)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)
JUL	DIS- SOLVED (MG/L AS CA) (00915)	SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SIUM, DIS- SOLVED (MG/L AS K) (00935)	DIS- SOLVED (MG/L AS NA) (00930)	BOT MAT <63U WS FIELD PERCENT	SIUM BOT MAT <63U WS FIELD PERCENT	SIUM BOT MAT <63U WS FIELD PERCENT	BOT MAT <63U WS FIELD PERCENT	WAT.DIS FET LAB (MG/L CACO3) (29801)	WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	UNFLTRD FET FIELD MG/L AS CACO3 (00410)	WATER DIS IT FIELD MG/L AS HCO3 (00453)	DIS- SOLVED (MG/L AS CL) (00940)
	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	SIUM, DIS- SOLVED (MG/L AS K)	DIS- SOLVED (MG/L AS NA)	BOT MAT <63U WS FIELD PERCENT	SIUM BOT MAT <63U WS FIELD PERCENT	SIUM BOT MAT <63U WS FIELD PERCENT	BOT MAT <63U WS FIELD PERCENT	WAT.DIS FET LAB (MG/L CACO3)	WAT DIS TOT IT FIELD MG/L AS CACO3	UNFLTRD FET FIELD MG/L AS CACO3	WATER DIS IT FIELD MG/L AS HCO3	DIS- SOLVED (MG/L AS CL)

NORTHWEST ALASKA—Continued

673756163503900 AUFEIS CREEK AT PORT ACCESS ROAD NEAR KIVALINA—Continued

Date	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SULFUR BOT MAT <63U WS FIELD PERCENT (34970)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)
JUL 28 29	<.10	2.78	26.5	 .14	126	<.015	E.07	E.07	.034	<.002	E.004	<.007	.005
Date	PHOS- PHORUS BOT MAT <63U WS FIELD PERCENT (34935)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, INORG, SED, BM WS,<63U DW, REC (PER- CENT) (49269)	CARBON, ORG + INORG, SED, BM WS,<63U DW, REC PERCENT (49267)	CARBON, ORGANIC SED, BM WS,<63U DW, REC (PER- CENT) (49266)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
JUL 28 29	.120	1.8	 .13	 3.5	3.3	<20	<.04	< . 8	. 6 	<10	<.08	E1.6	<1
Date JUL	ALUM- INUM BOT MAT <63U WS FIELD PERCENT (34790)	ANTI- MONY BOT MAT <63U WS FIELD (UG/G) (34795)	ARSENIC BOT MAT <63U WS FIELD (UG/G) (34800)	BARIUM BOT MAT <63U WS FIELD (UG/G) (34805)	BERYL- LIUM BOT MAT <63U WS FIELD (UG/G) (34810)	BISMUTH BOT MAT <180UWS FIELD (UG/G) (34816)	CADMIUM BOT MAT <63U WS FIELD (UG/G) (34825)	CERIUM BOT MAT <63U WS FIELD (UG/G) (34835)	CHRO- MIUM BOT MAT <63U WS FIELD (UG/G) (34840)	COBALT BOT MAT <63U WS FIELD (UG/G) (34845)	COPPER BOT MAT <63U WS FIELD (UG/G) (34850)	EURO- PIUM BOT MAT <63U WS FIELD (UG/G) (34855)	GALLIUM BOT MAT <63U WS FIELD (UG/G) (34860)
28 29	6.6	.9	13	1100	2.4	<1	1.3	49	130	 14	 29	1	16
Date	GOLD BOT MAT <63U WS FIELD (UG/G) (34870)	HOLMIUM BOT MAT <63U WS FIELD (UG/G) (34875)	IRON BOT MAT <63U WS FIELD PERCENT (34880)	LANTHA- NUM BOT MAT <63U WS FIELD (UG/G) (34885)	LEAD BOT MAT <63U WS FIELD (UG/G) (34890)	LITHIUM BOT MAT <63U WS FIELD (UG/G) (34895)	MANGA- NESE BOT MAT <63U WS FIELD (UG/G) (34905)	MERCURY BOT MAT <63U WS FIELD (UG/G) (34910)	MOLYB- DENUM BOT MAT <63U WS FIELD (UG/G) (34915)	NEODYM- IUM BOT MAT <63U WS FIELD (UG/G) (34920)	NICKEL BOT MAT <63U WS FIELD (UG/G) (34925)	NIOBIUM BOT MAT <63U WS FIELD (UG/G) (34930)	SCAN- DIUM BOT MAT <63U WS FIELD (UG/G) (34945)
JUL 28 29	 <1	 <1	 3.7	 26	 50	 58	 530	 .13	 .8	 25	 50	 9	 15
Date	SELE- NIUM BOT MAT <63U WS FIELD (UG/G) (34950)	SILVER BOT MAT <63U WS FIELD (UG/G) (34955)	STRON- TIUM BOT MAT <63U WS FIELD (UG/G) (34965)	TANTA- LUM BOT MAT <63U WS FIELD (UG/G) (34975)	THAL- LIUM BED MAT D SIEVE <63 U TOTAL (UG/G) (04064)	THORIUM BOT MAT <63U WS FIELD (UG/G) (34980)	TIN BOT MAT <63U WS FIELD (UG/G) (34985)	TITA- NIUM, SED, BM WS,<63U DRY WGT REC PERCENT (49274)	VANA- DIUM BOT MAT <63U WS FIELD (UG/G) (35005)	YTTER- BIUM BOT MAT <63U WS FIELD (UG/G) (35015)	YTTRIUM BOT MAT <63U WS FIELD (UG/G) (35010)	ZINC BOT MAT <63U WS FIELD (UG/G) (35020)	URANIUM BOT MAT <63U WS FIELD (UG/G) (35000)
JUL 28 29	2.2	. 2	120	 <1	 <1	10	 3	.220	130	2	 20	330	3.1

SOUTH-CENTRAL ALASKA

613131149551000 -- BIG LAKE SE OF BURSTON ISLAND NEAR WASILLA

NITRO- PHOS-

				AGENCY	AGENCY	MOISLA	NITRO- ND- GEN	PHOS- NH4 PHO	PIIG				
Date	Time	Record number	Medium code	COL- LECTING	ANA-	TURE CONTENT DRY WT. (% OF TOTAL) (00495)	TOTAL	TOTAL IN BOT. MAT. (MG/KG AS P)	SAMPLE PURPOSE CODE	CODES	SAMPLER TYPE (CODE) (84164)		
AUG 15	1245	00200287	Н	1028	80020	90	40	3600	10.00	8010	5030		
		6131	150149554	1900 BI	G LAKE 1	NW OF B	URSTON	ISLAND	NR WAS	ILLA AK			
Date	Time	Record number	Medium code	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SAM- PLING DEPTH (M) (00098)	OXYGEN, DISLAND SOLVED (MG/L) (00300)			
AUG 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15	1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130	00200690 00200691 00200692 00200693 00200694 00200695 00200697 00200697	9 9	17.3 17.3 17.3 17.3 13.6 9.7 8.0 6.9 6.1 5.5 5.1 5.0 4.9 4.8 4.8	770 770 770 770 770 770 770 770 770 770	1028 1028 1028 1028 1028 1028 1028 1028	1028 1028 1028 1028 1028 1028 1028 1028	146 147 148	.50 1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0 17.0 21.0 23.0 24.0 24.5	10.4 10.4 10.4 10.4 12.2 11.2 9.8 8.6 6.6 5.0 2.9 2.2 .2			
Date	Time	Record number	Medium code	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	MOIS- TURE CONTENT DRY WT. (% OF TOTAL) (00495)	NITRO- GEN, NH4 TOTAL IN BOT. MAT. (MG/KG AS N) (00611)	PHOS- PHORUS TOTAL IN BOT. MAT. (MG/KG AS P) (00668)	CARBON, INORG, SED, BM WS,<2MM DW, REC (G/KG) (49270)	CARBON, ORGANIC SED, BM WS,<2MM DW, REC (G/KG) (49271)	CARBON, ORG + INORG SED, BM WS,<2MM DW, REC (G/KG) (49272)	TERPHEN YL D14- SURROGT SED, BM WS,<2MM DW, REC PERCENT (49278)
AUG 15 15	1200 1210	00200273 00200274	H H	1028 1028	80020 80020	7.30 7.30	93	30	4500	3.8 3.9	120 120	120 120	87 79
Date	BIPHENL 2FLUORO SURROGT SED, BM WS,<2MM DW, REC PERCENT (49279)	BENZENE NITROD5 SURROGT SED, BM WS,<2MM DW, REC PERCENT (49280)	BENZENE HEXA- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49343)	PHTHAL- ATE, DIBUTYL SED, BM WS,<2MM DW, REC (UG/KG) (49381)	PHTHAL ATE, D IOCTYL SED, BM WS,<2MM DW, REC (UG/KG) (49382)	PHTHAL- ATE, D IETHYL SED, BM WS,<2MM DW, REC (UG/KG) (49383)	PHTHAL- ATE,DI- METHYL SED, BM WS,<2MM DW, REC (UG/KG) (49384)	PYRENE, SED, BM WS,<2MM DW, REC (UG/KG) (49387)	PYRENE, 1- METHYL, SED, BM WS,<2MM DW, REC (UG/KG) (49388)	BENZO (A) PYRENE SED, BM WS,<2MM DW, REC (UG/KG) (49389)	INDENO 123-CD PYRENE SED, BM WS,<2MM DW, REC (UG/KG) (49390)	2,2'-BI QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49391)	QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49392)
AUG 15 15	72 66	58 57	<420 <500	E180 E200	<420 <500	E28 E30	<420 <500	E78 <500	<420 <500	<420 <500	<420 <500	<420 <500	<420 <500
Date	PHENAN- THRI- DINE SED, BM WS,<2MM DW, REC (UG/KG) (49393)	ISO- QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49394)	TOLUENE 2,4-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49395)	TOLUENE 2,6-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49396)	BENZO K FLUOR- ANTHENE SED, BM WS,<2MM DW, REC (UG/KG) (49397)	9H-FLU- ORENE, 1METHYL SED, BM WS,<2MM DW, REC (UG/KG) (49398)	9H-FLU- ORENE SED, BM WS,<2MM DW, REC (UG/KG) (49399)	ISOPHOR ONE SED, BM WS,<2MM DW, REC (UG/KG) (49400)	METHANE 2CHLORO ETHOXY SED, BM WS,<2MM DW, REC (UG/KG) (49401)	NAPHTH- ALENE, SED, BM WS,<2MM DW, REC (UG/KG) (49402)	NAPTHAL ENE, 12 DIMETHL SED, BM WS,<2MM DW, REC (UG/KG) (49403)	NAPTHAL ENE, 16 DIMETHL SED, BM WS,<2MM DW, REC (UG/KG) (49404)	NAPTHAL ENE,236 TRIMETH SED, BM WS,<2MM DW, REC (UG/KG) (49405)
AUG 15 15	<420 <500	<420 <500	<420 <500	<420 <500	<420 <500	<420 <500	<420 <500	<420 <500	<420 <500	E97 <500	<420 <500	E110 E130	<420 <500

SOUTH-CENTRAL ALASKA—Continued

613150149554900 -- BIG LAKE NW OF BURSTON ISLAND NR WASILLA—Continued

	ENE, 26 DIMETHL	CHLORO- SED, BM WS,<2MM DW, REC	HI) PERY LENE SED, BM WS,<2MM	THRENE SED, BM WS,<2MM DW, REC	SED, BM WS,<2MM DW, REC	WS,<2MM	PHENOL SED, BM WS,<2MM DW, REC (UG/KG)	WS,<2MM	CHLORO- SED, BM WS,<2MM DW, REC	SED, BM	ETHHEXL SED, BM WS,<2MM	TEBUTYL BENZYL-	THYLENE SED, BM WS,<2MM DW, REC (UG/KG)
AUG 15 15	580 E420	<420 <500	<420 <500	E35 E37	<420 <500	<420 <500	E180 E220	<420 <500	<420 <500	E220 <500	E210 1900	E320 E320	<420 <500
Date	WS.<2MM	DINE SED, BM WS,<2MM DW, REC (UG/KG)	AMINE, N NITROSO SED, BM WS,<2MM DW, REC (UG/KG)	DIPHNYL AMINE,N NITROSO SED, BM WS,<2MM DW, REC (UG/KG) (49433)	CENE SED, BM WS,<2MM DW, REC (UG/KG)	CENE, 2 - METHYL - SED, BM WS, <2MM DW, REC (UG/KG)	CENE SED, BM WS,<2MM DW, REC (UG/KG)	ANTHRA- QUINONE SED, BM WS,<2MM DW, REC (UG/KG)	CHLORO- SED, BM WS,<2MM DW, REC (UG/KG)	O-DI- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG)	M-DI- CHLORO- SED, BM WS,<2MM DW, REC	SED, BM WS.<2MM	SED, BM WS,<2MM DW, REC (UG/KG)
AUG 15 15	<420 <500	<420 <500	<420 <500	<420 <500	<420 <500	<420 <500	<420 <500	<420 <500	<420 <500	<420 <500	<420 <500	<420 <500	<420 <500
Date	WS < 2MM	NITRO- SED, BM WS,<2MM DW, REC	DW, REC	WS,<2MM DW, REC	SED, BM WS,<2MM DW, REC	BENZO- SED, BM WS,<2MM DW, REC	PHNPHNL ETHER SED, BM WS,<2MM DW, REC (UG/KG)	PHNPHN LETHER SED, BM WS,<2MM DW, REC	WS,<2MM DW, REC	FLUOR- ANTHENE SED, BM WS,<2MM DW, REC	ANISOLE SED, BM WS,<2MM		BED MAT WS <2MM DRY WGT REC (UG/KG)
AUG 15 15	<420 <500	<420 <500	<420 <500	<420 <500	<420 <500	<420 <500	<420 <500	<420 <500	<420 <500	<420 <500	<420 <500	<420 <500	E69 <500
	BED MAT WS <2MM	BED MAT WS <2MM DRY WGT REC (UG/KG)	WS <2MM DW REC	PURPOSE CODE		LOC. METERS	SAMPLER TYPE (CODE) (84164)	ULE 2502 (GRAMS)					
	<420 <500	<420 <500		10.00		25.0 25.0	5030 5030						

613206149505800 -- BIG LAKE E OF HEARN ISLAND NEAR WASILLA

							NITRO-	PHOS-			
				AGENCY	AGENCY	MOIS-	GEN, NH4	PHORUS			
				COL-	ANA-	TURE	TOTAL	TOTAL			
				LECTING	LYZING	CONTENT	IN BOT.	IN BOT.		SAM-	
		Record	Medium	SAMPLE	SAMPLE	DRY WT.	MAT.	MAT.	SAMPLE	PLING	SAMPLER
Date	Time	number	code	(CODE	(CODE	(% OF	(MG/KG	(MG/KG	PURPOSE	METHOD,	TYPE
				NUMBER)	NUMBER)	TOTAL)	AS N)	AS P)	CODE	CODES	(CODE)
				(00027)	(00028)	(00495)	(00611)	(00668)	(71999)	(82398)	(84164)
AUG											
15	1410	00200288	H	1028	80020	93	72	850	10.00	8010	5030

SOUTH-CENTRAL ALASKA—Continued

613215149522600 -- BIG LAKE S OF LONG ISLAND NEAR WASILLA

Date	Time	Record number	Medium code	TEMPER- ATURE WATER (DEG C) (00010)	PRES- SURE (MM OF HG)	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	ANA- LYZING SAMPLE (CODE NUMBER)	CON- DUCT- ANCE (US/CM)	DEPTH (M)	DIS- SOLVED (MG/L)			
AUG 15	1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334	002007701 00200702 00200703 00200705 00200706 00200706 00200708 00200710 00200711 00200712 00200713 00200714 00200715 00200716	99999999999999	17.4 17.4 17.4 17.4 17.4 16.7 13.6 11.1 9.8 8.6 7.4 6.3 5.6 5.3	770 770 770 770 770 770 770 770 770 770	1028 1028 1028 1028 1028 1028 1028 1028	1028 1028 1028 1028 1028 1028 1028 1028	130 129 130 129 129 129 131 142 145 147 150 154 161 165 171	.50 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0	10.8 10.4 10.5 10.2 10.3 10.6 10.3 10.7 10.1 9.3 6.9 4.2 .8 .3 .2			
Date	Time	Record number	Medium code	COL- LECTING SAMPLE (CODE NUMBER)	SAMPLE (CODE	PAR- ENCY (SECCHI DISK) (M)	DRY WT. (% OF TOTAL)	NITRO- GEN,NH4 TOTAL IN BOT. MAT. (MG/KG AS N) (00611)	IN BOT. MAT. (MG/KG AS P)	INORG, SED, BM WS,<2MM DW, REC (G/KG)	CARBON, ORGANIC SED, BM WS,<2MM DW, REC (G/KG)	WS,<2MM	WS,<2MM DW, REC
AUG 15 15		00200276 00200275	H H	1028 1028	80020 80020	6.10 6.10	92 	98 	6600	1.2	130 110	130 120	87 84
Date	2FLUORO SURROGT SED, BM WS,<2MM DW, REC	BENZENE NITROD5 SURROGT SED, BM WS,<2MM DW, REC PERCENT (49280)	HEXA- CHLORO- SED, BM WS,<2MM	ATE, DIBUTYL SED, BM WS,<2MM	ATE, D IOCTYL SED, BM WS,<2MM	WS,<2MM	ATE,DI- METHYL SED, BM WS,<2MM	SED, BM WS,<2MM	WS,<2MM	SED, BM WS,<2MM	INDENO 123-CD PYRENE SED, BM WS,<2MM DW, REC (UG/KG) (49390)	2,2'-BI QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49391)	QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49392)
AUG 15 15	74 73	62 58	<500 <500	E180 E220	<500 <500	<500 E31	<500 <500	E98 <500	<500 <500		<500 <500	<500 <500	<500 <500
Date	PHENAN- THRI- DINE SED, BM WS,<2MM DW, REC (UG/KG) (49393)	LINE, SED, BM WS,<2MM	WS,<2MM	2,6-DI- NITRO- SED, BM WS,<2MM	WS,<2MM DW, REC	ORENE, 1METHYL SED, BM WS,<2MM	ORENE SED, BM WS,<2MM DW, REC (UG/KG)	ISOPHOR ONE SED, BM WS,<2MM DW, REC (UG/KG) (49400)	ETHOXY SED, BM WS,<2MM	ALENE, SED, BM WS,<2MM DW, REC	NAPTHAL ENE, 12 DIMETHL SED, BM WS,<2MM DW, REC (UG/KG) (49403)	ENE, 16 DIMETHL SED, BM WS,<2MM	NAPTHAL ENE,236 TRIMETH SED, BM WS,<2MM DW, REC (UG/KG) (49405)
AUG 15 15	<500 <500	<500 <500	<500 <500	<500 <500	<500 <500	<500 <500	<500 <500	<500 <500	<500 <500	<500 <500	<500 <500	E150 E160	<500 <500
Date	NAPTHAL ENE, 26 DIMETHL SED, BM WS,<2MM DW, REC (UG/KG) (49406)	NAPTHAL ENE, 2- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49407)	BENZO(G HI)PERY LENE SED, BM WS,<2MM DW, REC (UG/KG) (49408)	PHENAN THRENE SED, BM WS,<2MM DW, REC (UG/KG) (49409)	PHENAN THRENE 1METHYL SED, BM WS,<2MM DW, REC (UG/KG) (49410)	4HCYPEN PHENAN THRENE SED, BM WS,<2MM DW, REC (UG/KG) (49411)	PHENOL SED, BM WS,<2MM DW, REC (UG/KG) (49413)	3,5- XYLENOL SED, BM WS,<2MM DW, REC (UG/KG) (49421)	M-CRE- SOL, 4- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49422)	PHENOL C8- ALKYL- SED, BM WS,<2MM DW, REC (UG/KG) (49424)	PHTHALA TE,BIS2 ETHHEXL SED, BM WS,<2MM DW, REC (UG/KG) (49426)	PHTHALA TEBUTYL BENZYL- SED, BM WS,<2MM DW, REC (UG/KG) (49427)	ACENAPH THYLENE SED, BM WS,<2MM DW, REC (UG/KG) (49428)
AUG 15 15	700 720	<500 <500	<500 <500	E38 <500	<500 <500	<500 <500	E220 E230	<500 <500	<500 <500	<500 E260	E300 E250	E370 E370	<500 <500

SOUTH-CENTRAL ALASKA—Continued

613215149522600 -- BIG LAKE S OF LONG ISLAND NEAR WASILLA—Continued

Date	ACENAPH THENE SED, BM WS,<2MM DW, REC (UG/KG) (49429)	ACRI- DINE SED, BM WS,<2MM DW, REC (UG/KG) (49430)	DPROPYL AMINE,N NITROSO SED, BM WS,<2MM DW, REC (UG/KG) (49431)	DIPHNYL AMINE,N NITROSO SED, BM WS,<2MM DW, REC (UG/KG) (49433)	ANTHRA- CENE SED, BM WS,<2MM DW, REC (UG/KG) (49434)	ANTHRA- CENE, 2- METHYL- SED, BM WS, <2MM DW, REC (UG/KG) (49435)	BENZ(A) ANTHRA- CENE SED, BM WS,<2MM DW, REC (UG/KG) (49436)	9,10- ANTHRA- QUINONE SED, BM WS,<2MM DW, REC (UG/KG) (49437)	BENZENE 124TRI- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49438)	BENZENE O-DI- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49439)	BENZENE M-DI- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49441)	BENZENE P-DI- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49442)	AZO- BENZENE SED, BM WS,<2MM DW, REC (UG/KG) (49443)
AUG 15 15	<500 <500	<500 <500	<500 <500	<500 <500	<500 <500	<500 <500	<500 <500	<500 <500	<500 <500	<500 <500	<500 <500	<500 <500	<500 <500
Date	BENZENE NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49444)	BENZENE PNTCHLR NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49446)	CARBA- ZOLE SED, BM WS,<2MM DW, REC (UG/KG) (49449)	CHRY- SENE SED, BM WS,<2MM DW, REC (UG/KG) (49450)	P- CRESOL SED, BM WS,<2MM DW, REC (UG/KG) (49451)	THIOPH ENE,DI- BENZO- SED, BM WS,<2MM DW, REC (UG/KG) (49452)	4-BROMO PHNPHNL ETHER SED, BM WS,<2MM DW, REC (UG/KG) (49454)	4CHLORO PHNPHN LETHER SED, BM WS,<2MM DW, REC (UG/KG) (49455)	BIS2CHL ETHYL ETHER SED, BM WS,<2MM DW, REC (UG/KG) (49456)	BENZOB FLUOR- ANTHENE SED, BM WS,<2MM DW, REC (UG/KG) (49458)	PENTA- CHLORO- ANISOLE SED, BM WS,<2MM DW, REC (UG/KG) (49460)	DIBENZ (AH), AN THRACEN SED, BM WS,<2MM DW, REC (UG/KG) (49461)	FLUOR- ANTHENE BED MAT WS <2MM DRY WGT REC (UG/KG) (49466)
AUG 15 15	<500 <500	<500 <500	<500 <500	<500 <500	<500 <500	<500 <500	<500 <500	<500 <500	<500 <500	<500 <500	<500 <500	<500 <500	E83 <500
Date	PHENOL, 2CHLORO BED MAT WS <2MM DRY WGT REC (UG/KG) (49467)	BENZOCI NNOLINE BED MAT WS <2MM DRY WGT REC (UG/KG) (49468)	NAPTHAL ENE, 2- ETHYL- SED BM WS <2MM DW REC (UG/KG) (49948)	SAMPLE PURPOSE CODE (71999)	SAM- PLING METHOD, CODES (82398)	DEPTH TO BOT. FROM SURFACE AT SAMP LOC. METERS (82903)	SAMPLER TYPE (CODE) (84164)	SAMPLE WEIGHT SCHED- ULE 2502 (GRAMS) (99854)					
AUG 15 15	<500 <500	<500 <500	<500 <500	10.00	5010 5010	15.8 15.8	5030 5030	2.7					

613309149513500 -- BIG LAKE NE OF PETROVICH ISLAND NEAR WASILLA

Date	Time	Record number	Medium code	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	MOIS- TURE CONTENT DRY WT. (% OF TOTAL) (00495)	NITRO- GEN,NH4 TOTAL IN BOT. MAT. (MG/KG AS N) (00611)	PHOS- PHORUS TOTAL IN BOT. MAT. (MG/KG AS P) (00668)	SAMPLE PURPOSE CODE (71999)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)
AUG 15	1430	00200289	н	1028	80020	95	170	1700	10 00	8010	5030

Figure 3. Locations of ground-water wells

Location of Mendenhall Valley wells.

JUNEAU

582136134344802. Local number, CD04006631ACBC1015.

LOCATION.--Lat 58°21′36″, Long 134°34′48″, in NW¹/₄ SW¹/₄ NE¹/₄ sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well located about 20 ft southeast of a trail running between the intersection of Jordan Avenue and Teal Street, about 50 ft south of Teal Street, and about 20 ft northeast of a footbridge over Jordan Creek, Juneau. Owner: City and Borough of Juneau

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.25-in. steel casing, depth 8 ft, screen opening from 6 to 8 ft using a sandpoint.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, and US Forest Service personnel May 1997 to current year.

DATUM.--Elevation of land-surface datum is 19.84 ft above sea level (determined by levels survey). Measuring point: Top of casing, 0.6 ft above land-surface datum.

REMARKS.--Well drilled May 1997 by USGS, designated as Duck Creek #2 (Jordan Avenue Well). Area near well is intermittently flooded. Water level often above top of casing.

PERIOD OF RECORD.--May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.1 ft above land-surface datum, July 13, 1997; lowest, 3.28 ft below land-surface datum, March 12, 1998.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DATE	WATER LEVEL
Mar 22	3.08

582146134351701. Local number, CD04006631BBDD1016.

LOCATION.--Lat $58^{\circ}21'46''$, Long $134^{\circ}35'17''$, in $SE^{1}/_{4}$ NW $^{1}/_{4}$ NW $^{1}/_{4}$ sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well located near the left bank of Duck Creek, about 10 ft northwest of the intersection of Cessna Drive and Alex Holden Way, Juneau. Owner: City and Borough of Juneau.

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 12 ft, screen opening from 10 to 12 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, and US Forest Service personnel June 1997 to current year.

DATUM.--Elevation of land-surface datum is 25.35 ft above sea level (determined by levels survey). Measuring point: Top of casing 0.88 ft above land-surface datum.

REMARKS.--Well drilled May 1997 by USGS, designated as Duck Creek #3 (Cessna Drive Well).

PERIOD OF RECORD.--June 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.9 ft below land-surface datum, July 13, 1997; lowest, 10.06 ft below land-surface datum, February 21, 2000.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
Oct 11	8.12	Jun 13	8.81
Mar 22	9.80	Jul 02	8.32
Jun 06	9.32		

JUNEAU-CONTINUED

582147134351401. Local number, CD04006631BBDB1017.

LOCATION.--Lat 58°21′47″, Long 134°35′14″, in SE¹/4 NW¹/4 NW¹/4 sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well located near the right bank of Duck Creek, about 70 ft downstream of the Berners Avenue crossing, Juneau. Owner: City and Borough of Juneau.

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 8.8 ft, screen opening 6.8 to 8.8 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, and US Forest Service personnel June 1997 to current year.

DATUM.--Elevation of land-surface datum is 19.52 ft above sea level (determined by levels survey). Measuring point: Top of casing 1.9 ft above land-surface datum.

REMARKS.--Well drilled 1997 by USGS, designated as Duck Creek #4 (Berners Avenue Well). Water from well was sampled for water quality on September 5, 1997, January 29, 1998, and September 3, 1998.

PERIOD OF RECORD.--June 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.20 ft below land-surface datum, September 3, 1998; lowest, 4.12 ft below land-surface datum, March 21, 2000.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 11	1.65	Jun 25	2.89
Mar 22	3.81	Jun 26	2.86
Jun 06	3.26	Jul 02	2.71
Jun 12	2.66	Aug 21	1.44
Jun 13	2.59	_	

582154134350501. Local number, CD04006630CDCB1027.

LOCATION.--Lat $58^{\circ}21'54''$, Long $134^{\circ}35'05''$, in $SW^{1}_{/4}$ $SE^{1}_{/4}$ $SW^{1}_{/4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well located 15 ft east of a tributary to Duck Creek and about 1,200 ft northwest of Jordan Creek, 90 ft southwest of the First Church of God on Ka-See-An Drive, Juneau. Owner: First Church of God.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.25-in steel casing., depth 17.5 ft, screen opening from 15.5 to 17.5 ft using a sandpoint. INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, or U.S. Forest Service personnel June 1997 to current year.

DATUM.--Elevation of land-surface datum is 26.30 ft above sea level (determined by levels survey). Measuring point: Top of casing 2.05 ft above land-surface datum.

REMARKS.--Well drilled June 1997 by USGS, designated as Duck Creek #5 (Ka-See-An Drive Church Well).

PERIOD OF RECORD.--June 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 4.41 ft below land-surface datum, October 23, 1999; lowest, 9.62 ft below land-surface datum, March 12, 1998.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
Oct 11	6.20	Mar 22	9.44

JUNEAU-CONTINUED

582156134351701. Local number, CD04006631BBBA1018.

LOCATION.--Lat 58°21′56″, Long 134°35′17″, in NW¹/4 NW¹/4 NW¹/4 sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well located in Duck Creek channel about 90 ft downstream from driveway crossing to Federal Aviation Administration building, about 50 ft southwest of Old Glacier Highway, Juneau. Owner: Federal Aviation Administration. AOUIFER.--Sand and gravel of the Ouaternary System.

WELL CHARACTERISTICS.--Diameter 1.25-in. steel casing, depth 11 ft, screen opening from 9 to 11 ft using sandpoint.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, and US Forest Service personnel May 1997 to curretn year.

DATUM.--Elevation of land-surface datum is 18.48 ft above sea level (determined by levels survey). Measuring point: Top of casing 1.86 ft above land-surface datum.

REMARKS.--Well drilled May 1997 by USGS, designated as Duck Creek #6 (FAA Downstream Well). Well is in stream channel and is intermittently flooded. Water level often above top of casing.

PERIOD OF RECORD.--May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.7 ft above land surface datum, July 13 and August 14, 1997; lowest, 3.62 ft below land-surface datum, March 13, 1998.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DATE	WATER LEVEL	DATE	WATER LEVEL
Mar 22 Jun 13	-1.51 -0.12	Jul 02	1.63

Minus sign indicates water level above land-surface datum.

582158134352001. Local number, CD04006630CCCD2017.

LOCATION.--Lat 58°21′58″, Long 134°35′20″, in SW¹/₄ SW¹/₄ SW¹/₄ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located in Duck Creek channel, 20 ft upstream from driveway crossing to Federal Aviation Administration building, about 50 ft southwest of Old Glacier Highway, Juneau. Owner: Federal Aviation Administration. AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.25-in. steel casing, depth 12 ft, screen opening from 10 to 12 ft using sandpoint.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, and US Forest Service personnel May 1997 to current year.

DATUM.--Elevation of land-surface datum is 19.62 ft above sea level (determined by levels survey). Measuring point: Top of casing 1.2 ft above land-surface datum.

REMARKS.--Well drilled May 8, 1997 by USGS, designated as Duck Creek #7 (FAA Upstream Well). Well is in stream channel and is intermittently flooded. Water level often above top of casing.

PERIOD OF RECORD.--May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.7 ft above land surface datum, July 13 and August 14, 1997; lowest, 3.63 ft below land-surface datum, July 2, 1998.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 11 Jun 13	X -0.74	Jul 02	1.98

X stream stage was higher than top of well casing

Minus sign indicates water level was above land-surface datum.

JUNEAU-CONTINUED

582203134351601. Local number, CD04006630CCDB1028.

LOCATION.--Lat $58^{\circ}22'03''$, Long $134^{\circ}35'16''$, in $SE^{1}_{/4}SW^{1}_{/4}SW^{1}_{/4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 quad), Hydrologic Unit 19010301. Well located on left bank of Duck Creek about 55 ft downstream from Del Rae Road crossing, 25 ft from Mendenhall Loop Road, and 0.25 mi. south of the intersection of Mendenhall Loop Road and Egan Drive, Juneau. Owner: City and Borough of Juneau.

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS. - Diameter 1.5-in. steel casing, depth 14 ft, screen opening from 12 to 14 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, and US Forest Service personnel May 1997 to current year.

DATUM.--Elevation of land-surface datum is 23.10 ft above sea level (determined by levels survey). Measuring point: Top of casing 1.56 ft above land-surface datum.

REMARKS.--Well drilled May 6, 1997 by USGS, designated as Duck Creek #10 (Del Rae Road Well). Well is in stream channel and is intermittently flooded. Water level often above top of casing.

PERIOD OF RECORD.--May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.22 ft below land surface datum, December 30, 1999; lowest, 7.59 ft below land-surface datum, March 12, 1998.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
Oct 11	1.68	Jun 13	4.19
Mar 21	7.14	Jul 02	4.41
Jun 06	3.27		

582203134351701. Local number, CD04006630CCBD3015.

LOCATION.--Lat 58°22′03″, Long 134°35′17″, in NW¹/₄ SW¹/₄ SW¹/₄ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well located on left bank of Duck Creek, 30 ft downstream from Del Rae Road crossing, and 0.25 mi. south of the intersection of Mendenhall Loop Road and Egan Drive, Juneau. Owner: City and Borough of Juneau.

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.5-in. PVC casing, depth 11 ft, perforated from 9 to 11 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, and US Forest Service personnel May 1997 to current year.

DATUM.--Elevation of land-surface datum is 22.14 ft above sea level (determined by levels survey). Measuring point: Top of casing 1.30ft above land-surface datum.

REMARKS.--Well drilled May 6, 1997 by USGS, designated as Duck Creek #9 (Del Rae Road Well). Well is near stream channel and is intermittently flooded. Water level often above top of casing.

PERIOD OF RECORD.--May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.50 ft above land surface datum, August 14, 1997; lowest, 8.39 ft below land-surface datum, May 6, 1997.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
Oct 11	0.45	Jun 13	1.75
Mar 21	6.39	Jul 02	3.36
Jun 06	1.86		

JUNEAU-CONTINUED

582203134351901. Local number, CD04006630CCBD2015.

LOCATION.--Lat $58^{\circ}22'03''$, Long $134^{\circ}35'19''$, in $NW^{1}_{/4}$ $SW^{1}_{/4}$ $SW^{1}_{/4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well located on right bank of Duck Creek, 75 ft downstream from Del Rae Road crossing and 0.25 mi. south of the intersection of Mendenhall Loop Road and Egan Drive, Juneau. Owner: City and Borough of Juneau.

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 2 in. steel casing, depth 15 ft, screen opening from 12 to 15 ft using sandpoint.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, and US Forest Service personnel May 1997 to current year.

DATUM.--Elevation of land-surface datum is 33 ft above sea level (determined from topographic map). Measuring point: Top of casing 1.66 ft above land-surface datum.

REMARKS.--Well drilled May 6, 1997 by USGS, designated as Duck Creek #8 (Del Rae Well). Well is near stream channel and is intermittently flooded. Water level often above top of casing.

PERIOD OF RECORD.--May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.15 ft above land surface datum, October 11, 2001, lowest, 9.09 ft below land-surface datum, March 21, 2000.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

	WATER
DATE	LEVEL
Oct 11	X
Mar 21	8.47
Jun 06	4.56
Jun 13	2.81
Jul 02	5.81

X surface-water affected, stream stage higher than top of well casing

582206134351401. Local number, CD04006630CCAC1029.

LOCATION.--Lat 58°22′06″, Long 134°35′14″, in NE¹/₄ SW¹/₄ SW¹/₄ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well located in Duck Creek stream channel, 12 ft upstream from Del Rae Road crossing, 900 ft southwest of intersection of Mendenhall Loop Road and Egan Drive, Juneau. Owner: City and Borough of Juneau.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.5-in PVC casing., depth 12 ft, slotted from 10 to 12 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast and US Forest Service personnel May 1997 to current year.

DATUM.--Elevation of land-surface datum is 21.25 ft above sea level (determined by levels survey). Measuring point: Top of casing 1.8 ft above land-surface datum.

REMARKS.--Well drilled May 7, 1997 by USGS, designated as Duck Creek #11 (Del Rae Road Well, 10 ft upstream from culvert). Well is in stream channel and is intermittently flooded. Water level often above top of casing. Unknown debris placed inside well casing at about 3.6 ft below land surface sometime prior to March 12, 1998. Water levels cannot be determined below the obstruction, but water levels above the obstruction appear to representative of aquifer conditions.

PERIOD OF RECORD .-- May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.4 ft above land-surface datum, July 13, 1997; lowest, 5.35 ft below land-surface datum, May 15, 2000.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 11	-0.66	Jun 13	0.03
Mar 21	O	Jul 02	0.89
Jun 06	0.00		

Minus sign indicates water level above land-surface datum.

O Obstruction at about 2.4 ft below land surface datum.

JUNEAU-CONTINUED

582208134351201. Local number, CD04006630CCAB1030.

LOCATION.--Lat 58°22′08″, Long 134°35′12″, in NE¹/₄ SW¹/₄ SW¹/₄ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well located mid-channel of Duck Creek, about 130 ft upstream from Del Rae Road crossing, and 700 ft southwest of the intersection of Mendenhall Loop Road and Egan Drive, Juneau. Owner: City and Borough of Juneau.

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.5-in. PVC casing, depth 11 ft, slotted from 7 to 10 ft.

INSTRUMENTATION.-- Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, and US Forest Service personnel May 1997 to current year.

DATUM.--Elevation of land-surface datum is 21.22 ft above sea level (determined by levels survey). Measuring point: Top of casing 2.14 ft above land-surface datum.

REMARKS.--Well drilled May 7, 1997 by USGS, designated as Duck Creek #12 (Del Rae Road Well, farthest upstream). Well is in stream channel and is intermittently flooded. Water level often above top of casing.

PERIOD OF RECORD.--May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.79 ft above land-surface datum, October 11, 2001; lowest, 5.46 ft below land-surface datum, March 21, 2000.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 11 Mar 21	-0.79 5.04	Jun 06	0.19

Minus sign indicates water level above land-surface datum.

582208134352601. Local number, CD04006630CCBB1031.

LOCATION.--Lat $58^{\circ}22'08''$, Long $134^{\circ}35'26''$, in $NW^{1}/_{4}$ $SW^{1}/_{4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well located near a church parking lot, 55 ft northeast of Del Rae Road, and 105 ft southeast of the Lutheran Church, Juneau. Owner: Lutheran Church.

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.25-in. steel casing, depth 15 ft, screen opening from 13 to 15 ft using sandpoint.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, and US Forest Service personnel June 1997 to current year.

DATUM.--Elevation of land-surface datum is 26.74 ft above sea level (determined by levels survey). Measuring point: Top of steel coupling at top of casing 2.8 ft above land-surface datum.

REMARKS.--Well drilled June 1997 by USGS, designated as Duck Creek #13 (Lutheran Church Well). Well casing filled with sediment to about 12.2 ft.

PERIOD OF RECORD.--June 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.58 ft below land-surface datum, October 23, 1999; lowest, dry, March 21 and April 8, 2000.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
Oct 11	9.14	Jun 13	9.05
Mar 21	12.13	Jul 02	9.56

JUNEAU-CONTINUED

582215134350501. Local number, CD04006630CBAD1032.

LOCATION.--Lat $58^{\circ}22'15''$, Long $134^{\circ}35'05''$, in $NE^{1}_{/4}$ $NW^{1}_{/4}$ $SW^{1}_{/4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well located near right bank of Duck Creek, 20 ft upstream from a footbridge and 225 ft upstream from the intersection of Egan Drive and Mendenhall Loop Road, Juneau. Owner: City and Borough of Juneau.

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.25-in. steel casing, depth 12 ft, screen opening from 10 to 12 ft using sandpoint.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, and US Forest Service personnel May 1997 to current year.

DATUM.--Elevation of land-surface datum is 25.04 ft above sea level (determined by levels survey). Measuring point: Top of casing 0.70 ft above land-surface datum.

REMARKS.--Well drilled May 21, 1997 by USGS, designated as Duck Creek #14 (Superbear Well).

PERIOD OF RECORD.--May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured 1.17 ft below land-surface datum, October 9, 1999; lowest, 3.80 ft below land-surface datum, March 21, 2000.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
Oct 11	1.69	Jun 13	2.10
Mar 20	1.20	Jul 02	2.26
Jun 06	2.24		

JUNEAU-CONTINUED

582240134344501. Local number, CD04006630BADA2033.

LOCATION.--Lat $58^{\circ}22'40''$, Long $134^{\circ}34'45''$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ NW $^{1}/_{4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 NW quad) Hydrologic Unit 19010301. Well located about 270 ft up a trail from the northern end of the road through Kodzoff #1 trailer Park, Juneau. Owner: Goldbelt Corporation

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 2.0-in. steel casing, depth 18.5 ft. Two pipe wrenches are needed to open well.

INSTRUMENTATION.-- Intermittent measurements with chalked steel tape by USGS personnel February 2001 to October 2002; submersible pressure transducer/electric data logger from February 2001 to current year.

DATUM.--Elevation of land-surface datum is 40.57 ft above sea level (determined by levels survey). Measuring point: Top of casing 1.70 ft above land-surface datum.

REMARKS.--Well drilled October 27, 2000, designated as Kodzoff Trailer Park Well.

PERIOD OF RECORD.--February 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 7.91ft below land-surface-datum, August 29-30, 2002; lowest, 12.05 ft below land-surface-datum, May 8-10, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level recorded, 7.91 ft below land-surface datum, August 29-30; lowest, 12.05 ft below land-surface datum, May 8-10.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY HIGHEST WATER LEVEL

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	9.08	9.14	10.18	10.29	10.72	10.02	11.09	11.84	10.67	9.84	9.42	8.00
2	8.99	9.10	10.29	10.32	10.73	9.54	11.21	11.84	10.46	9.59	9.49	8.06
3	9.00	9.01	10.42	10.37	10.76	9.42	11.28	11.87	10.42	9.44	9.55	8.25
4	9.07	9.04	10.50	10.47	10.81	9.45	11.37	11.90	10.19	9.44	9.64	8.42
5	9.14	9.16	10.58	10.55	10.85	9.55	11.42	11.92	9.81	9.44	9.72	8.55
6	9.17	9.27	10.63	10.46	10.88	9.66	11.48	11.95	9.78	9.45	9.83	8.65
7	9.17	9.37	10.32	10.43	10.92	9.77	11.54	11.97	9.78	9.48	9.32	8.51
8	9.20	9.46	9.92	10.31	10.99	9.87	11.59	11.99	9.80	9.53	8.93	8.51
9	9.10	9.17	9.87	10.22	11.07	9.97	11.64	12.03	9.75	9.59	8.70	8.56
10	9.10	9.17	9.86	10.15	10.54	10.08	11.67	11.92	9.62	9.58	8.67	8.61
11	9.07	9.22	9.89	10.11	10.26	10.14	11.70	11.84	9.61	9.57	8.69	8.61
12	9.04	9.29	9.72	10.12	9.73	10.24	11.72	11.73	9.60	9.56	8.16	8.62
13	9.09	9.35	9.72	10.17	9.71	10.36	11.73	11.54	9.63	9.57	8.12	8.72
14	9.14	9.42	9.77	10.16	9.55	10.48	11.75	11.31	9.65	9.53	8.12	8.80
15	9.13	9.42	9.88	10.11	9.19	10.61	11.77	11.20	9.67	9.52	8.26	8.87
16	8.91	9.48	10.01	10.04	9.00	10.75	11.80	11.16	9.68	9.53	8.46	8.87
17	8.69	9.49	10.26	10.04	9.02	10.86	11.83	11.17	9.70	9.57	8.63	8.85
18	8.62	9.52	10.41	9.97	9.15	10.96	11.87	11.19	9.73	9.57	8.76	8.77
19	8.36	9.55	10.54	9.90	9.30	11.06	11.90	11.20	9.79	9.58	8.88	8.53
20	8.41	9.60	10.69	9.89	9.48	11.13	11.91	11.20	9.84	9.64	8.93	8.49
21	8.38	9.68	10.79	9.94	9.62	11.21	11.87	11.17	9.86	9.57	8.64	8.39
22	8.39	9.74	10.88	10.02	9.74	11.27	11.87	11.12	9.92	9.50	8.58	8.44
23	8.56	9.70	10.44	10.07	9.85	11.32	11.88	11.03	10.00	9.47	8.38	8.56
24	8.73	9.75	9.89	10.11	9.94	11.36	11.88	10.95	10.08	9.28	8.42	8.61
25	8.84	9.81	9.85	10.20	10.02	11.35	11.87	10.90	9.85	9.22	8.41	8.65
26	8.92	9.89	9.95	10.29	10.08	11.21	11.85	10.86	9.71	9.17	8.42	8.71
27	9.06	9.95	10.07	10.43	10.08	11.07	11.83	10.83	9.66	9.14	8.41	8.80
28	9.14	10.00	10.14	10.57	10.08	11.04	11.83	10.75	9.66	9.09	7.99	8.86
29	8.97	10.05	10.18	10.67		11.01	11.84	10.68	9.69	9.07	7.91	8.89
30	8.97	10.11	10.21	10.73		10.98	11.84	10.66	9.80	9.22	7.91	9.03
31	9.04		10.24	10.74		10.99		10.67		9.34	7.96	

JUNEAU-CONTINUED

582240134352901. Local number, CD04006630BBCB1036.

LOCATION.--Lat $58^{\circ}22'40''$, Long $134^{\circ}35'29''$, in $SW^{1}/_{4}$ $NW^{1}/_{4}$ $NW^{1}/_{4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301. Well located at northeast edge of baseball field at Riverbend School on Riverside Drive, Juneau. Owner: City and Borough of Juneau.

AQUIFRER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS .-- Diameter 2.0-in. PVC casing, depth 15.9 ft, slotted from 5 to 15 ft.

INSTRUMENTATION.-- Intermittent measurements with chalked steel tape by USGS personnel April 2001 to October 2002; submersible pressure transducer/electric data logger May 2001 to March 22, 2002 and August 22, 2002 to current year.

DATUM.-- Élevation of land-surface datum is 31.95 ft above sea level (determined by survey grade GPS). Measuring point: Top of casing 0.20 ft below land-surface datum April 2001 to July 24, 2002; then 0.73 ft. above land-surface datum to current year.

REMARKS.-- Well drilled December 15, 1998 by Hart Crowser, Inc., designated as Riverbend School well.

PERIOD OF DAILY RECORD.-- April 2001 to March 22, 2002; August 22, 2002 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level recorded, 3.58 ft below land-surface datum, August 31, 2002; lowest, 11.49 ft. below land-surface datum, March 22-23, 2002, but may have been lower during period of missing record, March 23-28, 2002. EXTREMES FOR CURRENT YEAR.—Highest water level recorded, 3.58 ft below land-surface datum, August 31, 2002; lowest, 11.49 ft. below land-surface datum, March 22-23 but may have been lower during period of missing record, March 23-28.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY HIGHEST WATER LEVEL

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5.64	5.18	7.48	9.01	9.02	9.21						3.60
2	5.42	5.76	7.71	8.88	8.87	9.13						3.59
3	5.47	5.36	7.77	8.88	8.87	9.06						3.75
4	5.16	5.53	7.81	9.18	8.99	9.06						4.18
5	5.05	5.75	7.93	8.85	9.04	9.09						4.24
6	5.17	6.22	7.93	8.65	9.00	9.11						4.30
7	4.84	6.10	8.04	8.64	9.00	9.20						4.27
8	5.10	6.26	8.04	8.83	9.08	9.14		#9.82				4.21
9	5.19	6.50	8.44	8.94	8.95	9.31						4.14
10	4.99	6.42	8.49	9.08	8.92	9.82						4.46
11	4.84	6.48	8.62	9.10	9.15	10.28						4.53
12	4.80	6.13	8.61	9.05	9.23	10.36						4.52
13	5.68	5.81	8.48	9.31	9.22	10.22						4.48
14	5.68	5.86	8.54	9.40	9.16	10.43						4.43
15	5.07	6.29	8.56	9.35	9.04	10.35						4.36
16	5.06	6.65	8.55	9.35	9.03	10.40						4.49
17	5.34	7.21	8.63	9.27	9.00	10.46						4.61
18	5.26	6.91	8.80	9.01	8.88	10.46			#7.53			4.18
19	5.36	6.34	8.90	8.69	8.75	10.20						4.57
20	5.31	6.24	9.03	8.60	8.86	10.23						4.94
21	5.11	6.37	8.99	8.67	9.19	10.68		#9.19			#4.43	4.77
22	4.79	6.50	9.04	8.95	9.33	11.23					4.37	4.89
23	4.97	7.02	9.02	8.64	9.47						4.39	4.96
24	5.25	7.32	8.99	8.59	9.46						4.45	4.99
25	5.00	7.39	9.17	8.78	9.37						4.31	4.82
26	4.67	7.65	9.15	9.11	9.21					#5.21	4.21	4.72
27	5.37	7.61	9.04	9.23	9.20						3.86	4.54
28	5.25	7.40	9.04	9.19	9.26						3.91	4.55
29	5.41	7.40	9.14	9.04		#9.62					3.98	4.79
30	5.09	7.54	9.21	8.91							3.70	5.01
31	5.14		9.15	8.91							3.58	

Result of tapedown

JUNEAU-CONTINUED

582314134344801. Local number, CD04006619BDDD1055.

 $LOCATION.--Lat~58^{\circ}23'14'', Long~134^{\circ}34'48'', in~SW^{1}_{/4}~SW^{1}_{/4}~SW^{1}_{/4}~sec.~19,~T.~40~S.,~R.~66~E.~(Juneau~B-2~NW~quad),~Hydrologic~Unit~19010301.~Well~located~near~the~northwest~corner~of~garage~at~9002~Gee~Street,~Juneau.~Owner:~Tim~and~Debbie~Banaszak.$

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 2.0 in., depth 44.2 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS. personnel February 2001 to October 2002; submersible pressure transducer/electic data logger October 1, 2001 to current year.

DATUM.--Elevation of land-surface datum is 46.4 ft above sea level (determined by levels survey). Measuring point: Top of casing 0.80 ft above land-surface datum.

REMARKS.--Well designated as Banaszak well.

PERIOD OF RECORD.--February 2001 to current year.

EXTREMES FOR ERIOD OF RECORD.--Highest water level recorded, 4.88 ft below land-surface datum, August 13, 2002; lowest, 9.54 ft below land-surface datum, April 18, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level recorded, 4.88 ft below land-surface datum, August 13; lowest, 9.54 ft below land-surface datum, April 18.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY HIGHEST WATER LEVEL

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6.85	7.28	8.34	8.41	8.72	8.42	9.14	9.15	7.71	7.49	7.08	5.40
2	6.63	7.22	8.44	8.44	8.72	7.93	9.15	9.15	7.69	7.20	7.12	5.62
3	6.64	7.12	8.48	8.48	8.74	7.74	9.17	9.09	7.67	7.03	7.18	5.88
4	6.80	7.16	8.53	8.63	8.82	7.76	9.22	9.10	7.42	7.03	7.27	6.10
5	6.95	7.29	8.62	8.59	8.87	7.88	9.22	9.15	7.19	7.08	7.32	6.29
6	7.01	7.43	8.64	8.50	8.89	8.01	9.23	9.17	7.19	7.09	7.38	6.51
7	6.96	7.43	8.50	8.50	8.90	8.09	9.23	9.17	7.13	7.03	6.81	6.31
8	7.04	7.53	8.45	8.43	8.90	8.23	9.29	9.18	7.23	7.14	5.98	6.28
9	6.95	7.03	8.41	8.25	8.92	8.30	9.34	9.19	7.36	7.26	5.64	6.36
10	6.95	7.20	8.44	8.18	8.76	8.34	9.34	9.19	7.12	7.25	5.60	6.49
10	6.95	1.21	8.44	8.18	8.76	8.34	9.34	9.09	7.12	7.25	5.60	6.49
11	6.90	7.34	8.51	8.05	8.55	8.41	9.38	8.97	7.09	7.27	5.72	6.55
12	6.87	7.41	8.46	8.06	7.99	8.52	9.39	8.78	7.11	7.24	5.21	6.56
13	7.03	7.50	8.43	8.23	7.98	8.66	9.38	8.62	7.22	7.24	4.88	6.65
14	7.09	7.56	8.50	8.25	7.79	8.74	9.37	8.52	7.23	7.27	4.89	6.84
15	7.06	7.61	8.56	8.16	7.46	8.82	9.42	8.43	7.20	7.24	5.24	6.98
16	6.98	7.72	8.59	8.12	7.28	8.87	9.45	8.38	7.17	7.24	5.73	7.00
17	6.71	7.75	8.69	8.11	7.33	8.90	9.51	8.38	7.17	7.28	6.06	6.87
18	6.52	7.74	8.76	8.02	7.44	8.92	9.52	8.34	7.19	7.32	6.34	6.40
19	6.19	7.72	8.83	7.89	7.60	9.02	9.49	8.29	7.28	7.32	6.48	6.35
20	6.21	7.78	8.89	7.89	7.80	9.06	9.38	8.16	7.39	7.40	6.58	6.36
21	6.16	7.91	8.89	8.02	7.99	9.07	9.28	8.06	7.44	7.37	6.01	6.27
22	6.16	7.91	8.96	8.02	8.10	9.07	9.28	7.99	7.44	7.37	5.76	6.30
23	6.35	7.99	8.71	8.14	8.10	9.08	9.28	7.99	7.49	7.23	5.49	6.56
24	6.61	7.90	8.35	8.22	8.28	9.16	9.27	7.85	7.56	6.87	5.49	6.79
25	6.79	7.91	8.22	8.40	8.36	9.16	9.25	7.85	7.56	6.70	5.49	6.89
25	6.79	7.94	8.22	8.40	8.36	9.10	9.24	7.80	7.42	6.70	5.80	6.89
26	6.84	8.06	8.19	8.50	8.40	9.07	9.23	7.80	7.29	6.63	6.00	6.89
27	7.06	8.15	8.20	8.56	8.41	9.00	9.23	7.76	7.26	6.64	5.45	6.79
28	7.19	8.15	8.27	8.58	8.48	9.01	9.23	7.72	7.26	6.65	5.16	6.79
29	7.03	8.19	8.33	8.61		8.99	9.26	7.71	7.28	6.66	5.05	6.87
30	7.03	8.30	8.37	8.62		8.97	9.24	7.76	7.42	6.81	5.05	7.06
31	7.12		8.38	8.66		9.00		7.76		6.99	5.25	

JUNEAU-CONTINUED

582314134351201. Local number, CD04006619BCDD2020.

 $LOCATION.\text{--Lat }58^{\circ}23'14'', Long \ 134^{\circ}35'12'', in \ SE^{1}/_{4} \ SW^{1}/_{4} \ NW^{1}/_{4} \ sec. \ 19, T. \ 40 \ S., R. \ 66 \ E. \ (Juneau \ B-2 \ NW \ quad), \ Hydrologic \ Unit 19010301. Well located near the northwest corner of garage at 9220 Gee Street, Juneau. Owner: Don Thomas$

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.5-in. steel casing, depth 49.1 ft, screen opening from 46.1 to 49.1 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS personnel April 2000 to January 2001; submersible pressure transducer/electric data logger January 2001 to current year.

DATUM.--Elevation of land-surface datum is 43.09 ft above sea level (determined by levels survey). Measuring point: Top of casing 0.92 ft above land-surface datum.

REMARKS.--Well drilled 1974, designated as Don's well. Missing record July 21,2002.

PERIOD OF RECORD.--April 2000 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level recorded, 5.40 ft below land-surface datum, August 13, 2002; lowest, 10.61 ft below land-surface datum, April 18, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level recorded, 5.40 ft below land-surface datum, August 13; lowest, 10.61 ft below land-surface datum, April 18.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY HIGHEST WATER LEVEL

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	7.66	8.85	9.71	9.59	9.93	9.67	10.29	10.07	7.62	6.86	6.52	6.43
2	7.37	8.88	9.83	9.67	9.90	9.30	10.29	10.07	7.62	6.47	6.62	6.47
3	7.38	8.76	9.81	9.71	9.94	9.09	10.30	10.01	7.57	6.36	6.57	6.73
4	7.64	8.87	9.87	9.85	10.00	9.12	10.32	10.02	7.23	6.40	6.67	6.81
5	7.85	8.95	9.94	9.78	10.06	9.21	10.30	10.10	7.00	6.46	6.66	6.98
6	7.89	9.05	9.95	9.71	10.07	9.30	10.33	10.10	7.00	6.47	6.80	7.15
7	7.83	9.13	9.87	9.71	10.10	9.35	10.40	10.09	7.13	6.57	6.52	6.96
8	7.99	9.20	9.87	9.64	10.18	9.47	10.41	10.10	7.30	6.64	5.84	6.93
9	8.01	8.96	9.81	9.48	10.03	9.51	10.37	10.06	7.11	6.70	5.72	7.00
10	8.01	8.93	9.85	9.40	10.05	9.55	10.39	9.95	6.86	6.60	5.70	7.16
11	7.98	9.01	9.86	9.23	9.84	9.57	10.43	9.81	6.80	6.62	5.87	7.18
12	7.98	9.02	9.83	9.25	9.45	9.72	10.44	9.62	6.84	6.56	5.78	7.21
13	8.18	9.07	9.78	9.44	9.36	9.88	10.41	9.46	7.02	6.61	5.40	7.33
14	8.25	9.11	9.88	9.50	9.24	9.94	10.39	9.36	6.90	6.64	5.44	7.58
15	8.25	9.17	9.88	9.44	8.92	10.02	10.46	9.26	6.74	6.58	5.81	7.48
16	8.34	9.29	9.93	9.43	8.77	10.05	10.51	9.16	6.65	6.71	6.28	7.57
17	8.14	9.34	10.03	9.39	8.77	10.05	10.57	9.15	6.65	6.68	6.43	7.49
18	7.78	9.28	10.06	9.34	8.83	10.07	10.58	9.02	6.67	6.69	6.45	7.38
19	7.53	9.26	10.15	9.21	8.92	10.20	10.52	8.87	6.87	6.72	6.45	7.33
20	7.58	9.29	10.16	9.22	9.15	10.22	10.40	8.57	6.98	6.83	6.50	7.32
21	7.65	9.42	10.15	9.39	9.29	10.18	10.32	8.33	7.02	6.83		7.27
22	7.65	9.48	10.21	9.48	9.40	10.19	10.33	8.23	7.12	6.67	6.40	7.43
23	7.86	9.43	10.04	9.42	9.48	10.21	10.33	8.14	7.13	6.62	6.32	7.52
24	8.14	9.42	9.78	9.48	9.54	10.30	10.32	8.00	7.11	6.44	6.31	7.68
25	8.36	9.44	9.57	9.70	9.56	10.19	10.31	7.91	6.87	6.23	6.56	7.53
26	8.36	9.54	9.50	9.78	9.57	10.20	10.28	7.91	6.73	6.16	6.66	7.68
27	8.61	9.56	9.48	9.83	9.60	10.16	10.27	7.83	6.61	6.26	6.38	7.65
28	8.73	9.55	9.55	9.78	9.67	10.20	10.28	7.73	6.62	6.13	6.30	7.63
29	8.67	9.58	9.60	9.78		10.14	10.29	7.71	6.72	6.31	6.24	7.67
30	8.67	9.67	9.61	9.80		10.10	10.20	7.77	6.85	6.43	6.34	7.89
31	8.75		9.61	9.86		10.14		7.71		6.61	6.49	

SOUTHEAST ALASKA

JUNEAU-CONTINUED

582322134341001. Local number, CD04006619ACAB1050.

LOCATION.--Lat $58^{\circ}23'20''$, Long $134^{\circ}34'17''$, in $NE^{1}_{/4}$ SW $^{1}_{/4}$ NE $^{1}_{/4}$ sec. 19, T. 40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301. Well located at 3737 North El Camino Street, 30 ft west of the southwest corner of the house and 70 ft from North El Camino Street, Juneau. Owner: Nicholas Hindman.

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 15 ft, screen opening from 2.5 to 4.7 ft, open hole.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, and US Forest Service personnel July 1997 to current year.

DATUM.--Elevation of land-surface datum is 43.87 ft above sea level (determined from levels survey). Measuring point: Top of casing 1.2 ft above land-surface datum.

REMARKS.--Well drilled July 7, 1997 by USGS, designated as Duck Creek #17 (Hindman Well). Well sampled for water quality, September 3, 1997, January 26, 1998, and September 3, 1998.

PERIOD OF RECORD.--July 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 0.40 ft below land-surface datum, October 23, 1999; lowest, 2.53 ft below land-surface datum, March 12, 1998 and March 21, 2002.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 11 Mar 21	1.22 2.53	Jul 02	1.58

582326134341901. Local number, CD04006619ADBA1011.

LOCATION.--Lat $58^{\circ}23'36''$, Long $134^{\circ}34'19''$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ NE $^{1}/_{4}$ sec. 19, T. 40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301. Well located 6 ft southeast of a bike path, 25 ft southeast of Mendenhall Loop Road, and about 450 ft southwest of intersection of Mendenhall Loop Road and Valley Boulevard, Juneau. Owner: Bruce B. Bigelow.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.25-in. galvanized iron casing, depth 15 ft, screen opening from 11 to 15 ft using sandpoint.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS and University of Alaska-Southeast personnel June 1997 to current year.

DATUM.--Elevation of land-surface datum is 45.76 ft above sea level (determined by levels survey). Measuring point: Top of casing 1.3 ft above land-surface datum.

REMARKS.--Well drilled June 23, 1997 by USGS, designated as Duck Creek #18 (Bigelow Well).

PERIOD OF RECORD.--June 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.01 ft above land-surface datum, July 25 and August 12, 1997; lowest, 2.55 ft below land-surface datum, April 23, 1999.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 11 Mar 20	0.71 1.75	Jul 02	1.29

SOUTHEAST ALASKA

JUNEAU-CONTINUED

582359134352103. Local number, CD04006618CBCA3019 85177

LOCATION.--Lat $58^{\circ}23'59''$, Long $134^{\circ}35'21''$, $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec. 18, T. 40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301, Well is located in steel gage house by sewage treatment plant on Riverbend Road, 1/4 mile off of the Mendenhall Loop Road, Juneau. Owner: Harlan Olsen.

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 6-in. PVC casing, depth 40 ft, screen opening from 30 to 40 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, November 1983 to current year; continuous strip-chart recorder, November 1983 to August 1984; Digital recorder, August 1984 to April 1997; submersible pressure transducer/electric data logger, August 1997 to September 1998; electronic data logger and encoder, September 1998 to current year.

DATUM.--Elevation of land-surface datum is 50.53 ft above sea level (determined by levels survey). Measuring point: Top of casing 0.77 ft above land-surface datum.

REMARKS.--Well drilled November 3, 1983 by USGS, designated as Mendenhall well. Well sampled for water quality, May 17, 1984. PERIOD OF RECORD.--November 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level recorded, 4.89 ft below land-surface datum, September 25, 1990; lowest measured, 13.54 ft below land-surface datum, February 2, 1997.

EXTREMES FOR CURRENT YEAR.--Highest water level recorded, 6.06 ft below land-surface datum, August 13-14; lowest, 11.55 ft below land-surface datum, December 23.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY HIGHEST WATER LEVEL

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	7.83	8.24	10.34	10.62								6.20
2	7.57	8.32	10.56	10.68								6.24
3	7.58	8.26	10.63	10.77								6.50
4	7.74	8.30	10.72	#11.01								6.75
5	7.92	8.48	10.84									6.96
6	8.13	8.64	10.90								9.74	7.20
7	8.08	8.80	10.95								8.59	6.63
8	8.21	8.98	10.97								7.39	6.63
9	7.94	8.35	10.90								7.04	6.72
10	7.94	8.35	10.93								6.99	6.90
11	7.79	8.46	10.98								7.03	7.04
12	7.74	8.57	10.95								6.25	7.05
13	7.83	8.76	10.93								6.06	7.19
14	7.98	8.92	11.01								6.06	7.38
15	7.98	9.06	11.04								6.30	7.53
16	7.81	9.24	11.05								6.64	7.56
17	7.34	9.34	11.17								6.96	7.49
18	7.09	9.30	11.23								7.20	6.93
19	6.85	9.30	11.32							#9.77	7.37	6.90
20	6.85	9.37	11.42								7.53	6.89
21	6.90	9.56	11.42								6.93	6.74
22	6.90	9.71	11.49								6.81	6.77
23	7.07	9.65	11.36								6.59	7.01
24	7.32	9.65	10.66								6.59	7.26
25	7.54	9.65	10.29								6.78	7.41
26	7.57	9.81	10.23							#8.89	6.96	7.44
27	7.87	9.94	10.23								6.35	7.44
28	8.10	9.96	10.21								6.20	7.44
29	7.87	10.06	10.32								6.06	7.56
30	7.87	10.25	10.52								6.06	7.82
31	8.05		10.52								6.09	7.02
JΙ	0.03		10.33								0.03	-

result of tapedown

SOUTH-CENTRAL ALASKA

MUNICIPALITY OF ANCHORAGE.

611725149335401. Local number, SB01400223BCCD1003.

LOCATION.--Lat 61°17′26″, long 149°35′39″, in SE¹/4 SW¹/4 SW¹/4 NW¹/4 sec.23, T.14 N., R.2 W.(Anchorage B-7SW quad), Hydrologic Unit 19020401, at Anchorage Regional Landfill, Glenn Highway and Hiland Road interchange, Anchorage. Owner: Municipality of Anchorage.

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 6 in., depth 132 ft, cased to 118 ft, open hole. Casing perforated from 111 to 117 ft. Bedrock from 117 ft. Driller's log notes casing break at 80 ft.

INSTRUMENTATION.--Monthly measurement with chalked steel tape by U.S. Geological Survey personnel July 1997 to September 1999. electronic data logger from September 3, 1999 to current year.

DATUM.--Elevation of land surface datum is 542.56 ft above sea level (determined by level survey). Measuring point: Top of casing 3.4 ft above land-surface datum.

REMARKS.--Observation well drilled by Municipality of Anchorage, designated as KB-6.

PERIOD OF RECORD.--August 1986, July 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 107.88 ft below land-surface datum, June 7, 2000; lowest, 114.25 ft below land-surface datum, Aug. 21, 1986.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 109.02 ft. below land-surface datum, July 3; lowest, 110.83 ft. below land-surface datum, April 15 and April 16.

1	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
110.49 110.54 110.60 110.71 110.70 110.78 110.80 110.59 109.71 109.02 109.39 110.04 110.05 110.48 110.55 110.60 110.64 110.74 110.78 110.80 110.55 109.65 109.04 109.41 110.05 110.64 110.55 110.65 110.75 110.75 110.81 110.82 110.55 109.65 109.05 109.44 110.08 110.55 110.55 110.62 110.70 110.69 110.78 110.81 110.49 109.52 109.56 109.05 109.44 110.08 110.55 110.55 110.62 110.70 110.69 110.76 110.81 110.48 109.49 109.07 109.49 110.12 110.52 110.55 110.62 110.71 110.73 110.77 110.82 110.46 109.46 109.05 109.49 110.15 110.55 110.55 110.65 110.61 110.73 110.77 110.82 110.46 109.46 109.05 109.49 110.15 110.55 110.55 110.65 110.67 110.73 110.79 110.82 110.44 109.43 109.07 109.51 110.15 110.55 110.55 110.65 110.71 110.70 110.79 110.82 110.44 109.43 109.07 109.58 110.16 110.55 110.56 110.63 110.69 110.74 110.79 110.82 110.36 109.30 109.09 109.50 110.16 110.55 110.56 110.63 110.69 110.74 110.78 110.83 110.34 109.28 109.10 109.65 110.16 110.15 110.55 110.65 110.65 110.70 110.76 110.78 110.83 110.34 109.28 109.11 109.66 110.20 110.55 110.55 110.65 110.65 110.70 110.76 110.78 110.83 110.29 109.21 109.14 109.66 110.23 110.55 110.55 110.65 110.65 110.70 110.76 110.78 110.81 110.25 109.11 109.16 109.68 110.23 110.55 110.55 110.65 110.65 110.70 110.76 110.78 110.79 110.81 110.15 109.15 1	1	110.49	110.53	110.59	110.68	110.73	110.75	110.81	110.64	109.78	109.06	109.36	110.00
4 110.49 110.57 110.60 110.68 110.71 110.78 110.80 110.56 109.67 109.03 109.40 110.05 5 110.48 110.55 110.60 110.64 110.74 110.78 110.80 110.56 109.65 109.04 109.41 110.05 6 110.51 110.55 110.62 110.71 110.72 110.77 110.81 110.55 109.66 109.42 110.08 8 110.50 110.55 110.61 110.69 110.73 110.78 110.81 110.49 109.55 109.66 109.44 110.10 9 110.50 110.55 110.62 110.70 110.69 110.73 110.78 110.81 110.49 109.07 109.49 110.12 10 110.52 110.55 110.60 110.71 110.73 110.77 110.82 110.44 109.49 109.07 109.51 110.15 11 110.52 110.56 110.60 <t< td=""><td>2</td><td>110.52</td><td>110.54</td><td>110.58</td><td>110.69</td><td>110.72</td><td>110.78</td><td>110.80</td><td>110.59</td><td>109.75</td><td>109.04</td><td>109.38</td><td>110.03</td></t<>	2	110.52	110.54	110.58	110.69	110.72	110.78	110.80	110.59	109.75	109.04	109.38	110.03
5 110.48 110.55 110.60 110.64 110.74 110.78 110.80 110.56 109.65 109.04 109.41 110.05 6 110.51 110.55 110.62 110.69 110.72 110.77 110.81 110.55 109.61 109.05 109.42 110.06 7 110.52 110.55 110.62 110.71 110.72 110.77 110.82 110.52 109.06 109.05 109.44 110.06 8 110.50 110.55 110.62 110.70 110.69 110.73 110.78 110.81 110.48 109.49 109.07 109.49 110.11 10 110.52 110.55 110.62 110.71 110.73 110.77 110.82 110.46 109.07 109.49 110.12 11 110.52 110.56 110.60 110.71 110.73 110.77 110.82 110.46 109.07 109.51 110.15 12 110.53 110.56 110.60 <	3	110.49	110.54	110.60	110.71	110.70	110.78	110.80	110.59	109.71	109.02	109.39	110.04
6	4	110.49	110.57	110.60	110.68	110.71	110.77	110.80	110.59	109.67	109.03	109.40	110.05
The color of the	5	110.48	110.55	110.60	110.64	110.74	110.78	110.80	110.56	109.65	109.04	109.41	110.05
8 110.50 110.55 110.61 110.69 110.73 110.78 110.81 110.49 109.52 109.06 109.47 110.11 9 110.50 110.55 110.62 110.70 110.69 110.76 110.81 110.48 109.49 109.07 109.49 110.12 10 110.52 110.55 110.62 110.71 110.73 110.77 110.82 110.46 109.49 109.07 109.49 110.15 11 110.52 110.56 110.60 110.71 110.73 110.77 110.82 110.44 109.43 109.07 109.51 110.15 12 110.53 110.55 110.65 110.71 110.70 110.79 110.81 110.38 109.40 109.09 109.51 110.14 13 110.52 110.55 110.65 110.71 110.70 110.79 110.81 110.38 109.36 109.07 109.58 110.16 14 110.52 110.54 110.53	6	110.51	110.55	110.62	110.69	110.72	110.77	110.81	110.55	109.61	109.05	109.42	110.06
9 110.50 110.55 110.62 110.70 110.69 110.76 110.81 110.48 109.49 109.07 109.49 110.12 110.52 110.55 110.62 110.71 110.73 110.77 110.82 110.46 109.46 109.05 109.49 110.15 11 110.52 110.55 110.60 110.71 110.73 110.77 110.82 110.44 109.43 109.07 109.51 110.15 12 110.53 110.55 110.64 110.72 110.73 110.79 110.82 110.41 109.40 109.09 109.51 110.14 13 110.52 110.55 110.65 110.61 110.70 110.79 110.82 110.41 109.40 109.09 109.58 110.16 14 110.52 110.55 110.65 110.63 110.69 110.76 110.79 110.82 110.38 109.36 109.07 109.58 110.16 15 110.50 110.56 110.63 110.69 110.74 110.79 110.82 110.36 109.30 109.09 109.60 110.16 15 110.51 110.58 110.65 110.67 110.74 110.78 110.83 110.34 109.28 109.10 109.61 110.19 16 110.51 110.58 110.65 110.67 110.74 110.79 110.83 110.31 109.25 109.11 109.63 110.20 17 110.49 110.53 110.65 110.67 110.74 110.78 110.82 110.29 109.22 109.11 109.64 110.20 18 110.54 110.55 110.62 110.70 110.76 110.80 110.81 110.25 109.21 109.14 109.66 110.21 19 110.53 110.55 110.62 110.70 110.76 110.80 110.81 110.22 109.19 109.16 109.68 110.23 20 110.51 110.58 110.62 110.74 110.77 110.79 110.81 110.18 109.16 109.18 109.68 110.23 21 110.53 110.55 110.62 110.74 110.77 110.79 110.81 110.15 109.11 109.19 109.75 110.23 22 110.54 110.59 110.64 110.70 110.76 110.78 110.79 110.15 109.11 109.19 109.75 110.23 23 110.55 110.61 110.65 110.71 110.76 110.78 110.79 110.15 109.11 109.19 109.75 110.23 24 110.55 110.59 110.66 110.73 110.75 110.79 110.77 110.79 110.11 109.10 109.19 109.75 110.23 25 110.54 110.59 110.66 110.73 110.75 110.79 110.77 110.79 109.94 109.06 109.27 109.88 110.25 26 110.53 110.55 110.66 110.72 110.75 110.79 110.77 109.94 109.06 109.27 109.88 110.25 27 110.54 110.58 110.66 110.72 110.75 110.79 110.70 109.94 109.06 109.27 109.88 110.25 28 110.54 110.58 110.68 110.72 110.75 110.80 110.67 109.91 109.03 109.29 109.90 110.28 29 110.54 110.58 110.68 110.72 110.75 110.80 110.67 109.91 109.03 109.29 109.90 110.28 29 110.54 110.59 110.68 110.70 110.73 110.80 110.67 109.91 109.03 109.30 109.93 110.29	7	110.52	110.55	110.62	110.71	110.72	110.77	110.82	110.52	109.56	109.05	109.44	110.08
10	8	110.50	110.55	110.61	110.69	110.73	110.78	110.81	110.49	109.52	109.06	109.47	110.11
11	9	110.50	110.55	110.62	110.70	110.69	110.76	110.81	110.48	109.49	109.07	109.49	110.12
12 110.53 110.55 110.64 110.72 110.73 110.79 110.82 110.41 109.40 109.09 109.51 110.14 13 110.52 110.55 110.65 110.71 110.70 110.79 110.81 110.38 109.36 109.07 109.58 110.16 14 110.52 110.56 110.63 110.69 110.74 110.79 110.82 110.36 109.30 109.09 109.60 110.16 15 110.50 110.56 110.69 110.74 110.78 110.83 110.34 109.28 109.10 109.60 110.16 16 110.51 110.58 110.65 110.70 110.74 110.79 110.83 110.31 109.25 109.11 109.63 110.20 17 110.49 110.53 110.65 110.67 110.74 110.78 110.82 110.29 109.22 109.11 109.63 110.20 18 110.54 110.56 110.65 110.70 110.76 110.80 110.81 110.22 109.11 109.66	10	110.52	110.55	110.62	110.71	110.73	110.77	110.82	110.46	109.46	109.05	109.49	110.15
12 110.53 110.55 110.64 110.72 110.73 110.79 110.82 110.41 109.40 109.09 109.51 110.14 13 110.52 110.55 110.65 110.71 110.70 110.79 110.81 110.38 109.36 109.07 109.58 110.16 14 110.50 110.56 110.63 110.69 110.74 110.79 110.83 110.34 109.30 109.09 109.60 110.16 15 110.50 110.56 110.63 110.69 110.74 110.78 110.83 110.34 109.28 109.10 109.60 110.16 16 110.51 110.58 110.65 110.70 110.74 110.79 110.83 110.31 109.25 109.11 109.63 110.20 17 110.49 110.53 110.65 110.67 110.74 110.78 110.82 110.29 109.22 109.11 109.63 110.20 18 110.54 110.56 110.67 110.76 110.78 110.81 110.29 109.22 109.11	11	110.52	110.56	110.60	110.71	110.73	110.77	110.82	110.44	109.43	109.07	109.51	110.15
14 110.52 110.56 110.63 110.69 110.76 110.79 110.82 110.36 109.30 109.09 109.60 110.16 15 110.50 110.56 110.63 110.69 110.74 110.78 110.83 110.34 109.28 109.10 109.61 110.19 16 110.51 110.58 110.65 110.70 110.74 110.79 110.83 110.29 109.25 109.11 109.63 110.20 17 110.49 110.53 110.65 110.67 110.74 110.78 110.82 110.29 109.22 109.11 109.64 110.20 18 110.54 110.56 110.65 110.70 110.76 110.80 110.81 110.25 109.21 109.14 109.66 110.21 19 110.53 110.55 110.62 110.70 110.76 110.80 110.81 110.25 109.21 109.14 109.66 110.21 20 110.51 110.58 110.64 110.77 110.77 110.79 110.81 110.81 109.16	12	110.53	110.55	110.64	110.72	110.73	110.79	110.82	110.41	109.40	109.09	109.51	110.14
15 110.50 110.56 110.63 110.69 110.74 110.78 110.83 110.34 109.28 109.10 109.61 110.19 16 110.51 110.58 110.65 110.70 110.74 110.79 110.83 110.31 109.25 109.11 109.63 110.20 17 110.49 110.53 110.65 110.67 110.74 110.78 110.82 110.29 109.22 109.11 109.64 110.20 18 110.54 110.56 110.65 110.70 110.76 110.80 110.81 110.25 109.21 109.14 109.66 110.21 19 110.53 110.55 110.62 110.70 110.76 110.80 110.81 110.22 109.19 109.16 109.68 110.23 20 110.51 110.58 110.62 110.74 110.77 110.79 110.81 110.18 109.16 109.18 109.68 110.23 21 110.53 110.58 110.64 110.77 110.78 110.81 110.16 109.14 109.18	13	110.52	110.55	110.65	110.71	110.70	110.79	110.81	110.38	109.36	109.07	109.58	110.16
16 110.51 110.58 110.65 110.70 110.74 110.79 110.83 110.31 109.25 109.11 109.63 110.20 17 110.49 110.53 110.65 110.67 110.74 110.78 110.82 110.29 109.22 109.11 109.64 110.20 18 110.54 110.56 110.65 110.70 110.76 110.80 110.81 110.25 109.21 109.14 109.66 110.21 19 110.53 110.55 110.62 110.70 110.76 110.80 110.81 110.22 109.19 109.16 109.68 110.23 20 110.51 110.58 110.62 110.74 110.77 110.81 110.18 109.16 109.18 109.68 110.23 21 110.53 110.58 110.64 110.72 110.76 110.81 110.18 109.16 109.18 109.68 110.23 22 110.54 110.59 110.64 110.72 110.76 110.78 110.81 110.16 109.14 109.18 109.75	14	110.52	110.56	110.63	110.69	110.76	110.79	110.82	110.36	109.30	109.09	109.60	110.16
17 110.49 110.53 110.65 110.67 110.74 110.78 110.82 110.29 109.22 109.11 109.64 110.20 18 110.54 110.56 110.65 110.70 110.76 110.80 110.81 110.25 109.21 109.14 109.66 110.21 19 110.53 110.55 110.62 110.70 110.76 110.80 110.81 110.22 109.19 109.16 109.68 110.23 20 110.51 110.58 110.62 110.74 110.77 110.79 110.81 110.18 109.16 109.18 109.68 110.23 21 110.53 110.58 110.64 110.72 110.76 110.78 110.81 110.16 109.14 109.18 109.68 110.23 22 110.54 110.59 110.64 110.70 110.76 110.78 110.79 110.15 109.14 109.18 109.75 110.23 23 110.54 110.59 110.64 110.70 110.76 110.78 110.79 110.15 109.11	15	110.50	110.56	110.63	110.69	110.74	110.78	110.83	110.34	109.28	109.10	109.61	110.19
18 110.54 110.56 110.65 110.70 110.76 110.80 110.81 110.25 109.21 109.14 109.66 110.21 19 110.53 110.55 110.62 110.70 110.76 110.80 110.81 110.22 109.19 109.16 109.68 110.23 20 110.51 110.58 110.62 110.74 110.77 110.79 110.81 110.18 109.16 109.18 109.68 110.23 21 110.53 110.58 110.64 110.72 110.76 110.78 110.81 110.16 109.14 109.18 109.68 110.23 22 110.54 110.59 110.64 110.70 110.76 110.78 110.79 110.15 109.11 109.19 109.75 110.23 23 110.55 110.61 110.65 110.71 110.76 110.79 110.77 110.11 109.10 109.19 109.75 110.23 24 110.55 110.61 110.66 110.73 110.76 110.79 110.77 110.06 109.07	16	110.51	110.58	110.65	110.70	110.74	110.79	110.83	110.31	109.25	109.11	109.63	110.20
19 110.53 110.55 110.62 110.70 110.76 110.80 110.81 110.22 109.19 109.16 109.68 110.23 20 110.51 110.58 110.62 110.74 110.77 110.79 110.81 110.18 109.16 109.18 109.68 110.23 21 110.53 110.58 110.64 110.72 110.76 110.78 110.81 110.16 109.14 109.18 109.72 110.23 22 110.54 110.59 110.64 110.70 110.76 110.78 110.79 110.15 109.11 109.19 109.75 110.23 23 110.55 110.61 110.65 110.71 110.76 110.79 110.77 110.11 109.19 109.19 109.78 110.25 24 110.55 110.59 110.66 110.73 110.76 110.78 110.77 110.01 109.19 109.19 109.78 110.25 24 110.55 110.59 110.66 110.73 110.76 110.78 110.77 110.06 109.07	17	110.49	110.53	110.65	110.67	110.74	110.78	110.82	110.29	109.22	109.11	109.64	110.20
20 110.51 110.58 110.62 110.74 110.77 110.79 110.81 110.18 109.16 109.18 109.68 110.23 21 110.53 110.58 110.64 110.72 110.76 110.78 110.81 110.16 109.14 109.18 109.72 110.23 22 110.54 110.59 110.64 110.70 110.76 110.78 110.79 110.15 109.11 109.19 109.75 110.23 23 110.55 110.61 110.65 110.71 110.76 110.79 110.77 110.11 109.10 109.19 109.78 110.25 24 110.55 110.59 110.66 110.73 110.76 110.78 110.76 110.06 109.07 109.21 109.82 110.23 25 110.54 110.59 110.66 110.73 110.75 110.78 110.74 110.02 109.07 109.25 109.84 110.25 26 110.53 110.59 110.66 110.72 110.75 110.79 110.72 109.98 109.06 109.24 109.87 110.24 27 110.54 110.58 110.65 110.72 110.75 110.80 110.70 109.94 109.06 109.27 109.88 110.27 28 110.54 110.58 110.68 110.72 110.75 110.80 110.67 109.91 109.03 109.29 109.90 110.28 29 110.54 110.59 110.68 110.72 110.80 110.67 109.90 109.03 109.30 109.93 110.29 30 110.54 110.60 110.69 110.73 110.80 110.61 109.87 109.05 109.33 109.94 110.28	18	110.54	110.56	110.65	110.70	110.76	110.80	110.81	110.25	109.21	109.14	109.66	110.21
21 110.53 110.58 110.64 110.72 110.76 110.78 110.81 110.16 109.14 109.18 109.72 110.23 22 110.54 110.59 110.64 110.70 110.76 110.78 110.79 110.15 109.11 109.19 109.75 110.23 23 110.55 110.61 110.65 110.71 110.76 110.79 110.77 110.11 109.10 109.19 109.78 110.23 24 110.55 110.59 110.66 110.73 110.76 110.78 110.76 110.06 109.07 109.21 109.82 110.23 25 110.54 110.59 110.66 110.73 110.75 110.78 110.74 110.02 109.07 109.25 109.84 110.25 26 110.53 110.59 110.66 110.72 110.75 110.79 110.72 109.98 109.06 109.24 109.87 110.24 27 110.54 110.58 110.65 110.72 110.75 110.79 110.72 109.98 109.06 109.24 109.87 110.24 27 110.54 110.58 110.66 110.72 110.75 110.80 110.67 109.94 109.06 109.27 109.88 110.27 28 110.54 110.58 110.68 110.72 110.75 110.80 110.67 109.91 109.03 109.29 109.90 110.28 29 110.54 110.59 110.68 110.72 110.80 110.67 109.90 109.03 109.30 109.93 110.29 30 110.54 110.59 110.69 110.73 110.80 110.61 109.87 109.05 109.33 109.94 110.28	19	110.53	110.55	110.62	110.70	110.76	110.80	110.81	110.22	109.19	109.16	109.68	110.23
22 110.54 110.59 110.64 110.70 110.76 110.78 110.79 110.15 109.11 109.19 109.75 110.23 23 110.55 110.61 110.65 110.71 110.76 110.79 110.77 110.11 109.10 109.19 109.78 110.25 24 110.55 110.59 110.66 110.73 110.76 110.78 110.76 110.06 109.07 109.21 109.82 110.23 25 110.54 110.59 110.66 110.73 110.75 110.78 110.74 110.02 109.07 109.25 109.84 110.25 26 110.53 110.59 110.66 110.72 110.75 110.79 110.72 109.98 109.06 109.24 109.87 110.24 27 110.54 110.58 110.65 110.72 110.74 110.80 110.70 109.94 109.06 109.27 109.88 110.27 28 110.54 110.58 110.68 110.72 110.75 110.80 110.67 109.90 109.03	20	110.51	110.58	110.62	110.74	110.77	110.79	110.81	110.18	109.16	109.18	109.68	110.23
23 110.55 110.61 110.65 110.71 110.76 110.79 110.77 110.11 109.10 109.19 109.78 110.25 24 110.55 110.59 110.66 110.73 110.76 110.78 110.76 110.06 109.07 109.21 109.82 110.23 25 110.54 110.59 110.66 110.72 110.75 110.78 110.74 110.02 109.07 109.25 109.84 110.25 26 110.53 110.59 110.66 110.72 110.75 110.79 110.72 109.98 109.06 109.24 109.87 110.24 27 110.54 110.58 110.65 110.72 110.74 110.80 110.70 109.94 109.06 109.27 109.88 110.27 28 110.54 110.58 110.68 110.72 110.75 110.80 110.67 109.91 109.03 109.29 109.90 110.28 29 110.54 110.59 110.68 110.72 110.80 110.67 109.90 109.03 109.30 109.93 110.29 30 110.54 110.60 110.69 110.73 110.80 110.61 109.87 109.05 109.33 109.94 110.28	21	110.53	110.58	110.64	110.72	110.76	110.78	110.81	110.16	109.14	109.18	109.72	110.23
24 110.55 110.59 110.66 110.73 110.76 110.78 110.76 110.06 109.07 109.21 109.82 110.23 25 110.54 110.59 110.66 110.73 110.75 110.78 110.74 110.02 109.07 109.25 109.84 110.25 26 110.53 110.59 110.66 110.72 110.75 110.79 110.72 109.98 109.06 109.24 109.87 110.24 27 110.54 110.58 110.65 110.72 110.74 110.80 110.70 109.94 109.06 109.27 109.88 110.27 28 110.54 110.58 110.68 110.72 110.75 110.80 110.67 109.91 109.03 109.29 109.90 110.28 29 110.54 110.59 110.68 110.72 110.80 110.67 109.90 109.03 109.30 109.93 110.29 30 110.54 110.60 110.69 110.73 110.80 110.61 109.87 109.05 <td< td=""><td>22</td><td>110.54</td><td>110.59</td><td>110.64</td><td>110.70</td><td>110.76</td><td>110.78</td><td>110.79</td><td>110.15</td><td>109.11</td><td>109.19</td><td>109.75</td><td>110.23</td></td<>	22	110.54	110.59	110.64	110.70	110.76	110.78	110.79	110.15	109.11	109.19	109.75	110.23
25 110.54 110.59 110.66 110.73 110.75 110.78 110.74 110.02 109.07 109.25 109.84 110.25 26 110.53 110.59 110.66 110.72 110.75 110.79 110.72 109.98 109.06 109.24 109.87 110.24 27 110.54 110.58 110.65 110.72 110.74 110.80 110.70 109.94 109.06 109.27 109.88 110.27 28 110.54 110.58 110.68 110.72 110.75 110.80 110.67 109.91 109.03 109.29 109.90 110.28 29 110.54 110.59 110.68 110.72 110.80 110.67 109.90 109.03 109.30 109.93 110.29 30 110.54 110.60 110.69 110.73 110.80 110.61 109.87 109.05 109.33 109.94 110.28	23	110.55	110.61	110.65	110.71	110.76	110.79	110.77	110.11	109.10	109.19	109.78	110.25
26 110.53 110.59 110.66 110.72 110.75 110.79 110.72 109.98 109.06 109.24 109.87 110.24 27 110.54 110.58 110.65 110.72 110.74 110.80 110.70 109.94 109.06 109.27 109.88 110.27 28 110.54 110.58 110.68 110.72 110.75 110.80 110.67 109.91 109.03 109.29 109.90 110.28 29 110.54 110.59 110.68 110.72 110.80 110.67 109.90 109.03 109.30 109.93 110.29 30 110.54 110.60 110.69 110.73 110.80 110.61 109.87 109.05 109.33 109.94 110.28	24	110.55	110.59	110.66	110.73	110.76	110.78	110.76	110.06	109.07	109.21	109.82	110.23
27 110.54 110.58 110.65 110.72 110.74 110.80 110.70 109.94 109.06 109.27 109.88 110.27 28 110.54 110.58 110.68 110.72 110.75 110.80 110.67 109.91 109.03 109.29 109.90 110.28 29 110.54 110.59 110.68 110.72 110.80 110.67 109.90 109.03 109.30 109.93 110.29 30 110.54 110.60 110.69 110.73 110.80 110.61 109.87 109.05 109.33 109.94 110.28	25	110.54	110.59	110.66	110.73	110.75	110.78	110.74	110.02	109.07	109.25	109.84	110.25
27 110.54 110.58 110.65 110.72 110.74 110.80 110.70 109.94 109.06 109.27 109.88 110.27 28 110.54 110.58 110.68 110.72 110.75 110.80 110.67 109.91 109.03 109.29 109.90 110.28 29 110.54 110.59 110.68 110.72 110.80 110.67 109.90 109.03 109.30 109.93 110.29 30 110.54 110.60 110.69 110.73 110.80 110.61 109.87 109.05 109.33 109.94 110.28	26	110.53	110.59	110.66	110.72	110.75	110.79	110.72	109.98	109.06	109.24	109.87	110.24
29 110.54 110.59 110.68 110.72 110.80 110.67 109.90 109.03 109.30 109.93 110.29 30 110.54 110.60 110.69 110.73 110.80 110.61 109.87 109.05 109.33 109.94 110.28	27	110.54	110.58	110.65	110.72	110.74	110.80	110.70	109.94	109.06	109.27	109.88	110.27
30 110.54 110.60 110.69 110.73 110.80 110.61 109.87 109.05 109.33 109.94 110.28	28		110.58	110.68	110.72	110.75				109.03	109.29	109.90	
	29	110.54	110.59	110.68	110.72		110.80	110.67	109.90	109.03	109.30	109.93	110.29
31 110.53 110.68 110.72 110.81 109.83 109.35 109.97	30	110.54	110.60	110.69	110.73		110.80	110.61	109.87	109.05	109.33	109.94	110.28
	31	110.53		110.68	110.72		110.81		109.83		109.35	109.97	

FAIRBANKS NORTH STAR BOROUGH

644321147163801. Local number, FD00200223DDBA1003.

 $LOCATION.--Lat\ 64^{\circ}43'21'', Long\ 147^{\circ}16'38'', in\ NW^{1}/4\ SE^{1}/4\ sec.\ 23,\ T.2\ S.,\ R.2\ E.,\ (Fairbanks\ C-1\ NW\ quad),\ Fairbanks\ Meridian,\ Hydrologic\ Unit\ 19040506.$ Well located approximately 0.3 mi east of the Dyke Road, Old Richardson Highway and Levee Road intersection in city of North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 20.4 ft, screen opening from 15.4 to 19.9 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 13, 2001 to current year.

DATUM.--Elevation of land-surface datum is 508.1 ft above sea level (surveyed by U.S. Army Corps of Engineers). Measuring point: top of outer casing 2.62 ft above land surface datum.

REMARKS.--Observation well drilled April 10, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-14. Records are fair due to unquantified movement of the measuring point.

PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 9.49 ft below land-surface datum, August 22, 2002; lowest, 12.14 ft below land-surface datum, December 9-11, 2001.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 9.49 ft below land-surface datum, August 22; lowest, 12.14 ft below land-surface datum, December 9-11.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		11.57	12.00	12.00	11.93	11.93	11.91	11.26	10.70	10.82	10.18	10.18
2		11.55	12.03	11.99	11.91	11.93	11.91	11.05	10.60	10.63	10.23	10.27
3		11.51	12.03	12.00	11.90	11.93	11.91	10.90	10.59	10.29	10.27	10.34
4		11.50	12.07	12.01	11.90	11.92	11.90	10.79	10.63	10.29	10.34	10.39
5		11.48	12.09	11.98	11.91	11.91	11.89	10.73	10.68	9.94	10.40	10.42
6		11.48	12.10	11.99	11.91	11.91	11.90	10.72	10.76	9.88	10.44	10.29
7		11.49	12.11	11.99	11.91	11.91	11.90	10.75	10.81	9.91	10.41	10.31
8		11.50	12.12	11.99	11.91	11.91	11.89	10.77	10.85	9.95	10.34	10.44
9		11.55	12.13	11.98	11.90	11.91	11.89	10.80	10.86	9.99	10.29	10.51
10		11.60	12.13	11.99	11.89	11.90	11.89	10.88	10.87	10.02	10.21	10.55
11		11.66	12.12	11.98	11.90	11.90	11.90	10.92	10.79	10.08	10.23	10.59
12		11.70	12.12	11.98	11.89	11.91	11.90	10.85	10.79	10.17	10.28	10.63
13	11.54	11.74	12.13	11.97	11.88	11.93	11.90	10.73	10.78	10.24	10.28	10.67
14	11.56	11.77	12.10	11.96	11.88	11.94	11.90	10.71	10.75	10.30	10.35	10.72
15	11.59	11.76	12.08	11.99	11.89	11.95	11.91	10.69	10.72	10.35	10.38	10.76
16	11.61	11.77	12.08	11.97	11.89	11.95	11.93	10.69	10.72	10.37	9.86	10.81
17	11.64	11.76	12.09	11.95	11.87	11.95	11.92	10.68	10.75	10.39	9.59	10.84
18	11.67	11.76	12.09	11.94	11.87	11.96	11.92	10.67	10.79	10.37	9.53	10.84
19	11.72	11.78	12.08	11.92	11.88	11.98	11.92	10.65	10.70	10.37	9.53	10.90
20	11.76	11.78	12.06	11.90	11.89	11.97	11.90	10.61	10.68	10.27	9.57	10.96
21	11.78	11.79	12.06	11.89	11.90	11.97	11.90	10.56	10.67	10.27	9.55	10.99
22	11.82	11.82	12.07	11.86	11.90	11.96	11.88	10.52	10.67	10.30	9.49	11.03
23	11.86	11.85	12.08	11.86	11.91	11.96	11.88	10.45	10.70	10.28	9.56	11.06
24	11.90	11.88	12.08	11.87	11.92	11.95	11.87	10.42	10.72	10.27	9.56	11.10
25	11.93	11.89	12.07	11.90	11.92	11.94	11.86	10.40	10.69	9.99	9.59	11.13
26	11.96	11.91	12.06	11.92	11.92	11.94	11.84	10.39	10.69	10.00	9.66	11.11
27	11.97	11.93	12.05	11.92	11.93	11.94	11.79	10.41	10.72	9.94	9.75	11.10
28	11.88	11.94	12.05	11.94	11.92	11.94	11.69	10.43	10.75	9.94	9.85	11.13
29	11.77	11.96	12.03	11.95		11.93	11.57	10.45	10.78	9.99	9.95	11.16
30	11.68	11.98	12.03	11.95		11.92	11.41	10.53	10.81	10.07	10.00	11.09
31	11.61		12.02	11.94		11.91		10.63		10.11	10.09	

FAIRBANKS NORTH STAR BOROUGH-CONTINUED

644331147183901. Local number, FD00200222DABD1006.

LOCATION.--Lat $64^{\circ}43'31''$, Long $147^{\circ}18'39''$, in $NW^{1}/4$ $NE^{1}/4$ $SE^{1}/4$ sec. 22, T.2 S., R.2 E., (Fairbanks C-1 NW quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located on north side of Old Richardson Highway and VFW Road intersection in city of North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER.--Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 17.1 ft, screen opening from 12.1 to 16.6 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 13, 2001 to current year.

DATUM.--Elevation of land-surface datum is 498.1 ft above sea level (surveyed by U.S. Army Corps of Engineers). Measuring point: top of outer casing 2.57 ft above land surface datum.

REMARKS.--Observation well drilled April 9, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-16. Records are fair due to unquantified movement of the measuring point.

PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.21 ft below land-surface datum, August 20-21, 2002; lowest, 7.10 ft below land-surface datum, April 15-16, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 4.21 ft below land-surface datum, August 20-21; lowest, 7.10 ft below land-surface datum, April 15-16.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		6.10	6.80	6.80	6.84	6.93	7.07	6.04	5.51	5.32	4.59	4.99
2		6.09	6.84	6.80	6.83	6.93	7.07	5.81	5.49	5.25	4.63	5.06
3		6.08	6.86	6.81	6.83	6.93	7.08	5.62	5.48	5.11	4.66	5.12
4		6.07	6.89	6.82	6.83	6.93	7.07	5.51	5.48	5.02	4.74	5.16
5		6.05	6.91	6.81	6.84	6.93	7.07	5.45	5.50	4.78	4.83	5.21
6		6.05	6.90	6.83	6.84	6.93	7.07	5.46	5.55	4.67	4.87	5.21
7		6.11	6.90	6.84	6.84	6.94	7.06	5.50	5.59	4.65	4.84	5.21
8		6.18	6.89	6.83	6.85	6.94	7.05	5.60	5.59	4.63	4.82	5.25
9		6.27	6.89	6.82	6.84	6.95	7.05	5.74	5.59	4.63	4.81	5.26
10		6.35	6.87	6.83	6.84	6.95	7.05	5.83	5.59	4.63	4.73	5.27
11		6.42	6.85	6.83	6.84	6.95	7.06	5.89	5.54	4.67	4.73	5.30
12		6.47	6.84	6.83	6.84	6.97	7.07	5.86	5.52	4.76	4.79	5.34
13	6.54	6.51	6.83	6.82	6.83	6.99	7.07	5.74	5.42	4.84	4.80	5.39
14	6.57	6.50	6.80	6.82	6.83	7.00	7.07	5.70	5.33	4.86	4.84	5.44
15	6.60	6.50	6.78	6.85	6.84	7.01	7.08	5.67	5.30	4.87	4.86	5.49
16	6.64	6.50	6.77	6.82	6.83	7.02	7.09	5.62	5.29	4.87	4.65	5.55
17	6.68	6.46	6.77	6.79	6.82	7.03	7.08	5.61	5.30	4.84	4.42	5.60
18	6.72	6.46	6.76	6.78	6.83	7.04	7.08	5.59	5.36	4.82	4.36	5.65
19	6.77	6.49	6.78	6.76	6.84	7.06	7.07	5.54	5.36	4.78	4.24	5.70
20	6.82	6.50	6.77	6.74	6.85	7.06	7.04	5.47	5.34	4.73	4.21	5.76
21	6.86	6.51	6.77	6.73	6.87	7.07	7.03	5.42	5.33	4.72	4.21	5.80
22	6.91	6.53	6.78	6.72	6.87	7.08	7.01	5.33	5.31	4.72	4.23	5.83
23	6.94	6.56	6.79	6.72	6.90	7.08	6.99	5.25	5.30	4.68	4.27	5.87
24	6.98	6.60	6.79	6.75	6.91	7.08	6.99	5.21	5.29	4.66	4.26	5.92
25	7.02	6.63	6.80	6.81	6.90	7.08	6.98	5.20	5.30	4.52	4.27	5.96
26	7.05	6.64	6.80	6.83	6.90	7.08	6.94	5.20	5.28	4.49	4.34	6.00
27	6.75	6.67	6.80	6.85	6.92	7.08	6.82	5.22	5.27	4.46	4.46	6.01
28	6.51	6.70	6.79	6.88	6.91	7.08	6.64	5.23	5.28	4.45	4.59	6.03
29	6.34	6.73	6.78	6.88		7.06	6.44	5.25	5.31	4.47	4.73	6.04
30	6.22	6.77	6.79	6.87		7.06	6.23	5.34	5.33	4.51	4.82	6.02
31	6.13		6.80	6.85		7.07		5.45		4.53	4.90	

FAIRBANKS NORTH STAR BOROUGH-CONTINUED

644345147172101. Local number, FD00200223BDAD1002.

LOCATION.--Lat 64°43′ 45″, Long 147°17′21″, in NE¹/4 SE¹/4 NW¹/4 sec. 23, T.2 S., R.2 E., (Fairbanks C-1 NW quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located approximately 0.2 mi south on Dyke Road from intersection with Laurance Road in city of North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. pvc casing, depth 13.0 ft, screen opening from 7.8 to 12.8 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 13, 2001 to current year.

DATUM.--Elevation of land-surface datum is 498.1 ft above sea level (surveyed by U.S. Army Corps of Engineers). Measuring point: top of outer casing 2.10 ft above land surface datum.

REMARKS.--Observation well drilled June 7, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-13. Records are fair due to unquantified movement of the measuring point.

PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.75 ft below land-surface datum, August 24-25, 2002; lowest, 8.00 ft below land-surface datum, April 16, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 5.75 ft below land-surface datum, August 24-25; lowest, 8.00 ft below land-surface datum, April 16.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		7.44	7.72	7.83	7.85	7.90	7.98	7.22	6.61	6.63	6.09	6.02
2		7.42	7.74	7.83	7.84	7.90	7.99	7.11	6.62	6.61	6.10	6.07
3		7.40	7.75	7.83	7.84	7.91	7.99	7.03	6.60	6.51	6.12	6.10
4		7.39	7.78	7.84	7.83	7.91	7.98	6.95	6.60	6.47	6.15	6.12
5		7.37	7.80	7.82	7.84	7.90	7.98	6.89	6.61	6.38	6.18	6.14
6		7.36	7.81	7.82	7.85	7.90	7.98	6.85	6.64	6.27	6.22	6.13
7		7.36	7.82	7.83	7.84	7.90	7.98	6.83	6.66	6.21	6.24	6.13
8		7.36	7.83	7.84	7.85	7.90	7.97	6.83	6.68	6.18	6.23	6.16
9		7.38	7.84	7.83	7.84	7.91	7.97	6.84	6.68	6.16	6.23	6.18
10		7.41	7.84	7.84	7.83	7.90	7.97	6.86	6.70	6.15	6.18	6.21
11		7.45	7.84	7.85	7.84	7.90	7.98	6.88	6.70	6.15	6.18	6.23
12		7.48	7.84	7.85	7.83	7.91	7.98	6.89	6.68	6.17	6.19	6.25
13	7.31	7.51	7.85	7.85	7.83	7.92	7.98	6.85	6.66	6.20	6.20	6.28
14	7.34	7.53	7.84	7.84	7.82	7.93	7.98	6.82	6.63	6.21	6.23	6.31
15	7.36	7.53	7.83	7.86	7.84	7.93	7.98	6.80	6.60	6.23	6.24	6.34
16	7.38	7.54	7.83	7.85	7.84	7.94	7.99	6.79	6.59	6.24	6.10	6.38
17	7.40	7.54	7.83	7.83	7.83	7.94	7.99	6.78	6.59	6.25	5.94	6.41
18	7.43	7.54	7.83	7.82	7.83	7.95	7.99	6.76	6.61	6.25	5.89	6.44
19	7.46	7.55	7.83	7.81	7.84	7.96	7.99	6.74	6.60	6.24	5.83	6.47
20	7.50	7.55	7.81	7.81	7.85	7.97	7.97	6.71	6.59	6.22	5.79	6.51
21	7.52	7.56	7.81	7.80	7.87	7.97	7.97	6.68	6.58	6.21	5.79	6.54
22	7.55	7.57	7.82	7.78	7.87	7.97	7.96	6.66	6.58	6.21	5.76	6.57
23	7.59	7.59	7.84	7.77	7.87	7.97	7.95	6.62	6.58	6.19	5.76	6.59
24	7.62	7.62	7.84	7.78	7.88	7.98	7.94	6.58	6.58	6.19	5.75	6.62
25	7.66	7.63	7.84	7.81	7.88	7.97	7.93	6.55	6.58	6.12	5.75	6.64
26	7.69	7.65	7.84	7.83	7.88	7.98	7.90	6.54	6.58	6.09	5.77	6.67
27	7.70	7.67	7.84	7.83	7.89	7.98	7.81	6.53	6.58	6.07	5.80	6.69
28	7.64	7.67	7.85	7.84	7.88	7.99	7.70	6.52	6.59	6.05	5.84	6.70
29	7.59	7.68	7.84	7.85		7.99	7.52	6.52	6.60	6.05	5.90	6.73
30	7.53	7.70	7.84	7.85		7.98	7.30	6.54	6.62	6.05	5.94	6.74
31	7.48		7.84	7.85		7.99		6.58		6.06	5.97	

FAIRBANKS NORTH STAR BOROUGH-CONTINUED

644400147151501. Local number, FD00200224ABBB1001 51659.

LOCATION.--Lat $64^{\circ}44'00''$, long $147^{\circ}15'15''$, in $NW^{1}/4$ $NW^{1}/4$ $NE^{1}/4$ sec. 24, T.2 S., R.2 E., (Fairbanks C-1) Fairbanks Meridian, Hydrologic Unit 19040506, in road right-of-way at intersection of Nelson and Laurence Roads near North Pole. Owner: U.S. Army Corps of Engineers.

AQUIFER.--Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 4-in., depth 30 ft, screened from 27.5 to 30 ft using a 2-in. diameter well point.

INSTRUMENTATION.--Strip-chart recorder from June 1976 to May 1980. Digital recorder--1-hour punch interval, from November 1983 to June 1995. Electronic data logger from June 1995 to present.

DATUM.--Elevation of land-surface datum is 503.5 ft above sea level (determined by levels survey). Measuring point: top of casing 2.97 ft above land-surface datum.

REMARKS.--Observation well drilled by the U.S. Army Corps of Engineers designated as P-251.

PERIOD OF RECORD.--June 1976 to May 1980 and November 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 4.84 ft below land-surface datum, June 7, 1992; lowest, 13.70 ft below land-surface datum, February 18-20, 1988.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 11.42 ft below land-surface datum, September 6-7; lowest, 13.58 ft below land-surface datum, April 18-24.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	12.39	12.95	13.19	13.45	13.47	13.50	13.55	13.13	12.32	12.33	11.93	11.45
2	12.43	12.96	13.21	13.45	13.47	13.51	13.55	13.05	12.31	12.30	11.93	11.45
3	12.44	12.96	13.22	13.45	13.47	13.51	13.55	12.99	12.30	12.28	11.92	11.44
4	12.46	12.97	13.23	13.45	13.47	13.51	13.55	12.93	12.29	12.26	11.92	11.44
5	12.47	12.97	13.24	13.45	13.48	13.51	13.55	12.88	12.30	12.23	11.93	11.43
6	12.49	12.97	13.26	13.45	13.47	13.51	13.55	12.84	12.30	12.20	11.94	11.42
7	12.50	12.97	13.27	13.46	13.48	13.51	13.55	12.79	12.31	12.17	11.95	11.42
8	12.52	12.97	13.28	13.46	13.48	13.52	13.55	12.75	12.31	12.14	11.96	11.43
9	12.53	12.98	13.29	13.46	13.47	13.51	13.55	12.72	12.30	12.11	11.97	11.44
10	12.55	12.98	13.31	13.47	13.47	13.51	13.55	12.69	12.32	12.09	11.95	11.45
11	12.57	12.99	13.32	13.47	13.48	13.51	13.55	12.66	12.33	12.07	11.94	11.45
12	12.59	13.00	13.33	13.47	13.47	13.52	13.55	12.62	12.34	12.06	11.94	11.45
13	12.61	13.01	13.35	13.47	13.47	13.52	13.55	12.60	12.34	12.04	11.96	11.47
14	12.63	13.02	13.35	13.47	13.48	13.52	13.55	12.57	12.33	12.04	11.98	11.48
15	12.64	13.03	13.36	13.48	13.48	13.52	13.56	12.55	12.32	12.03	11.95	11.50
16	12.66	13.05	13.37	13.48	13.48	13.52	13.56	12.54	12.31	12.02	11.91	11.53
17	12.67	13.05	13.38	13.47	13.48	13.53	13.56	12.52	12.31	12.03	11.88	11.55
18	12.69	13.07	13.39	13.48	13.48	13.53	13.57	12.50	12.31	12.03	11.83	11.56
19	12.72	13.07	13.39	13.48	13.49	13.53	13.57	12.48	12.32	12.03	11.80	11.60
20	12.74	13.08	13.39	13.48	13.49	13.53	13.57	12.46	12.32	12.02	11.75	11.63
21	12.75	13.09	13.40	13.47	13.49	13.53	13.57	12.44	12.30	12.02	11.71	11.64
22	12.78	13.10	13.41	13.46	13.49	13.54	13.57	12.42	12.29	12.01	11.67	11.65
23	12.80	13.12	13.42	13.46	13.49	13.54	13.57	12.41	12.29	12.00	11.63	11.67
24	12.82	13.13	13.41	13.46	13.49	13.54	13.57	12.39	12.29	12.00	11.60	11.69
25	12.84	13.14	13.42	13.46	13.49	13.54	13.56	12.37	12.29	11.99	11.56	11.70
26	12.86	13.15	13.43	13.46	13.49	13.54	13.55	12.36	12.29	11.98	11.53	11.70
27	12.88	13.16	13.43	13.46	13.49	13.54	13.51	12.34	12.30	11.97	11.50	11.73
28	12.90	13.16	13.44	13.47	13.50	13.55	13.44	12.33	12.29	11.96	11.48	11.75
29	12.92	13.17	13.44	13.47		13.55	13.32	12.33	12.30	11.95	11.46	11.78
30	12.94	13.18	13.44	13.47		13.55	13.22	12.33	12.31	11.94	11.45	11.78
31	12.94		13.45	13.47		13.55		12.33		11.93	11.45	

FAIRBANKS NORTH STAR BOROUGH-CONTINUED

644401147193801. Local number, FD00200222BABA1005.

LOCATION.--Lat $64^{\circ}44'01''$, Long $147^{\circ}19'38''$, in $NW^{1}/4$ $NE^{1}/4$ $NW^{1}/4$ sec. 22, T.2 S., R.2 E., (Fairbanks C-1 NW quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located at southeast corner of Laurance Road and Old Richardson Highway intersection in city of North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER.--Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. pvc casing, depth 14.1 ft, screen opening from 9.1 to 13.6 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/ electronic data logger from October 13, 2001 to current year.

DATUM.--Elevation of land-surface datum is 493.7 ft above sea level (surveyed by U.S. Army Corps of Engineers). Measuring point: top of inner casing 3.56 ft above land surface datum.

REMARKS.--Observation well drilled April 9, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-15. Records are fair due to unquantified movement of the measuring point.

PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.55 ft below land-surface datum, August 9, 2001; lowest, 6.27 ft below land-surface datum, April 15-19, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 3.56 ft below land-surface datum, August 22, 2002; lowest, 6.27 ft below land-surface datum, April 15-19, 2002.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		5.32	5.81	5.83	5.93	6.06	6.23	5.38	4.76	4.58	4.01	4.15
2		5.29	5.84	5.84	5.92	6.06	6.23	5.19	4.77	4.53	4.04	4.23
3		5.25	5.86	5.84	5.92	6.07	6.24	5.05	4.75	4.43	4.07	4.28
4		5.23	5.88	5.87	5.92	6.07	6.24	4.93	4.74	4.37	4.13	4.31
5		5.20	5.89	5.85	5.94	6.07	6.24	4.86	4.75	4.22	4.18	4.35
6		5.19	5.89	5.86	5.94	6.07	6.24	4.85	4.80	4.10	4.23	4.35
7		5.21	5.89	5.88	5.94	6.07	6.24	4.85	4.82	4.05	4.23	4.35
8		5.26	5.88	5.88	5.95	6.08	6.24	4.87	4.81	4.03	4.23	4.40
9		5.33	5.88	5.88	5.94	6.09	6.24	4.91	4.82	4.02	4.23	4.41
10		5.40	5.88	5.88	5.93	6.08	6.23	4.95	4.82	4.01	4.14	4.43
11		5.47	5.85	5.90	5.95	6.09	6.24	5.02	4.78	4.03	4.14	4.46
12		5.50	5.85	5.89	5.94	6.10	6.25	5.06	4.75	4.08	4.17	4.49
13	5.65	5.54	5.84	5.88	5.94	6.12	6.25	5.00	4.67	4.13	4.18	4.54
14	5.68	5.55	5.81	5.88	5.94	6.13	6.25	4.98	4.61	4.16	4.23	4.59
15	5.70	5.55	5.80	5.91	5.97	6.14	6.26	4.96	4.58	4.19	4.23	4.63
1.0	F 73	F F6	F 70	F 00	F 07	6 15	6.06	4 00	4 50	4 01	2 05	4 60
16	5.73	5.56	5.79	5.88	5.97	6.15	6.26	4.92	4.58	4.21	3.95	4.69
17 18	5.77	5.53	5.79	5.86	5.96	6.16	6.26	4.91	4.58	4.21	3.77	4.75
	5.81	5.53	5.79	5.86	5.96	6.17	6.26	4.89	4.61	4.21	3.68	4.79
19	5.86	5.55	5.79	5.85	5.98	6.18	6.26	4.85	4.61	4.21	3.63	4.85
20	5.91	5.55	5.77	5.84	5.99	6.19	6.24	4.80	4.58	4.17	3.60	4.91
21	5.94	5.56	5.78	5.83	6.00	6.20	6.23	4.75	4.57	4.16	3.60	4.95
22	5.98	5.59	5.79	5.82	6.01	6.21	6.22	4.70	4.56	4.16	3.56	4.99
23	6.03	5.61	5.81	5.82	6.02	6.21	6.21	4.64	4.56	4.13	3.57	5.03
24	6.06	5.64	5.81	5.84	6.03	6.21	6.21	4.60	4.56	4.13	3.60	5.08
25	6.10	5.67	5.81	5.88	6.03	6.21	6.20	4.58	4.56	3.99	3.60	5.12
23	0.10	3.07	3.01	3.00	0.03	0.21	0.20	1.50	1.50	3.33	3.00	3.12
26	6.14	5.68	5.81	5.90	6.03	6.21	6.16	4.56	4.55	3.96	3.65	5.16
27	5.93	5.70	5.82	5.92	6.05	6.21	6.06	4.56	4.55	3.93	3.73	5.19
28	5.75	5.73	5.83	5.94	6.05	6.22	5.92	4.55	4.55	3.92	3.82	5.21
29	5.61	5.75	5.82	5.95		6.23	5.74	4.56	4.57	3.92	3.93	5.24
30	5.49	5.79	5.82	5.95		6.22	5.55	4.62	4.59	3.94	4.00	5.22
31	5.39		5.84	5.94		6.23		4.71		3.96	4.07	

FAIRBANKS NORTH STAR BOROUGH-CONTINUED

644402147132801. Local number, FD00200319BAAB1001.

LOCATION.--Lat $64^{\circ}44'02''$, Long $147^{\circ}13'28''$, in NE $^{1}/4$ NE $^{1}/4$ NW $^{1}/4$ sec. 19, T.2 S., R.3 E., (Fairbanks C-1 NE quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located approximately 1.2 mi. east of gate at gravel road from U.S. Army Corps of Engineers office, then north of gravel road beneath power lines, North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 24.3 ft, screen opening from 19.2 to 24.2 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 5, 2001 to current year.

DATUM.--Elevation of land-surface datum is 503.5 ft. above sea level (surveyed by U.S. Army Corps of Engineers). Measuring point: top of outer casing 6.20 ft. above land surface datum.

REMARKS.--Observation well drilled September 7, 1994 by the U.S. Army Corps of Engineers and designated as USAP-1. Records are fair due to unquantified movement of the measuring point.

PERIOD OF RECORD .-- July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 12.10 ft below land-surface datum, September 15, 2002; lowest, 14.62 ft below land-surface datum, April 24-26, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 12.10 ft below land-surface datum, September 15; lowest, 14.62 ft below land-surface datum, April 24-26.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		13.71	14.03	14.34	14.45	14.52	14.57	14.35	13.37	13.32	12.98	12.36
2		13.72	14.04	14.34	14.45	14.52	14.57	14.24	13.36	13.32	12.97	12.34
3		13.74	14.05	14.35	14.45	14.53	14.57	14.15	13.35	13.32	12.95	12.30
4		13.76	14.07	14.35	14.46	14.53	14.57	14.06	13.34	13.32	12.94	12.28
5	13.34	13.78	14.08	14.35	14.46	14.53	14.57	13.98	13.33	13.31	12.93	12.24
6	13.35	13.79	14.08	14.35	14.46	14.53	14.57	13.94	13.33	13.30	12.93	12.22
7	13.38	13.80	14.09	14.35	14.46	14.53	14.57	13.93	13.32	13.29	12.93	12.20
8	13.39	13.81	14.11	14.37	14.47	14.53	14.58	13.89	13.32	13.27	12.93	12.19
9	13.39	13.81	14.12	14.37	14.47	14.53	14.58	13.87	13.31	13.25	12.94	12.18
10	13.40	13.82	14.13	14.38	14.46	14.53	14.58	13.84	13.31	13.23	12.92	12.16
11	13.42	13.83	14.13	14.39	14.47	14.53	14.58	13.82	13.31	13.21	12.92	12.14
12	13.43	13.84	14.14	14.40	14.47	14.54	14.58	13.79	13.32	13.19	12.92	12.13
13	13.46	13.85	14.16	14.40	14.47	14.54	14.58	13.76	13.32	13.16	12.93	12.11
14	13.48	13.86	14.17	14.40	14.48	14.54	14.59	13.73	13.32	13.15	12.95	12.11
15	13.49	13.86	14.17	14.41	14.49	14.55	14.59	13.70	13.31	13.14	12.94	12.10
16	13.49	13.87	14.18	14.42	14.49	14.55	14.59	13.69	13.31	13.12	12.93	12.11
17	13.50	13.89	14.20	14.42	14.49	14.55	14.59	13.67	13.30	13.10	12.92	12.11
18	13.51	13.89	14.21	14.42	14.49	14.55	14.60	13.64	13.30	13.09	12.90	12.11
19	13.54	13.91	14.22	14.42	14.50	14.55	14.60	13.61	13.30	13.08	12.88	12.12
20	13.55	13.91	14.23	14.43	14.50	14.56	14.60	13.59	13.31	13.07	12.84	12.15
21	13.55	13.92	14.23	14.43	14.50	14.56	14.60	13.56	13.30	13.06	12.81	12.16
22	13.57	13.93	14.25	14.43	14.50	14.56	14.60	13.54	13.30	13.05	12.77	12.16
23	13.59	13.95	14.27	14.43	14.50	14.55	14.60	13.52	13.30	13.04	12.74	12.16
24	13.61	13.97	14.28	14.43	14.50	14.55	14.61	13.50	13.30	13.04	12.69	12.17
25	13.64	13.98	14.28	14.44	14.51	14.55	14.61	13.47	13.30	13.03	12.64	12.17
26	13.64	13.99	14.29	14.44	14.51	14.55	14.61	13.45	13.30	13.02	12.59	12.17
27	13.64	14.00	14.30	14.44	14.51	14.56	14.60	13.43	13.30	13.02	12.54	12.19
28	13.65	14.00	14.31	14.44	14.51	14.56	14.58	13.41	13.30	13.02	12.50	12.20
29	13.67	14.01	14.32	14.44		14.56	14.54	13.40	13.30	13.01	12.46	12.24
30	13.69	14.02	14.33	14.45		14.57	14.45	13.39	13.31	12.99	12.42	12.25
31	13.70		14.33	14.45		14.57		13.38		12.98	12.38	

FAIRBANKS NORTH STAR BOROUGH-CONTINUED

644402147150401. Local number, FD00200224ABBA1002.

LOCATION.--Lat $64^{\circ}44'02''$, Long $147^{\circ}15'04''$, in $NW^{1}/4$ $NW^{1}/4$ $NE^{1}/4$ sec. 24, T.2 S., R.2 E., (Fairbanks C-1 NW quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located approximately 0.1 mi east of Laurance Road and Nelson Road intersection, then 50 ft east of road behind grove of trees towards levy, North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER.--Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. pvc casing, depth 19.4 ft, screen openings from 9.4 to 13.9 ft and 14.4 to 18.9 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/ electronic data logger from October 5, 2001 to current year.

DATUM.--Elevation of land-surface datum is 502.8 ft above sea level (surveyed by U.S. Army Corps of Engineers). Measuring point: top of outer casing 2.70 ft above land surface datum.

REMARKS.--Observation well drilled March 12, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-11. Records are fair due to unquantified movement of the measuring point. Missing daily values October 29, 31 and November 1, 2 due to equipment malfunction. PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 11.11 ft below land-surface datum, September 7-8, 2002; lowest, 13.31 ft below land-surface datum, April 19 and 21-25, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 11.11 ft below land-surface datum, September 7-8; lowest, 13.31 ft below land-surface datum, April 19 and 21-25.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1			12.83	13.11	13.16	13.21	13.28	12.90	12.05	12.09	11.67	11.16
2			12.85	13.11	13.16	13.22	13.29	12.81	12.05	12.09	11.67	11.16
3		12.58	12.85	13.12	13.16	13.23	13.29	12.76	12.04	12.06	11.67	11.14
4		12.59	12.87	13.13	13.15	13.24	13.28	12.70	12.04	12.03	11.66	11.14
5	12.12	12.61	12.88	13.11	13.17	13.23	13.28	12.65	12.04	12.02	11.66	11.13
6	12.14	12.61	12.89	13.11	13.17	13.23	13.28	12.60	12.04	11.99	11.67	11.12
7	12.16	12.61	12.90	13.11	13.17	13.23	13.28	12.56	12.04	11.96	11.68	11.11
8	12.16	12.61	12.92	13.12	13.18	13.23	13.28	12.51	12.04	11.93	11.69	11.11
9	12.17	12.61	12.93	13.13	13.17	13.22	13.28	12.48	12.05	11.90	11.70	11.12
10	12.18	12.62	12.94	13.13	13.16	13.21	13.27	12.45	12.05	11.88	11.69	11.13
11	12.21	12.63	12.95	13.15	13.17	13.21	13.28	12.42	12.07	11.85	11.68	11.12
12	12.23	12.63	12.96	13.16	13.17	13.22	13.28	12.39	12.08	11.83	11.67	11.12
13	12.26	12.65	12.98	13.16	13.16	13.23	13.28	12.36	12.08	11.81	11.68	11.13
14	12.27	12.65	13.00	13.15	13.17	13.24	13.28	12.33	12.07	11.80	11.71	11.14
15	12.29	12.66	13.00	13.16	13.18	13.24	13.28	12.31	12.07	11.80	11.70	11.15
16	12.30	12.68	13.01	13.15	13.18	13.24	13.29	12.29	12.06	11.79	11.67	11.18
17	12.31	12.69	13.02	13.15	13.18	13.24	13.29	12.28	12.06	11.78	11.64	11.20
18	12.33	12.69	13.03	13.15	13.18	13.24	13.30	12.25	12.06	11.78	11.60	11.21
19	12.36	12.71	13.04	13.15	13.19	13.26	13.29	12.23	12.07	11.77	11.56	11.24
20	12.37	12.71	13.03	13.16	13.20	13.26	13.30	12.20	12.06	11.77	11.51	11.27
21	12.37	12.73	13.03	13.16	13.20	13.26	13.30	12.19	12.06	11.76	11.47	11.30
22	12.40	12.74	13.05	13.15	13.21	13.26	13.31	12.18	12.05	11.76	11.43	11.30
23	12.43	12.76	13.07	13.15	13.21	13.25	13.30	12.16	12.05	11.75	11.39	11.31
24	12.46	12.78	13.07	13.15	13.21	13.25	13.30	12.14	12.05	11.75	11.35	11.33
25	12.47	12.79	13.08	13.16	13.20	13.25	13.30	12.12	12.05	11.74	11.32	11.34
26	12.48	12.80	13.08	13.15	13.20	13.25	13.29	12.10	12.05	11.72	11.28	11.34
27	12.49	12.81	13.09	13.15	13.20	13.26	13.27	12.09	12.06	11.72	11.24	11.37
28	12.52	12.81	13.10	13.15	13.20	13.27	13.21	12.07	12.06	11.71	11.22	11.38
29		12.82	13.11	13.15		13.27	13.11	12.06	12.07	11.70	11.20	11.42
30	12.55	12.82	13.11	13.15		13.28	12.99	12.06	12.08	11.69	11.17	11.43
31			13.12	13.16		13.28		12.06		11.68	11.16	

FAIRBANKS NORTH STAR BOROUGH-CONTINUED

644402147182601. Local number, FD00200222AAAA1004.

LOCATION.--Lat 64°44'02", Long 147°18'26", in NE¹/4 NE¹/4 NE¹/4 sec. 22, T.2 S., R.2 E., (Fairbanks C-1 NW quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located approximately 25 ft southeast of southeast corner of Laurance Road and Treaty Street intersection, North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. pvc casing, depth 15.0 ft, screen opening from 10.1 to 14.6 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/ electronic data logger from October 13, 2001 to current year.

DATUM.--Elevation of land-surface datum is 496.3 ft above sea level (surveyed by U.S. Army Corps of Engineers). Measuring point: top of outer casing 2.30 ft above land surface datum.

REMARKS.--Observation well drilled April 10, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-12. Record are fair due to unquantified movement of the measuring point.

PERIOD OF RECORD .-- July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.63 ft below land-surface datum, August 22, 2002; lowest, 8.00 ft below land-surface datum, April 15-19, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 5.63 ft below land-surface datum, August 22; lowest, 8.00 ft below land-surface datum, April 15-19.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		7.44	7.75	7.79	7.83	7.88	7.98	7.18	6.58	6.48	6.01	6.01
2		7.41	7.78	7.79	7.82	7.88	7.98	7.06	6.57	6.42	6.03	6.06
3		7.38	7.79	7.80	7.82	7.88	7.99	6.95	6.56	6.32	6.05	6.10
4		7.37	7.82	7.81	7.81	7.88	7.99	6.86	6.55	6.29	6.08	6.12
5		7.34	7.83	7.80	7.83	7.88	7.98	6.80	6.56	6.13	6.12	6.14
6		7.34	7.83	7.80	7.83	7.88	7.99	6.77	6.59	6.07	6.16	6.10
7		7.34	7.84	7.81	7.83	7.88	7.99	6.76	6.61	6.05	6.17	6.11
8		7.35	7.84	7.82	7.84	7.88	7.98	6.77	6.61	6.04	6.16	6.16
9		7.39	7.84	7.82	7.83	7.89	7.98	6.78	6.61	6.03	6.15	6.19
10		7.43	7.83	7.82	7.82	7.88	7.98	6.80	6.62	6.02	6.09	6.21
11		7.48	7.82	7.83	7.83	7.88	7.98	6.84	6.60	6.03	6.09	6.23
12		7.51	7.82	7.83	7.82	7.89	7.99	6.86	6.59	6.05	6.11	6.26
13	7.39	7.54	7.82	7.82	7.82	7.90	7.99	6.81	6.55	6.08	6.13	6.29
14	7.41	7.56	7.80	7.82	7.82	7.91	7.99	6.79	6.51	6.10	6.16	6.33
15	7.44	7.56	7.79	7.83	7.83	7.92	7.99	6.77	6.48	6.13	6.17	6.36
16	7.47	7.57	7.78	7.82	7.83	7.92	7.99	6.75	6.47	6.14	5.86	6.41
17	7.50	7.56	7.78	7.81	7.82	7.93	7.99	6.74	6.47	6.14	5.74	6.44
18	7.55	7.56	7.78	7.80	7.82	7.94	8.00	6.72	6.49	6.14	5.70	6.47
19	7.59	7.57	7.78	7.79	7.82	7.95	7.99	6.70	6.48	6.14	5.69	6.50
20	7.63	7.57	7.76	7.78	7.84	7.96	7.98	6.66	6.46	6.11	5.69	6.55
21	7.66	7.58	7.77	7.77	7.85	7.96	7.97	6.63	6.45	6.10	5.67	6.58
22	7.70	7.59	7.78	7.75	7.85	7.96	7.96	6.59	6.45	6.10	5.63	6.60
23	7.74	7.61	7.79	7.75	7.85	7.97	7.95	6.56	6.45	6.09	5.64	6.63
24	7.77	7.63	7.79	7.77	7.86	7.97	7.94	6.52	6.45	6.09	5.66	6.67
25	7.81	7.65	7.79	7.80	7.86	7.97	7.93	6.48	6.44	5.97	5.67	6.70
26	7.84	7.66	7.79	7.81	7.86	7.97	7.88	6.47	6.44	5.96	5.70	6.73
27	7.79	7.67	7.79	7.82	7.87	7.97	7.79	6.47	6.44	5.92	5.75	6.74
28	7.70	7.69	7.80	7.83	7.87	7.98	7.66	6.46	6.44	5.92	5.80	6.75
29	7.62	7.71	7.79	7.84		7.98	7.48	6.46	6.46	5.92	5.87	6.79
30	7.55	7.73	7.79	7.84		7.98	7.31	6.49	6.47	5.95	5.90	6.77
31	7.48		7.80	7.84		7.98		6.54		5.97	5.95	

FAIRBANKS NORTH STAR BOROUGH-CONTINUED

644403147112901. Local number, FD00200317CDDD1005.

LOCATION.--Lat $64^{\circ}44'03''$, Long $147^{\circ}11'29''$, in $SE^{1}/4$ $SE^{1}/4$ $SE^{1}/4$ sec. 17, T.2 S., R.3 E., (Fairbanks C-1 NE quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located approximately 2.2 mi east of gate at gravel road from U.S. Army Corps of Engineers office, then just beyond powerlines north of gravel road, North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. pvc casing, depth 20.0 ft, screen opening from 14.9 to 19.9 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 5, 2001 to current year.

DATUM.--Elevation of land-surface datum is 501.5 ft. above sea level (surveyed by U.S. Army Corps of Engineers). Measuring point: top of outer casing 2.57 ft. above land surface datum.

REMARKS.--Observation well drilled September 8, 1994 by the U.S. Army Corps of Engineers and designated as USAP-2. Records are fair due to unquantified movement of the measuring point.

PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.09 ft below land-surface datum, September 30, 2002; lowest, 11.08 ft below land-surface datum, May 1, 2 and 17, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 5.09 ft below land-surface datum, September 30; lowest, 11.08 ft below land-surface datum, May 1, 2 and 17.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		8.89	9.45	9.95	10.24	10.45	10.72	10.89	10.79	10.67	9.75	7.92
2		8.95	9.48	9.95	10.25	10.47	10.71	10.80	10.78	10.55	9.75	7.88
3		8.95	9.48	10.01	10.22	10.58	10.72	10.80	10.76	10.47	9.73	7.73
4		9.02	9.53	9.98	10.22	10.50	10.67	10.91	10.73	10.65	9.69	7.66
5	8.88	9.03	9.51	9.89	10.32	10.49	10.66	10.85	10.81	10.61	9.68	7.58
6	8.88	9.04	9.56	9.96	10.31	10.50	10.73	10.87	10.82	10.47	9.73	7.37
7	8.83	9.04	9.59	10.00	10.31	10.50	10.69	10.86	10.77	10.37	9.73	7.27
8	8.77	9.04	9.59	10.01	10.34	10.53	10.69	10.78	10.67	10.29	9.76	7.27
9	8.75	9.08	9.61	10.02	10.24	10.50	10.72	10.86	10.72	10.30	9.77	7.31
10	8.77	9.08	9.65	10.09	10.26	10.48	10.75	10.93	10.77	10.16	9.64	7.24
11	8.76	9.11	9.63	10.10	10.30	10.52	10.79	10.94	10.83	10.18	9.65	7.16
12	8.78	9.12	9.66	10.11	10.29	10.58	10.72	10.89	10.81	10.15	9.64	7.09
13	8.79	9.16	9.71	10.09	10.24	10.58	10.73	10.83	10.74	10.03	9.78	7.08
14	8.79	9.16	9.71	10.07	10.32	10.61	10.76	10.86	10.70	10.09	9.68	7.01
15	8.75	9.18	9.72	10.12	10.33	10.56	10.82	10.88	10.65	10.18	9.61	7.05
16	8.77	9.24	9.76	10.07	10.35	10.55	10.75	10.99	10.63	10.09	9.55	7.06
17	8.72	9.20	9.77	10.04	10.34	10.60	10.72	10.99	10.65	10.06	9.29	6.86
18	8.78	9.22	9.78	10.07	10.40	10.63	10.78	10.89	10.64	10.07	8.93	6.72
19	8.81	9.25	9.77	10.11	10.43	10.60	10.75	10.86	10.67	10.09	8.74	6.78
20	8.78	9.25	9.73	10.19	10.48	10.62	10.78	10.82	10.68	10.08	8.58	6.72
21	8.78	9.29	9.82	10.19	10.42	10.57	10.84	10.83	10.64	9.99	8.60	6.58
22	8.84	9.32	9.79	10.14	10.43	10.57	10.87	10.89	10.59	9.98	8.50	6.46
23	8.85	9.36	9.86	10.17	10.46	10.60	10.82	10.85	10.60	9.91	8.48	6.44
24	8.90	9.38	9.88	10.24	10.40	10.59	10.83	10.80	10.62	9.95	8.32	6.25
25	8.90	9.38	9.87	10.21	10.43	10.59	10.81	10.75	10.63	9.97	8.21	6.19
26	8.86	9.40	9.89	10.18	10.43	10.65	10.79	10.79	10.66	9.88	8.10	5.97
27	8.87	9.40	9.90	10.18	10.36	10.69	10.89	10.80	10.66	9.89	7.94	5.77
28	8.87	9.40	9.94	10.20	10.34	10.72	10.80	10.75	10.63	9.98	7.93	5.78
29	8.86	9.42	9.94	10.19		10.71	10.86	10.80	10.66	9.88	7.94	5.55
30	8.91	9.43	9.95	10.23		10.70	10.67	10.91	10.71	9.83	7.85	5.09
31	8.89		9.95	10.23		10.70		10.86		9.81	7.87	

FAIRBANKS NORTH STAR BOROUGH-CONTINUED

644408147162001. Local number, FD00200214DDDA1003.

 $LOCATION. --Lat\ 64^{\circ}44'08", Long\ 147^{\circ}16'20", in\ SE^{1}/4\ SE^{1}/4\ SE^{1}/4\ sec.\ 14, T.2\ S., R.2\ E., (Fairbanks\ C-1\ NW\ quad), Fairbanks\ Meridian, \\ Hydrologic\ Unit\ 19040506.\ Well\ located\ 10\ ft\ off\ shoulder\ of\ northeast\ corner\ of\ Anton\ Road\ and\ Seavy\ Road\ intersection,\ North\ Pole.$

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. pvc casing, depth 15.2 ft, screen opening from 10.2 to 15.2 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/ electronic data logger from October 5, 2001 to current year.

DATUM.--Elevation of land-surface datum is 499.7 ft above sea level (surveyed by U.S. Army Corps of Engineers). Measuring point: top of outer casing 2.62 ft above land surface datum.

REMARKS.--Observation well drilled June 7, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-10. Records are fair due to unquantified movement of the measuring point.

PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.88 ft below land-surface datum, August 28, 2002; lowest, 10.95 ft below land-surface datum, March 31, April 1-4, 6-7, 16, 18 and 22-23, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 8.88 ft below land-surface datum, August 28; lowest, 10.95 ft below land-surface datum, March 31, April 1-4, 6-7, 16, 18 and 22-23.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		10.39	10.61	10.82	10.85	10.88	10.95	10.36	9.70	9.75	9.30	8.94
2		10.41	10.62	10.82	10.84	10.88	10.95	10.31	9.70	9.74	9.31	8.96
3		10.41	10.63	10.82	10.84	10.90	10.95	10.25	9.69	9.69	9.31	8.97
4		10.41	10.65	10.82	10.84	10.91	10.94	10.23	9.69	9.67	9.32	8.97
5	9.91	10.41	10.66	10.80	10.84	10.90	10.93	10.18	9.69	9.64	9.33	8.97
6	9.93	10.40	10.67	10.80	10.85	10.90	10.93	10.15	9.70	9.58	9.34	8.96
7	9.95	10.39	10.69	10.81	10.85	10.89	10.94	10.11	9.71	9.54	9.36	8.96
8	9.96	10.39	10.70	10.81	10.85	10.90	10.93	10.08	9.71	9.50	9.37	8.97
9	9.96	10.39	10.71	10.81	10.85	10.89	10.92	10.06	9.72	9.47	9.38	8.99
10	9.99	10.40	10.71	10.82	10.84	10.88	10.92	10.03	9.73	9.44	9.36	9.02
11	10.00	10.42	10.72	10.83	10.84	10.88	10.93	10.02	9.75	9.43	9.35	9.03
12	10.03	10.42	10.73	10.84	10.84	10.89	10.93	10.00	9.76	9.41	9.35	9.05
13	10.07	10.44	10.74	10.84	10.84	10.89	10.93	9.98	9.75	9.40	9.36	9.07
14	10.09	10.45	10.75	10.84	10.84	10.90	10.93	9.96	9.74	9.40	9.38	9.08
15	10.11	10.45	10.76	10.84	10.85	10.90	10.93	9.94	9.73	9.40	9.38	9.10
16	10.12	10.46	10.76	10.84	10.85	10.90	10.94	9.92	9.73	9.40	9.32	9.14
17	10.13	10.47	10.77	10.84	10.85	10.90	10.94	9.91	9.72	9.40	9.26	9.17
18	10.15	10.47	10.77	10.84	10.85	10.91	10.93	9.89	9.73	9.41	9.25	9.18
19	10.19	10.49	10.78	10.83	10.86	10.92	10.94	9.88	9.73	9.41	9.13	9.21
20	10.21	10.49	10.77	10.83	10.87	10.92	10.93	9.85	9.72	9.41	9.09	9.24
21	10.22	10.50	10.77	10.83	10.87	10.93	10.93	9.83	9.71	9.40	9.06	9.27
22	10.25	10.51	10.78	10.82	10.87	10.91	10.94	9.82	9.70	9.40	9.02	9.28
23	10.28	10.53	10.79	10.81	10.87	10.91	10.94	9.79	9.70	9.39	8.99	9.29
24	10.31	10.54	10.80	10.82	10.87	10.91	10.93	9.77	9.71	9.39	8.96	9.32
25	10.34	10.55	10.80	10.84	10.87	10.90	10.92	9.75	9.71	9.38	8.94	9.33
26	10.36	10.57	10.80	10.83	10.87	10.91	10.88	9.73	9.71	9.36	8.92	9.35
27	10.38	10.58	10.80	10.83	10.87	10.91	10.75	9.72	9.71	9.35	8.91	9.36
28	10.40	10.58	10.82	10.84	10.87	10.92	10.75	9.70	9.72	9.34	8.88	9.38
29	10.41	10.59	10.82	10.84		10.93	10.60	9.70	9.72	9.33	8.92	9.41
30	10.43	10.59	10.82	10.84		10.94	10.47	9.70	9.73	9.31	8.91	9.42
31	10.41		10.82	10.85		10.94		9.70		9.31	8.92	

FAIRBANKS NORTH STAR BOROUGH-CONTINUED

644423147124601. Local number, FD00200318DABC1006.

LOCATION.--Lat $64^{\circ}44'23''$, Long $147^{\circ}12'46''$, in NW $^{1}/4$ NE $^{1}/4$ SE $^{1}/4$ sec. 18, T.2 S., R.3 E., (Fairbanks C-1 NE quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located in Chena River Recreation Area, North Pole. From recreation area entrance station well is approximately 0.8 mi southeast on dirt road from levee followed by 0.4 mi northeast on intersecting dirt road.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 20.0 ft, screen opening from 14.9 to 19.9 ft.

INSTRUMENTATION.—Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 5, 2001 to current year.

DATUM.--Elevation of land-surface datum is 499.6 ft. above sea level (surveyed by U.S. Army Corps of Engineers). Measuring point: top of outer casing 6.77 ft. above land surface datum.

REMARKS.--Observation well drilled September 9, 1994 by the U.S. Army Corps of Engineers and designated as USAP-3. Records are fair due to unquantified movement of the measuring point. Missing daily values Oct. 5 and 9 due to equipment malfunction.

PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.36 ft below land-surface datum, September 26-28, 2002; lowest, 11.37 ft below land-surface datum, April 22-28, 2002.

EXTREMES FOR CURRENT YEAR.—Highest water level measured, 8.36 ft below land-surface datum, September 26-28; lowest, 11.37 ft below land-surface datum, April 22-28.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		10.14	10.50	10.87	11.11	11.22	11.31	11.13	10.09	9.96	9.59	8.83
2		10.16	10.52	10.87	11.11	11.22	11.32	11.02	10.08	9.95	9.58	8.81
3		10.18	10.52	10.88	11.11	11.23	11.32	10.95	10.07	9.95	9.57	8.77
4		10.20	10.54	10.90	11.11	11.24	11.32	10.88	10.06	9.95	9.56	8.74
5		10.22	10.55	10.90	11.13	11.24	11.32	10.81	10.05	9.94	9.55	8.71
6	9.77	10.23	10.56	10.90	11.14	11.23	11.32	10.76	10.04	9.93	9.54	8.67
7	9.81	10.24	10.57	10.91	11.14	11.24	11.32	10.70	10.03	9.91	9.54	8.65
8	9.81	10.24	10.58	10.93	11.15	11.24	11.33	10.64	10.02	9.89	9.54	8.63
9		10.25	10.59	10.94	11.14	11.25	11.33	10.61	10.01	9.88	9.54	8.60
10	9.82	10.26	10.60	10.95	11.14	11.25	11.33	10.58	10.01	9.86	9.52	8.57
11	9.85	10.28	10.62	10.97	11.15	11.25	11.33	10.54	10.01	9.85	9.52	8.55
12	9.88	10.28	10.62	10.99	11.15	11.25	11.33	10.52	10.01	9.83	9.51	8.52
13	9.91	10.30	10.64	11.00	11.15	11.25	11.34	10.49	10.00	9.81	9.52	8.49
14	9.92	10.31	10.66	11.00	11.16	11.26	11.34	10.46	9.99	9.79	9.53	8.47
15	9.93	10.31	10.66	11.01	11.17	11.26	11.34	10.44	9.99	9.78	9.52	8.46
16	9.94	10.33	10.67	11.02	11.17	11.26	11.34	10.42	9.98	9.76	9.51	8.45
17	9.94	10.35	10.69	11.02	11.17	11.27	11.34	10.40	9.97	9.74	9.49	8.43
18	9.95	10.35	10.70	11.03	11.17	11.27	11.35	10.37	9.97	9.73	9.45	8.42
19	9.99	10.37	10.71	11.04	11.19	11.28	11.35	10.34	9.96	9.72	9.40	8.42
20	9.99	10.37	10.71	11.05	11.20	11.28	11.35	10.31	9.96	9.71	9.34	8.42
21	9.99	10.38	10.72	11.05	11.20	11.28	11.35	10.29	9.95	9.70	9.30	8.40
22	10.01	10.40	10.74	11.05	11.20	11.29	11.36	10.28	9.95	9.69	9.24	8.39
23	10.04	10.43	10.76	11.05	11.20	11.29	11.36	10.26	9.95	9.67	9.20	8.39
24	10.06	10.45	10.77	11.07	11.21	11.29	11.36	10.23	9.94	9.67	9.15	8.38
25	10.08	10.46	10.78	11.09	11.21	11.29	11.36	10.20	9.94	9.66	9.10	8.37
26	10.08	10.47	10.79	11.09	11.22	11.29	11.36	10.18	9.94	9.64	9.04	8.36
27	10.08	10.48	10.80	11.09	11.22	11.29	11.37	10.16	9.94	9.64	8.99	8.36
28	10.10	10.48	10.82	11.09	11.22	11.30	11.35	10.14	9.94	9.64	8.96	8.36
29	10.10	10.48	10.83	11.09		11.30	11.31	10.13	9.94	9.63	8.92	8.38
30	10.13	10.49	10.85	11.10		11.31	11.22	10.13	9.94	9.62	8.88	8.37
31	10.13		10.86	11.11		11.31		10.11		9.61	8.85	

FAIRBANKS NORTH STAR BOROUGH-CONTINUED

644435147141901. Local number, FD00200213ADAD1007.

LOCATION.--Lat $64^{\circ}44'35''$, Long $147^{\circ}14'19''$, in $NE^{1}/4$ $SE^{1}/4$ $NE^{1}/4$ sec. 13, T.2 S., R.2 E., (Fairbanks C-1 NE quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located south on Gordon Road from the intersection with Lyle Road, south of shoulder where road veers west, North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 19.15 ft, screen opening from 14.2 to 18.7 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 13, 2001 to current year.

DATUM.--Elevation of land-surface datum is 500.5 ft above sea level (surveyed by U.S. Army Corps of Engineers). Measuring point: top of outer casing 2.45 ft above land surface datum.

REMARKS.--Observation well drilled April 6, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-8S. Records are fair due to unquantified movement of the measuring point.

PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 10.52 ft below land-surface datum, September 13-15, 2002; lowest, 13.05 ft below land-surface datum, April 24, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 10.52 ft below land-surface datum, September 13-15; lowest, 13.05 ft below land-surface datum, April 24.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		12.08	12.38	12.70	12.85	12.93	13.01	12.72	11.70	11.68	11.34	10.73
2		12.09	12.39	12.70	12.86	12.94	13.01	12.62	11.69	11.69	11.33	10.71
3		12.11	12.40	12.70	12.85	12.95	13.01	12.58	11.69	11.68	11.32	10.68
4		12.12	12.42	12.72	12.85	12.95	13.01	12.52	11.67	11.68	11.32	10.66
5		12.15	12.43	12.70	12.86	12.95	13.01	12.46	11.67	11.66	11.31	10.64
6		12.15	12.44	12.70	12.87	12.95	13.01	12.42	11.67	11.63	11.31	10.61
7		12.16	12.45	12.71	12.87	12.95	13.01	12.37	11.66	11.62	11.31	10.60
8		12.16	12.46	12.73	12.88	12.95	13.01	12.33	11.65	11.60	11.31	10.58
9		12.17	12.47	12.73	12.87	12.95	13.02	12.30	11.65	11.58	11.32	10.58
10		12.18	12.48	12.74	12.87	12.95	13.02	12.27	11.65	11.55	11.32	10.56
11		12.19	12.49	12.76	12.88	12.95	13.02	12.24	11.66	11.54	11.31	10.55
12		12.20	12.49	12.77	12.88	12.96	13.02	12.20	11.66	11.51	11.30	10.53
13	11.84	12.21	12.51	12.78	12.88	12.96	13.02	12.17	11.67	11.49	11.32	10.52
14	11.85	12.21	12.53	12.78	12.88	12.97	13.02	12.14	11.66	11.48	11.34	10.52
15	11.87	12.22	12.53	12.79	12.89	12.97	13.02	12.11	11.65	11.47	11.34	10.52
16	11.87	12.22	12.54	12.79	12.89	12.97	13.03	12.08	11.65	11.45	11.33	10.53
17	11.87	12.24	12.55	12.79	12.90	12.97	13.02	12.05	11.65	11.44	11.29	10.53
18	11.89	12.24	12.57	12.79	12.90	12.97	13.03	12.02	11.64	11.43	11.26	10.53
19	11.92	12.26	12.58	12.80	12.91	12.98	13.03	11.99	11.65	11.42	11.24	10.55
20	11.93	12.26	12.57	12.81	12.91	12.98	13.03	11.95	11.65	11.42	11.20	10.58
21	11.93	12.27	12.58	12.82	12.92	12.98	13.03	11.92	11.65	11.41	11.15	10.59
22	11.95	12.28	12.59	12.82	12.92	12.98	13.04	11.90	11.64	11.40	11.11	10.59
23	11.97	12.30	12.62	12.82	12.92	12.98	13.04	11.87	11.64	11.39	11.07	10.59
24	11.99	12.33	12.63	12.83	12.92	12.98	13.04	11.84	11.64	11.39	11.02	10.59
25	12.01	12.33	12.64	12.84	12.92	12.98	13.04	11.81	11.64	11.38	10.98	10.60
26	12.02	12.35	12.64	12.84	12.92	12.99	13.03	11.79	11.65	11.37	10.93	10.60
27	12.02	12.36	12.65	12.84	12.92	12.99	13.02	11.77	11.65	11.37	10.88	10.61
28	12.04	12.36	12.67	12.84	12.92	13.00	12.98	11.75	11.66	11.37	10.85	10.63
29	12.04	12.36	12.68	12.84		13.00	12.92	11.74	11.66	11.36	10.81	10.67
30	12.06	12.37	12.69	12.84		13.00	12.80	11.73	11.67	11.36	10.78	10.68
31	12.07		12.70	12.85		13.01		11.72		11.35	10.75	

FAIRBANKS NORTH STAR BOROUGH-CONTINUED

644435147141902. Local number, FD00200213ADAD2007.

LOCATION.--Lat 64°44'35", Long 147°14'19", in NE¹/4 SE¹/4 NE¹/4 sec. 13, T.2 S., R.2 E., (Fairbanks C-1 NE quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located 0.3 miles south on Gordon Road from the intersection with Lyle Road, south of shoulder where road veers west, North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER.--Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 64.39 ft, screen opening from 59.5 to 64.0 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 13, 2001 to current year.

DATUM.--Elevation of land-surface datum is 500.8 ft above sea level (surveyed by U.S. Army Corps of Engineers). Measuring point: top of outer casing 2.26 ft above land surface datum.

REMARKS.--Observation well drilled April 6, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-8D. Records are fair due to unquantified movement of the measuring point.

PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 10.83 ft below land-surface datum, September 14, 2002; lowest, 13.36 ft below land-surface datum, April 22-24, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 10.83 ft below land-surface datum, September 14; lowest, 13.36 ft below land-surface datum, April 22-24.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		12.44	12.72	13.02	13.17	13.24	13.32	13.03	12.01	12.00	11.66	11.05
2		12.45	12.73	13.02	13.17	13.25	13.32	12.94	12.00	12.00	11.65	11.03
3		12.45	12.74	13.03	13.17	13.26	13.32	12.89	12.00	11.99	11.64	11.00
4		12.46	12.76	13.05	13.17	13.26	13.32	12.83	11.98	11.99	11.63	10.98
5		12.48	12.76	13.04	13.19	13.26	13.32	12.77	11.98	11.98	11.63	10.95
6		12.49	12.77	13.05	13.19	13.26	13.33	12.73	11.98	11.95	11.63	10.93
7		12.50	12.78	13.05	13.19	13.26	13.33	12.69	11.98	11.93	11.63	10.91
8		12.50	12.79	13.07	13.20	13.26	13.33	12.65	11.97	11.91	11.63	10.90
9		12.51	12.80	13.07	13.19	13.26	13.33	12.61	11.97	11.89	11.64	10.89
10		12.51	12.82	13.08	13.19	13.26	13.33	12.59	11.97	11.87	11.64	10.88
11		12.52	12.82	13.09	13.20	13.26	13.33	12.55	11.98	11.85	11.63	10.87
12		12.53	12.83	13.10	13.20	13.27	13.33	12.51	11.98	11.83	11.62	10.85
13	12.16	12.54	12.84	13.10	13.19	13.27	13.33	12.48	11.98	11.80	11.64	10.84
14	12.18	12.55	12.86	13.10	13.20	13.28	13.33	12.45	11.98	11.79	11.66	10.83
15	12.19	12.56	12.86	13.11	13.21	13.28	13.34	12.42	11.97	11.78	11.65	10.84
16	12.20	12.57	12.87	13.12	13.21	13.28	13.34	12.39	11.97	11.77	11.64	10.85
17	12.21	12.58	12.89	13.11	13.21	13.29	13.34	12.36	11.96	11.75	11.61	10.85
18	12.23	12.58	12.90	13.11	13.22	13.29	13.34	12.32	11.96	11.75	11.59	10.85
19	12.25	12.60	12.91	13.13	13.22	13.29	13.34	12.30	11.96	11.74	11.56	10.87
20	12.26	12.61	12.91	13.14	13.23	13.29	13.34	12.26	11.97	11.73	11.51	10.90
21	12.27	12.62	12.92	13.14	13.23	13.29	13.35	12.23	11.96	11.73	11.47	10.91
22	12.27	12.62	12.92	13.14	13.23	13.29	13.35	12.23	11.96	11.73	11.47	10.91
23	12.20	12.63	12.95	13.14	13.23	13.29	13.35	12.20	11.96	11.72	11.43	10.91
24	12.33	12.66	12.96	13.14	13.23	13.30	13.35	12.17	11.96	11.71	11.34	10.91
25	12.35	12.66	12.96	13.15	13.23	13.30	13.35	12.13	11.96	11.71	11.34	10.92
23	12.35	12.67	12.96	13.16	13.24	13.30	13.35	12.12	11.90	11.70	11.29	10.92
26	12.36	12.68	12.97	13.15	13.23	13.30	13.34	12.10	11.96	11.69	11.25	10.91
27	12.37	12.69	12.98	13.16	13.24	13.30	13.33	12.08	11.97	11.69	11.20	10.93
28	12.38	12.69	13.00	13.16	13.23	13.31	13.29	12.06	11.97	11.69	11.16	10.95
29	12.39	12.70	13.00	13.16		13.31	13.23	12.05	11.98	11.68	11.13	10.99
30	12.41	12.71	13.01	13.16		13.32	13.11	12.04	11.98	11.67	11.09	10.99
31	12.43		13.02	13.17		13.32		12.03		11.67	11.07	

FAIRBANKS NORTH STAR BOROUGH-CONTINUED

644435147172001. Local number, FD00200214ACBC1002.

LOCATION.--Lat $64^{\circ}44'35''$, Long $147^{\circ}17'20''$, in $NW^{1}/4$ $SW^{1}/4$ $NE^{1}/4$ sec. 14, T.2 S., R.2 E., (Fairbanks C-1 NW quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located 25 ft off shoulder of southeast corner of Newby Road and Newby Park intersection, North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER.--Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 16.9 ft, screen opening from 11.9 to 16.4 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/ electronic data logger from October 12, 2001 to current year.

DATUM.--Elevation of land-surface datum is 494.9 ft above sea level (surveyed by U.S. Army Corps of Engineers). Measuring point: top of inner casing 2.53 ft above land surface datum.

REMARKS.--Observation well drilled April 8, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-9. Records are fair due to unquantified movement of the measuring point.

PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 6.96 ft below land-surface datum, August 26, 2002; lowest, 8.72 ft below land-surface datum, April 15-19, 22, 23, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 6.96 ft below land-surface datum, August 26; lowest, 8.72 ft below land-surface datum, April 15-19, 22, 23.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		8.33	8.47	8.59	8.61	8.64	8.71	8.02	7.68	7.73	7.39	7.09
2		8.33	8.48	8.59	8.62	8.64	8.71	7.93	7.66	7.70	7.39	7.09
3		8.32	8.49	8.59	8.61	8.64	8.71	7.90	7.66	7.63	7.40	7.08
4		8.32	8.50	8.60	8.61	8.65	8.71	7.92	7.65	7.61	7.41	7.07
5		8.30	8.51	8.58	8.61	8.65	8.70	7.94	7.66	7.56	7.41	7.07
6		8.30	8.51	8.58	8.62	8.64	8.71	7.92	7.66	7.50	7.43	7.03
7		8.29	8.52	8.59	8.62	8.64	8.71	7.90	7.66	7.46	7.44	7.03
8		8.28	8.53	8.60	8.62	8.64	8.71	7.88	7.67	7.43	7.45	7.05
9		8.28	8.53	8.60	8.61	8.64	8.70	7.86	7.76	7.41	7.45	7.21
10		8.29	8.53	8.61	8.61	8.63	8.70	7.85	7.79	7.39	7.42	7.29
11		8.30	8.54	8.62	8.61	8.63	8.71	7.85	7.80	7.37	7.42	7.34
12	8.03	8.31	8.54	8.62	8.61	8.64	8.71	7.84	7.80	7.36	7.42	7.36
13	8.05	8.32	8.55	8.62	8.61	8.65	8.71	7.83	7.80	7.35	7.43	7.37
14	8.07	8.33	8.55	8.62	8.61	8.65	8.71	7.82	7.79	7.35	7.45	7.39
15	8.09	8.34	8.55	8.63	8.62	8.66	8.71	7.80	7.77	7.36	7.45	7.40
16	8.10	8.35	8.56	8.62	8.62	8.65	8.72	7.79	7.76	7.40	7.35	7.44
17	8.12	8.36	8.56	8.61	8.61	8.66	8.71	7.78	7.75	7.44	7.25	7.45
18	8.14	8.36	8.56	8.61	8.61	8.66	8.71	7.77	7.76	7.44	7.20	7.45
19	8.17	8.37	8.56	8.61	8.62	8.67	8.71	7.76	7.74	7.43	7.16	7.47
20	8.19	8.37	8.55	8.61	8.62	8.67	8.71	7.74	7.72	7.42	7.13	7.50
21	8.20	8.37	8.55	8.61	8.63	8.67	8.70	7.72	7.71	7.41	7.09	7.51
22	8.22	8.38	8.56	8.59	8.63	8.67	8.71	7.71	7.71	7.39	7.04	7.52
23	8.25	8.40	8.57	8.59	8.63	8.67	8.71	7.69	7.75	7.40	7.02	7.53
24	8.27	8.41	8.58	8.59	8.63	8.67	8.70	7.67	7.75	7.40	6.99	7.55
25	8.29	8.42	8.58	8.61	8.63	8.67	8.70	7.66	7.75	7.35	6.97	7.56
26	8.32	8.43	8.58	8.60	8.63	8.67	8.65	7.64	7.76	7.34	6.96	7.57
27	8.33	8.44	8.58	8.60	8.63	8.67	8.56	7.63	7.75	7.35	7.03	7.60
28	8.35	8.44	8.59	8.61	8.63	8.68	8.44	7.68	7.74	7.41	7.08	7.62
29	8.35	8.45	8.59	8.61		8.70	8.27	7.69	7.73	7.40	7.08	7.65
30	8.35	8.46	8.59	8.61		8.70	8.14	7.68	7.73	7.40	7.08	7.67
31	8.34		8.59	8.62		8.70		7.69		7.40	7.09	

FAIRBANKS NORTH STAR BOROUGH-CONTINUED

644444147143901. Local number, FD00200213AACD1005.

LOCATION.--Lat $64^{\circ}44'44''$, Long $147^{\circ}14'39''$, in $SW^{1}/4$ $NE^{1}/4$ sec. 13, T.2 S., R.2 E., (Fairbanks C-1 NE quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located approximately 0.2 mi south on Silver Street from the intersection with Lyle Road, then 15 ft south of road, North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 17.15 ft, screen opening from 12.4 to 16.9 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/ electronic data logger from October 13, 2001 to current year.

DATUM.--Elevation of land-surface datum is 498.4 ft above sea level (surveyed by U.S. Army Corps of Engineers). Measuring point: top of outer casing 2.42 ft above land surface datum.

REMARKS.--Observation well drilled April 8, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-7. Records are fair due to unquantified movement of the measuring point. Missing daily values Jan. 9-23 and Jan. 27 to Mar. 15 due to equipment malfunction. PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.01 ft below land-surface datum, September 13-15, 2002; lowest, 11.48 ft below land-surface datum, April 22-25, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 9.01 ft below land-surface datum, September 13-15; lowest, 11.48 ft below land-surface datum, April 22-25.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		10.56	10.86	11.16			11.44	11.11	10.14	10.13	9.78	9.19
2		10.57	10.87	11.17			11.45	11.04	10.13	10.14	9.78	9.17
3		10.59	10.88	11.17			11.45	10.98	10.12	10.12	9.77	9.15
4		10.60	10.90	11.18			11.45	10.93	10.11	10.11	9.76	9.13
5		10.63	10.91	11.18			11.45	10.89	10.11	10.10	9.76	9.11
6		10.64	10.91	11.19			11.45	10.84	10.11	10.07	9.76	9.08
7		10.65	10.93	11.19			11.45	10.80	10.10	10.05	9.76	9.07
8		10.65	10.94	11.20			11.45	10.76	10.10	10.02	9.77	9.06
9		10.65	10.95				11.45	10.73	10.09	10.00	9.78	9.05
10		10.66	10.96				11.45	10.70	10.10	9.97	9.77	9.04
11		10.67	10.97				11.46	10.67	10.10	9.96	9.77	9.03
12		10.67	10.98				11.46	10.63	10.11	9.94	9.76	9.02
13	10.33	10.69	10.99				11.46	10.60	10.11	9.91	9.77	9.01
14	10.35	10.69	11.00				11.46	10.56	10.11	9.91	9.80	9.01
15	10.37	10.70	11.00				11.46	10.53	10.10	9.90	9.79	9.01
16	10.37	10.71	11.02			11.41	11.46	10.51	10.09	9.88	9.78	9.02
17	10.37	10.73	11.03			11.41	11.46	10.48	10.09	9.87	9.74	9.03
18	10.38	10.73	11.04			11.41	11.46	10.45	10.09	9.87	9.71	9.03
19	10.40	10.75	11.05			11.42	11.46	10.42	10.09	9.86	9.67	9.04
20	10.42	10.75	11.05			11.42	11.46	10.39	10.09	9.86	9.62	9.08
21	10.42	10.76	11.05			11.42	11.47	10.36	10.08	9.85	9.57	9.09
22	10.43	10.77	11.07			11.42	11.47	10.33	10.08	9.84	9.53	9.09
23	10.46	10.79	11.08			11.42	11.47	10.30	10.08	9.84	9.48	9.09
24	10.48	10.80	11.10	11.27		11.42	11.47	10.28	10.08	9.83	9.44	9.10
25	10.50	10.81	11.10	11.29		11.42	11.47	10.25	10.08	9.83	9.40	9.10
26	10.51	10.82	11.11	11.29		11.42	11.46	10.23	10.09	9.82	9.36	9.10
27	10.52	10.83	11.12			11.43	11.44	10.21	10.09	9.82	9.31	9.11
28	10.53	10.84	11.13			11.43	11.40	10.19	10.10	9.81	9.28	9.13
29	10.53	10.84	11.14			11.44	11.31	10.18	10.10	9.81	9.25	9.17
30	10.54	10.85	11.15			11.44	11.20	10.16	10.11	9.80	9.23	9.17
31	10.55		11.16			11.44		10.15		9.79	9.20	

FAIRBANKS NORTH STAR BOROUGH-CONTINUED

644446147120901. Local number, FD00200317BBCA1001.

LOCATION.--Lat 64°44'46", Long 147°12'09", in SW¹/4 NW¹/4 sec. 17, T.2 S., R.3 E., (Fairbanks C-1 NE quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located in Chena River Recreation Area, North Pole. From recreation area entrance station well is approximately 0.8 mi southeast on dirt road from levee followed by 0.8 mi northeast on intersecting dirt road.

Owner: U.S. Army Corps of Engineers.

AQUIFER.--Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 15.2 ft, screen opening from 10.1 to 15.1 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 05, 2001 to current year.

DATUM.--Elevation of land-surface datum is 495.7 ft above sea level (surveyed by U.S. Army Corps of Engineers). Measuring point: top of outer casing 6.30 ft above land surface datum.

REMARKS.--Observation well drilled September 9, 1994 by the U.S. Army Corps of Engineers and designated as USAP-4. Records are fair due to unquantified movement of the measuring point. Well is in low lying area near drainage way. Water levels in well rise during flooding. Water level rose 5 ft from August 19-23, 2002 during a period of heavy precipitation.

PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.31 ft below land-surface datum, August 24-25, 2002; lowest, 11.81 ft below land-surface datum, April 27-28, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 3.31 ft below land-surface datum, August 24-25; lowest, 11.81 ft below land-surface datum, April 27-28.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		9.83	10.25	10.70	11.05	11.35	11.64	11.70	9.46	9.45	8.60	3.73
2		9.85	10.28	10.70	11.07	11.36	11.65	11.59	9.45	9.43	8.58	3.81
3		9.88	10.28	10.72	11.08	11.38	11.66	11.52	9.44	9.42	8.57	3.85
4		9.90	10.30	10.74	11.08	11.40	11.67	11.41	9.43	9.41	8.55	3.85
5	9.54	9.94	10.31	10.73	11.09	11.40	11.66	11.28	9.44	9.38	8.55	3.85
6	9.56	9.94	10.31	10.74	11.11	11.40	11.66	11.16	9.46	9.32	8.56	3.58
7	9.58	9.96	10.33	10.74	11.12	11.41	11.67	11.00	9.45	9.23	8.56	3.60
8	9.57	9.96	10.35	10.77	11.14	11.42	11.67	10.83	9.43	9.14	8.58	3.72
9	9.55	9.97	10.36	10.78	11.14	11.43	11.68	10.68	9.43	9.06	8.62	3.85
10	9.56	9.98	10.38	10.80	11.14	11.43	11.68	10.53	9.44	8.98	8.59	3.93
11	9.58	10.00	10.38	10.82	11.16	11.44	11.69	10.39	9.46	8.93	8.58	3.96
12	9.59	10.01	10.39	10.84	11.17	11.45	11.70	10.25	9.47	8.88	8.58	3.97
13	9.64	10.03	10.42	10.86	11.16	11.46	11.70	10.13	9.47	8.83	8.62	4.01
14	9.64	10.03	10.44	10.86	11.17	11.48	11.71	10.02	9.46	8.81	8.66	4.04
15	9.64	10.04	10.44	10.88	11.20	11.49	11.72	9.95	9.44	8.79	8.64	4.07
16	9.64	10.06	10.45	10.90	11.20	11.50	11.73	9.91	9.42	8.78	8.61	4.17
17	9.62	10.08	10.47	10.90	11.22	11.50	11.74	9.86	9.41	8.75	8.51	4.10
18	9.65	10.08	10.49	10.90	11.22	11.51	11.74	9.80	9.41	8.74	8.38	4.06
19	9.68	10.10	10.50	10.91	11.24	11.53	11.75	9.76	9.41	8.75	8.24	4.13
20	9.68	10.11	10.50	10.93	11.26	11.53	11.76	9.70	9.41	8.75	7.32	4.26
21	9.68	10.12	10.51	10.95	11.28	11.55	11.76	9.66	9.41	8.73	4.39	4.30
22	9.70	10.13	10.53	10.96	11.28	11.55	11.78	9.63	9.40	8.73	3.46	4.31
23	9.72	10.17	10.57	10.96	11.29	11.55	11.79	9.60	9.39	8.71	3.35	4.33
24	9.75	10.19	10.58	10.97	11.31	11.56	11.79	9.56	9.39	8.71	3.31	4.35
25	9.77	10.20	10.59	11.00	11.31	11.56	11.80	9.53	9.38	8.73	3.31	4.37
26	9.77	10.22	10.61	11.00	11.31	11.57	11.80	9.50	9.40	8.69	3.37	4.35
27	9.77	10.23	10.62	11.01	11.32	11.58	11.80	9.47	9.41	8.69	3.43	4.30
28	9.79	10.23	10.65	11.02	11.33	11.60	11.80	9.44	9.40	8.68	3.47	4.31
29	9.78	10.24	10.66	11.02		11.61	11.79	9.44	9.41	8.67	3.55	4.39
30	9.82	10.24	10.67	11.03		11.62	11.73	9.46	9.43	8.64	3.58	4.22
31	9.83		10.68	11.05		11.63		9.47		8.62	3.64	
-	2.03		20.00	11.00		11.00		J • 1 ·		0.02	5.51	

FAIRBANKS NORTH STAR BOROUGH-CONTINUED

644450147131201. Local number, FD00200318ABBD1005.

LOCATION.--Lat $64^{\circ}44'50''$, Long $147^{\circ}13'12''$, in $NW^{1}/4NE^{1}/4$ sec. 18, T.2 S., R.3 E., (Fairbanks C-1 NE quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located in Chena River Recreation Area, North Pole. From recreation area entrance station well is approximately 0.3 mi southeast on dirt road from levee.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. pvc casing, depth 24.8 ft, screen opening from 19.7 to 24.7 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; Submersible pressure transducer/electronic data logger from October 13, 2001 to current year.

DATUM.--Elevation of land-surface datum is 500.5 ft above sea level (surveyed by U.S. Army Corps of Engineers). Measuring point: top of outer casing 5.80 ft above land surface datum.

REMARKS.--Observation well drilled September 9, 1994 by the U.S. Army Corps of Engineers and designated as USAP-5. Records are fair due to unquantified movement of the measuring point.

PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.67 ft below land-surface datum, September 18, 2002; lowest, 14.81 ft below land-surface datum, April 15-19 and 21-28, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 11.67 ft below land-surface datum, September 18; lowest, 14.81 ft below land-surface datum, April 15-19 and 21-28.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		13.58	13.91	14.27	14.51	14.63	14.76	14.55	13.26	13.24	12.86	12.00
2		13.60	13.93	14.27	14.52	14.64	14.77	14.40	13.25	13.24	12.85	11.96
3		13.61	13.93	14.28	14.52	14.65	14.77	14.35	13.25	13.23	12.84	11.93
4		13.62	13.95	14.30	14.52	14.65	14.77	14.29	13.23	13.24	12.83	11.90
5		13.65	13.96	14.29	14.54	14.65	14.77	14.25	13.23	13.22	12.82	11.87
6		13.65	13.97	14.31	14.54	14.65	14.77	14.21	13.23	13.19	12.81	11.83
7		13.67	13.98	14.32	14.55	14.66	14.78	14.16	13.23	13.18	12.81	11.82
8		13.67	13.99	14.34	14.55	14.66	14.78	14.10	13.22	13.15	12.82	11.79
9		13.68	14.00	14.35	14.54	14.66	14.78	14.06	13.20	13.12	12.83	11.78
10		13.68	14.01	14.36	14.55	14.66	14.78	14.01	13.21	13.10	12.82	11.76
11		13.69	14.04	14.38	14.55	14.66	14.78	13.96	13.21	13.07	12.82	11.74
12		13.70	14.04	14.39	14.56	14.67	14.78	13.90	13.22	13.05	12.81	11.72
13	13.41	13.72	14.06	14.40	14.55	14.68	14.78	13.85	13.22	13.03	12.83	11.70
14	13.44	13.72	14.07	14.40	14.58	14.68	14.79	13.78	13.22	13.01	12.86	11.69
15	13.44	13.73	14.08	14.41	14.58	14.68	14.80	13.74	13.21	13.00	12.86	11.68
16	13.44	13.76	14.09	14.42	14.58	14.72	14.79	13.69	13.20	12.98	12.85	11.69
17	13.44	13.77	14.10	14.42	14.59	14.73	14.79	13.64	13.20	12.97	12.81	11.68
18	13.46	13.77	14.12	14.42	14.60	14.73	14.79	13.58	13.19	12.95	12.78	11.67
19	13.48	13.79	14.13	14.44	14.60	14.74	14.79	13.54	13.19	12.95	12.75	11.69
20	13.48	13.79	14.12	14.45	14.61	14.74	14.79	13.50	13.19	12.94	12.69	11.71
21	13.48	13.81	14.13	14.46	14.61	14.74	14.80	13.48	13.19	12.94	12.65	11.70
22	13.49	13.82	14.14	14.46	14.62	14.74	14.79	13.46	13.20	12.92	12.59	11.69
23	13.51	13.84	14.17	14.47	14.62	14.73	14.80	13.43	13.19	12.91	12.53	11.69
24	13.54	13.86	14.19	14.48	14.62	14.74	14.80	13.40	13.20	12.91	12.46	11.69
25	13.55	13.87	14.19	14.49	14.63	14.74	14.80	13.37	13.19	12.90	12.38	11.69
26	13.55	13.88	14.20	14.49	14.62	14.74	14.80	13.35	13.20	12.89	12.30	11.68
27	13.54	13.89	14.21	14.49	14.62	14.75	14.80	13.33	13.21	12.89	12.23	11.69
28	13.56	13.89	14.23	14.50	14.61	14.75	14.78	13.31	13.21	12.89	12.17	11.71
29	13.56	13.90	14.24	14.50		14.76	14.74	13.30	13.22	12.89	12.12	11.75
30	13.58	13.91	14.25	14.51		14.76	14.62	13.30	13.23	12.87	12.07	11.74
31	13.58		14.26	14.51		14.76		13.28		12.87	12.02	

FAIRBANKS NORTH STAR BOROUGH-CONTINUED

644454147151701. Local number, FD00200213ABBB1006.

LOCATION.--Lat $64^{\circ}44'54''$, Long $147^{\circ}15'17''$, in $NW^{1}/4$ $NW^{1}/4$ $NE^{1}/4$ sec. 13, T.2 S., R.3 E., (Fairbanks C-1 NW quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located approximately 30 ft southeast of intersection of Nelson Rd and Lyle Rd, North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER.--Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 17.9 ft, screen openings from 12.6 to 17.6 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/ electronic datalogger from October 12, 2001 to current year.

DATUM.--Elevation of land-surface datum is 495.8 ft above sea level (surveyed by U.S. Army Corps of Engineers). Measuring point: top of metal ring on inner pvc casing 2.49 ft above land surface datum.

REMARKS.--Observation well drilled April 8, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-6. Record are fair due to unquantified movement of the measuring point. Daily values missing March 3-8 from equipment malfunction.

PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.79 ft below land-surface datum, September 12-15, 2002; lowest, 10.13 ft below land-surface datum, April 22-24, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 7.79 ft below land-surface datum, September 12-15; lowest, 10.13 ft below land-surface datum, April 22-24.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		9.21	9.53	9.85	9.98	10.04	10.09	9.70	8.80	8.83	8.47	7.91
2		9.23	9.54	9.85	9.99	10.04	10.08	9.62	8.79	8.83	8.46	7.90
3		9.25	9.55	9.86	9.99		10.09	9.57	8.79	8.80	8.46	7.88
4		9.26	9.57	9.87	9.98		10.10	9.52	8.78	8.78	8.46	7.87
5		9.28	9.59	9.86	9.99		10.09	9.48	8.78	8.75	8.45	7.85
6		9.28	9.59	9.86	10.00		10.09	9.44	8.78	8.72	8.46	7.83
7		9.30	9.61	9.86	10.00		10.10	9.41	8.78	8.69	8.47	7.82
8		9.30	9.62	9.88	10.01		10.10	9.37	8.77	8.66	8.48	7.81
9		9.30	9.63	9.88	10.00	10.05	10.09	9.33	8.77	8.63	8.49	7.81
10		9.31	9.65	9.90	10.00	10.05	10.09	9.30	8.78	8.61	8.48	7.81
11		9.32	9.66	9.92	10.01	10.05	10.10	9.27	8.79	8.59	8.47	7.80
12	8.94	9.33	9.66	9.92	10.01	10.05	10.10	9.23	8.79	8.57	8.47	7.79
13	8.97	9.34	9.69	9.93	10.00	10.06	10.10	9.20	8.80	8.56	8.48	7.79
14	8.99	9.35	9.70	9.93	10.00	10.06	10.10	9.17	8.79	8.55	8.51	7.79
15	9.00	9.36	9.71	9.94	10.01	10.06	10.10	9.14	8.78	8.54	8.51	7.79
16	9.01	9.37	9.72	9.94	10.01	10.06	10.11	9.12	8.78	8.53	8.47	7.82
17	9.01	9.39	9.73	9.94	10.01	10.06	10.09	9.09	8.78	8.53	8.42	7.83
18	9.02	9.39	9.74	9.94	10.01	10.06	10.11	9.06	8.78	8.53	8.37	7.83
19	9.05	9.41	9.75	9.95	10.02	10.07	10.11	9.04	8.78	8.53	8.32	7.84
20	9.06	9.41	9.75	9.95	10.02	10.07	10.11	9.01	8.78	8.52	8.27	7.87
21	9.07	9.42	9.75	9.96	10.03	10.07	10.11	8.98	8.77	8.52	8.22	7.89
22	9.09	9.42	9.77	9.95	10.03	10.07	10.11	8.95	8.77	8.52	8.18	7.89
23	9.10	9.44	9.79	9.95	10.03	10.07	10.12	8.93	8.77	8.51	8.14	7.90
24	9.12	9.47	9.80	9.96	10.03	10.07	10.12	8.90	8.78	8.51	8.09	7.91
25	9.14	9.48	9.81	9.97	10.03	10.07	10.12	8.88	8.78	8.50	8.06	7.91
26	9.16	9.49	9.81	9.97	10.03	10.07	10.10	8.86	8.79	8.49	8.03	7.92
27	9.16	9.50	9.82	9.97	10.03	10.07	10.07	8.85	8.79	8.49	7.99	7.93
28	9.17	9.51	9.84	9.98	10.03	10.08	10.01	8.82	8.81	8.49	7.97	7.94
29	9.18	9.51	9.84	9.97		10.08	9.91	8.82	8.81	8.48	7.96	7.97
30	9.20	9.52	9.84	9.98		10.09	9.80	8.82	8.82	8.48	7.94	7.97
31	9.21		9.85	9.98		10.09		8.81		8.47	7.92	

FAIRBANKS NORTH STAR BOROUGH-CONTINUED

644528147131201. Local number, FD00200307ACBD1001 51660.

LOCATION.--Lat 64°45′28″, long 147°13′12″, NW¹/4 SW¹/4 NE¹/4, sec. 7, T.2 S., R.3 E., (Fairbanks D-1) Fairbanks Meridian, Hydrologic Unit 19040506, inside Corps of Engineers Chena Lakes Project fenced compound, 120 ft west of headquarters building and 2 mi northeast of the intersection of Laurence and Nelson Roads.

Owner: U.S. Army Corps of Engineers.

AQUIFER.--Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 4-in., depth 31 ft, screened from 28.5 to 31 ft using a 2-in. diameter well point.

INSTRUMENTATION.--Continuous strip-chart recorder from June 1976 to May 1980. Digital recorder--1-hour punch interval, from October 1985 to April 1995. Electronic data logger used from April 1995 to present.

DATUM.--Elevation of land-surface datum is 494.7 ft above sea level (determined by levels survey). Measuring point: top of casing 2.91 ft above land-surface datum.

REMARKS.--Observation well drilled by the U.S. Army Corps of Engineers, designated as P-252. Water levels from water years 1986 through 1990 were not previously published and are available from NWIS.

PERIOD OF RECORD.--June 1976 to May 1980 and October 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 2.85 ft below land-surface datum, June 8-9, 1992; lowest, 13.20 ft below land-surface datum September 15, 1976.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 7.56 ft below land-surface datum, September 7-9; lowest, 11.27 ft below land-surface datum, April 25.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	9.74	10.07	10.36	10.72	10.95	11.10	11.21	11.01	9.25	9.44	9.03	7.59
2	9.75	10.07	10.37	10.72	10.96	11.10	11.21	10.89	9.24	9.46	9.03	7.60
3	9.78	10.09	10.38	10.73	10.97	11.11	11.21	10.76	9.25	9.46	9.03	7.61
4	9.80	10.10	10.39	10.74	10.97	11.11	11.22	10.65	9.24	9.45	9.03	7.60
5	9.80	10.11	10.41	10.75	10.98	11.12	11.22	10.56	9.24	9.43	9.03	7.59
6	9.80	10.12	10.42	10.75	10.98	11.12	11.22	10.50	9.25	9.34	9.03	7.58
7	9.81	10.13	10.43	10.76	10.99	11.12	11.22	10.43	9.27	9.27	9.05	7.56
8	9.82	10.14	10.44	10.77	11.00	11.13	11.22	10.36	9.27	9.20	9.06	7.56
9	9.82	10.14	10.45	10.78	11.00	11.13	11.22	10.30	9.27	9.15	9.08	7.56
10	9.82	10.15	10.46	10.79	11.00	11.13	11.22	10.24	9.28	9.11	9.10	7.57
11	9.83	10.16	10.48	10.81	11.00	11.13	11.22	10.18	9.29	9.09	9.11	7.58
12	9.84	10.17	10.49	10.82	11.01	11.13	11.23	10.11	9.31	9.07	9.12	7.57
13	9.87	10.18	10.50	10.83	11.01	11.14	11.23	10.02	9.33	9.05	9.12	7.58
14	9.89	10.19	10.51	10.84	11.02	11.14	11.23	9.95	9.34	9.04	9.15	7.58
15	9.90	10.19	10.52	10.85	11.02	11.15	11.23	9.89	9.34	9.04	9.18	7.58
16	9.91	10.20	10.53	10.86	11.03	11.15	11.24	9.83	9.32	9.04	9.16	7.61
17	9.92	10.21	10.54	10.87	11.03	11.15	11.24	9.76	9.32	9.04	9.06	7.64
18	9.92	10.22	10.56	10.87	11.03	11.16	11.24	9.70	9.32	9.04	8.98	7.65
19	9.94	10.24	10.56	10.88	11.05	11.16	11.25	9.63	9.32	9.04	8.89	7.67
20	9.96	10.24	10.57	10.88	11.06	11.18	11.25	9.56	9.33	9.05	8.75	7.70
21	9.96	10.25	10.58	10.89	11.06	11.18	11.25	9.50	9.34	9.05	8.54	7.74
22	9.97	10.26	10.60	10.90	11.07	11.18	11.25	9.45	9.35	9.05	8.33	7.76
23	9.99	10.28	10.61	10.90	11.07	11.18	11.25	9.40	9.35	9.05	8.10	7.77
24	10.00	10.29	10.62	10.90	11.08	11.18	11.26	9.35	9.35	9.05	7.92	7.78
25	10.02	10.31	10.63	10.91	11.08	11.18	11.26	9.31	9.36	9.06	7.80	7.80
26	10.03	10.32	10.65	10.92	11.08	11.18	11.25	9.28	9.36	9.05	7.71	7.81
27	10.03	10.33	10.66	10.93	11.09	11.19	11.24	9.26	9.37	9.05	7.66	7.81
28	10.04	10.34	10.67	10.94	11.09	11.19	11.22	9.24	9.39	9.05	7.63	7.82
29	10.05	10.34	10.68	10.94		11.19	11.18	9.23	9.40	9.04	7.61	7.84
30	10.05	10.35	10.69	10.95		11.20	11.07	9.23	9.41	9.04	7.60	7.87
31	10.06		10.70	10.95		11.20		9.24		9.03	7.59	

FAIRBANKS NORTH STAR BOROUGH-CONTINUED

644531147130801. Local number, FD00200307ACBA1007.

LOCATION.--Lat $64^{\circ}45'31''$, Long $147^{\circ}13'08''$, $NW^{1}/4$ $SW^{1}/4$ $NE^{1}/4$ sec. 7, T.2 S., R.3 E., (Fairbanks D-1 SE) Fairbanks Meridian, Hydrologic Unit 19040506. Well located approximately 60 feet from bunker door off gravel road near U.S. Army Corps of Engineers' facility south of Chena Lake Recreation Area entrance.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 17.6 ft, screen opening from 7.6 ft to 12.1 ft and 12.6 to 17.1 ft

INSTRUMENTATION.--Intermittent measurements by USGS personnel February 2001 to current year; submersible pressure transducer/electronic data logger from October 5, 2001 to current year.

DATUM.--Elevation of land-surface datum is 493.9 ft above sea level (surveyed by U.S. Army Corps of Engineers). Measuring point: top of outer steel casing 2.80 ft above land surface datum.

REMARKS.--Observation well drilled March 12, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-4. Records are fair due to unquantified movement of the measuring point.

PERIOD OF RECORD.--February 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.93 ft below land-surface datum, August 27-28, 2002; lowest, 10.75 ft below land-surface datum, April 23-24, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 6.93 ft below land-surface datum, August 27-28; lowest, 10.75 ft below land-surface datum, April 23-24.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		9.55	9.84	10.18	10.41	10.57	10.69	10.43	8.71	8.96	8.50	6.97
2		9.56	9.86	10.18	10.42	10.57	10.69	10.30	8.70	8.96	8.50	7.00
3		9.57	9.86	10.19	10.43	10.59	10.69	10.17	8.71	8.93	8.51	6.99
4		9.58	9.89	10.21	10.43	10.60	10.69	10.08	8.70	8.94	8.51	6.98
5	9.29	9.62	9.89	10.20	10.44	10.60	10.68	9.99	8.72	8.85	8.51	6.97
6	9.29	9.62	9.90	10.20	10.45	10.60	10.69	9.93	8.75	8.76	8.53	6.94
7	9.30	9.62	9.91	10.21	10.45	10.60	10.69	9.86	8.76	8.68	8.55	6.94
8	9.29	9.62	9.92	10.23	10.47	10.61	10.69	9.79	8.75	8.62	8.57	6.96
9	9.28	9.62	9.93	10.23	10.46	10.61	10.69	9.73	8.76	8.58	8.60	6.98
10	9.29	9.62	9.94	10.25	10.45	10.60	10.69	9.67	8.77	8.54	8.60	7.00
11	9.32	9.63	9.95	10.27	10.47	10.60	10.71	9.60	8.81	8.53	8.60	6.99
12	9.34	9.64	9.95	10.29	10.46	10.61	10.71	9.52	8.82	8.52	8.60	6.99
13	9.38	9.65	9.97	10.29	10.46	10.62	10.71	9.46	8.84	8.50	8.63	7.01
14	9.39	9.66	9.99	10.29	10.47	10.63	10.71	9.38	8.83	8.51	8.68	7.02
15	9.40	9.67	9.99	10.31	10.49	10.63	10.71	9.32	8.80	8.52	8.68	7.03
16	9.40	9.68	10.01	10.31	10.50	10.63	10.72	9.26	8.79	8.51	8.57	7.08
17	9.39	9.70	10.02	10.31	10.50	10.63	10.72	9.20	8.79	8.51	8.43	7.10
18	9.41	9.70	10.04	10.31	10.50	10.64	10.72	9.12	8.80	8.52	8.35	7.10
19	9.44	9.72	10.04	10.32	10.52	10.65	10.72	9.05	8.80	8.52	8.23	7.14
20	9.44	9.72	10.03	10.33	10.53	10.65	10.72	8.98	8.82	8.53	8.03	7.20
21	9.44	9.73	10.04	10.35	10.54	10.65	10.73	8.92	8.83	8.52	7.79	7.22
22	9.45	9.75	10.06	10.35	10.54	10.65	10.74	8.87	8.84	8.53	7.54	7.22
23	9.48	9.77	10.09	10.35	10.55	10.65	10.74	8.82	8.84	8.52	7.30	7.23
24	9.51	9.80	10.10	10.36	10.55	10.64	10.74	8.77	8.85	8.53	7.12	7.25
25	9.52	9.80	10.10	10.39	10.55	10.64	10.74	8.73	8.85	8.53	7.02	7.26
26	9.52	9.81	10.11	10.38	10.55	10.64	10.72	8.71	8.87	8.51	6.96	7.25
27	9.52	9.82	10.12	10.39	10.55	10.65	10.71	8.69	8.88	8.52	6.93	7.28
28	9.53	9.82	10.15	10.39	10.55	10.67	10.67	8.68	8.91	8.52	6.93	7.29
29	9.52	9.82	10.15	10.39		10.67	10.60	8.68	8.91	8.50	6.94	7.34
30	9.55	9.83	10.17	10.39		10.68	10.50	8.69	8.93	8.50	6.94	7.31
31	9.54		10.17	10.41		10.69		8.72		8.50	6.94	

FAIRBANKS NORTH STAR BOROUGH-CONTINUED

644547147141801. Local number, FD00200306CCCC1002.

LOCATION.--Lat 64°45'47", Long 147°14'18", in SW¹/4 SW¹/4 SW¹/4 sec. 6, T.2 S., R.3 E., (Fairbanks D-1 SE quad), Fairbanks Meridian, Hydrologic Unit 19040506, Well located 0.5 mi on Hurst Road from the intersection with Nelson Road, then 30 ft east of road, North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in.PVC inner casing, depth 17.4 ft, screen opening from 12.4 ft to 16.9 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel August 2001 to current year; submersible pressure transducer/electronic data logger from October 12, 2001 to current year.

DATUM.--Elevation of land-surface datum is 491.8 ft above sea level (surveyed by U.S. Army Corps of Engineers). Measuring point: top of metal collar on outer casing 2.55 feet above land surface datum.

REMARKS.--Observation well drilled April 11, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-3. Records are fair due to unquantified movement of the measuring point.

PERIOD OF RECORD.--August 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.43 ft below land-surface datum, September 14, 2002; lowest, 10.07 ft below land-surface datum, April 22-23, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 6.43 ft below land-surface datum, September 14; lowest, 10.07 ft below land-surface datum, April 22-23.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		8.87	9.23	9.62	9.86	9.97	10.04	9.81	7.93	8.29	7.83	6.72
2		8.88	9.25	9.62	9.87	9.97	10.04	9.70	7.93	8.30	7.84	6.70
3		8.90	9.25	9.63	9.87	9.98	10.04	9.60	7.94	8.27	7.84	6.67
4		8.92	9.28	9.65	9.87	10.00	10.03	9.49	7.93	8.28	7.84	6.64
5		8.95	9.29	9.64	9.88	9.99	10.02	9.37	7.95	8.22	7.82	6.61
6		8.96	9.29	9.64	9.89	9.99	10.02	9.26	7.99	8.06	7.86	6.56
7		8.97	9.31	9.65	9.89	9.99	10.03	9.15	8.01	7.96	7.89	6.54
8		8.96	9.32	9.67	9.90	9.99	10.02	9.04	8.00	7.90	7.90	6.53
9		8.97	9.34	9.68	9.89	9.99	10.02	8.95	8.01	7.87	7.94	6.51
10		8.98	9.34	9.70	9.89	9.97	10.02	8.87	8.02	7.83	7.94	6.49
11		8.99	9.36	9.72	9.91	9.97	10.04	8.78	8.06	7.82	7.94	6.47
12	8.65	9.00	9.36	9.73	9.90	9.98	10.04	8.69	8.09	7.81	7.94	6.45
13	8.69	9.01	9.38	9.74	9.90	10.00	10.03	8.60	8.11	7.79	7.98	6.44
14	8.70	9.01	9.40	9.75	9.90	10.00	10.03	8.52	8.10	7.80	8.02	6.43
15	8.70	9.02	9.40	9.76	9.92	10.01	10.03	8.47	8.08	7.82	8.01	6.44
16	8.71	9.03	9.42	9.77	9.93	10.00	10.05	8.42	8.07	7.82	7.99	6.46
17	8.69	9.05	9.43	9.77	9.93	10.01	10.03	8.37	8.07	7.83	7.81	6.46
18	8.71	9.05	9.45	9.77	9.93	10.01	10.04	8.30	8.09	7.83	7.67	6.47
19	8.75	9.08	9.46	9.78	9.94	10.02	10.04	8.24	8.09	7.86	7.54	6.49
20	8.75	9.08	9.45	9.79	9.95	10.02	10.04	8.18	8.13	7.87	7.44	6.54
21	8.75	9.09	9.46	9.80	9.96	10.02	10.04	8.13	8.14	7.86	7.36	6.55
22	8.76	9.11	9.48	9.81	9.96	10.01	10.06	8.09	8.14	7.87	7.25	6.55
23	8.79	9.13	9.51	9.81	9.96	10.00	10.06	8.03	8.15	7.85	7.17	6.56
24	8.82	9.16	9.52	9.82	9.96	10.00	10.05	7.99	8.15	7.86	7.09	6.57
25	8.84	9.17	9.53	9.84	9.96	9.99	10.04	7.94	8.17	7.89	7.01	6.57
26	8.85	9.19	9.54	9.84	9.96	9.99	10.02	7.90	8.19	7.85	6.95	6.56
27	8.85	9.20	9.55	9.84	9.96	10.01	10.02	7.90	8.20	7.85	6.89	6.58
28	8.85	9.21	9.57	9.85	9.95	10.03	9.99	7.88	8.22	7.87	6.85	6.59
29	8.85	9.21	9.58	9.85		10.03	9.94	7.89	8.23	7.85	6.80	6.64
30	8.87	9.22	9.59	9.85		10.04	9.86	7.90	8.26	7.84	6.76	6.62
31	8.87		9.61	9.86		10.04		7.94		7.84	6.74	

FAIRBANKS NORTH STAR BOROUGH-CONTINUED

644603147131401. Local number, FD00200306DBCA1001.

LOCATION.--Lat 64°46′03″, Long 147°13′14″, in SW¹/4 NW¹/4 SE¹/4 sec. 06, T.2 S., R.3 E., (Fairbanks D-1 SE quad), Fairbanks Meridian, Hydrologic Unit 19040506, Well located 0.6 mi west on turn off to Lake Park in Chena Lakes Recreation Area, North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER.--Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. pvc casing, depth 19.3 ft., screen open from 14.3 to 18.8 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/ electronic data logger from October 5, 2001 to current year.

DATUM.--Elevation of land-surface datum is 488.3 ft above sea level (surveyed by U.S.Army Corps of Engineers). Measuring point: top of outer casing 2.60 ft above land-surface datum.

REMARKS.--Observation well drilled April 6, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-1. Records are fair due to unquantified movement of the measuring point.

PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured 5.14 ft below land-surface datum, September 6-7, 2002; lowest 8.49 ft below land-surface datum, March 18-21, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured 5.14 ft below land-surface datum, September 6-7; lowest 8.49 ft below land-surface datum, March 18-21, 2002.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		7.68	7.99	8.32	8.44	8.45	8.47	8.09	5.92	6.71	6.52	5.17
2		7.70	8.00	8.32	8.44	8.45	8.47	7.96	5.93	6.72	6.53	5.18
3		7.70	8.01	8.33	8.43	8.47	8.47	7.85	5.96	6.70	6.55	5.17
4		7.72	8.03	8.34	8.43	8.47	8.46	7.73	5.98	6.73	6.57	5.16
5	7.45	7.73	8.04	8.31	8.45	8.46	8.45	7.60	6.01	6.62	6.59	5.16
6	7.44	7.74	8.05	8.33	8.45	8.46	8.46	7.50	6.06	6.54	6.62	5.14
7	7.46	7.74	8.06	8.33	8.45	8.46	8.46	7.39	6.10	6.44	6.65	5.14
8	7.46	7.73	8.07	8.36	8.46	8.46	8.46	7.30	6.11	6.35	6.68	5.16
9	7.45	7.75	8.08	8.36	8.44	8.46	8.46	7.22	6.14	6.29	6.71	5.18
10	7.47	7.75	8.10	8.37	8.43	8.44	8.46	7.15	6.18	6.25	6.72	5.19
11	7.49	7.76	8.11	8.38	8.44	8.44	8.47	7.05	6.24	6.24	6.73	5.19
12	7.51	7.77	8.12	8.39	8.44	8.46	8.46	6.95	6.27	6.23	6.75	5.20
13	7.53	7.78	8.14	8.40	8.43	8.47	8.45	6.85	6.31	6.22	6.78	5.22
14	7.54	7.79	8.15	8.39	8.44	8.48	8.45	6.75	6.32	6.23	6.82	5.24
15	7.55	7.80	8.15	8.41	8.44	8.47	8.45	6.66	6.32	6.26	6.84	5.26
16	7.55	7.81	8.16	8.40	8.44	8.47	8.46	6.58	6.34	6.28	6.75	5.31
17	7.55	7.83	8.17	8.40	8.44	8.47	8.45	6.49	6.35	6.30	6.65	5.35
18	7.58	7.83	8.18	8.40	8.44	8.47	8.46	6.39	6.38	6.33	6.55	5.37
19	7.60	7.85	8.19	8.41	8.45	8.48	8.45	6.30	6.40	6.35	6.46	5.41
20	7.61	7.85	8.18	8.42	8.45	8.48	8.45	6.19	6.43	6.36	6.29	5.45
21	7.62	7.87	8.20	8.42	8.45	8.47	8.45	6.12	6.45	6.39	6.10	5.48
22	7.64	7.88	8.21	8.41	8.45	8.46	8.46	6.04	6.48	6.41	5.93	5.51
23	7.65	7.90	8.24	8.41	8.45	8.46	8.45	5.97	6.50	6.44	5.78	5.53
24	7.66	7.93	8.24	8.43	8.44	8.46	8.45	5.91	6.52	6.45	5.63	5.57
25	7.67	7.93	8.25	8.44	8.44	8.44	8.45	5.87	6.53	6.47	5.51	5.59
26	7.66	7.95	8.26	8.43	8.44	8.45	8.40	5.85	6.56	6.47	5.40	5.61
27	7.66	7.96	8.27	8.43	8.44	8.45	8.37	5.84	6.58	6.48	5.31	5.64
28	7.67	7.96	8.28	8.44	8.44	8.46	8.33	5.83	6.61	6.48	5.26	5.66
29	7.67	7.97	8.29	8.43		8.47	8.25	5.84	6.63	6.48	5.21	5.70
30	7.69	7.98	8.30	8.44		8.46	8.15	5.87	6.66	6.49	5.19	5.71
31	7.68		8.31	8.44		8.47		5.90		6.50	5.18	

FAIRBANKS NORTH STAR BOROUGH-CONTINUED

644603147151801. Local number, FD00200201DBCB1002.

LOCATION.--Lat $64^{\circ}46'03''$, Long $147^{\circ}15'18''$, in $SW^{1}/4$ $NW^{1}/4$ $SE^{1}/4$ sec. 1, T.2 S., R.2 E., (Fairbanks D-1 SW quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located east side of Nelson Road approximately 2.3 mi from Laurance Road. West of Chena Lakes Flood Control Project and Recreational Area, North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 19.8 ft, screen openings from 14.8 ft to 19.3 ft

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 12, 2001 to current year.

DATUM.--Elevation of land-surface datum is 491.2 ft above sea level (surveyed by U.S. Army Corps of Engineers 1995). Measuring point: top of outer casing 2.95 ft above land surface datum.

REMARKS.--Observation well drilled April 11, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-2. Records are fair due to unquantified movement of the measuring point.

PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.94 ft below land-surface datum, September 14-15, 2002; lowest, 11.83 ft below land-surface datum, March 31, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 8.94 ft below land-surface datum, September 14-15; lowest, 11.83 ft below land-surface datum, March 31.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		10.91	11.27	11.64	11.78	11.80	11.82	11.50	9.84	10.20	9.95	9.23
2		10.92	11.29	11.64	11.78	11.80	11.82	11.39	9.84	10.23	9.95	9.20
3		10.94	11.30	11.65	11.78	11.81	11.82	11.31	9.85	10.22	9.95	9.16
4		10.95	11.32	11.67	11.77	11.82	11.81	11.22	9.86	10.23	9.95	9.13
5		10.98	11.34	11.64	11.78	11.82	11.80	11.13	9.86	10.21	9.96	9.10
6		10.99	11.34	11.65	11.79	11.81	11.80	11.03	9.89	10.14	9.97	9.07
7		11.00	11.36	11.64	11.79	11.80	11.81	10.95	9.92	10.07	9.99	9.05
8		11.00	11.37	11.66	11.80	11.80	11.79	10.86	9.93	10.00	10.01	9.03
9		11.01	11.39	11.66	11.78	11.80	11.79	10.79	9.94	9.95	10.04	9.02
10		11.02	11.40	11.68	11.78	11.78	11.79	10.72	9.96	9.90	10.06	9.00
11		11.03	11.41	11.70	11.78	11.78	11.80	10.65	9.99	9.88	10.06	8.98
12	10.69	11.03	11.41	11.71	11.78	11.78	11.81	10.59	10.01	9.86	10.07	8.97
13	10.72	11.05	11.44	11.72	11.77	11.80	11.79	10.52	10.04	9.84	10.10	8.95
14	10.73	11.06	11.46	11.72	11.77	11.81	11.79	10.46	10.04	9.84	10.14	8.94
15	10.74	11.07	11.46	11.73	11.79	11.81	11.79	10.40	10.02	9.84	10.14	8.94
16	10.74	11.08	11.48	11.74	11.80	11.80	11.81	10.35	10.02	9.84	10.14	8.95
17	10.74	11.10	11.49	11.73	11.79	11.80	11.80	10.31	10.02	9.84	10.09	8.96
18	10.75	11.10	11.50	11.73	11.79	11.80	11.81	10.25	10.04	9.84	10.00	8.96
19	10.78	11.12	11.51	11.74	11.80	11.81	11.81	10.20	10.04	9.86	9.92	8.98
20	10.79	11.13	11.50	11.75	11.81	11.81	11.80	10.15	10.07	9.87	9.84	9.03
21	10.79	11.14	11.50	11.76	11.81	11.81	11.80	10.10	10.07	9.89	9.79	9.04
22	10.80	11.16	11.52	11.76	11.81	11.80	11.82	10.06	10.08	9.89	9.74	9.03
23	10.82	11.18	11.54	11.75	11.81	11.79	11.82	10.01	10.08	9.89	9.69	9.04
24	10.84	11.21	11.56	11.76	11.80	11.78	11.81	9.96	10.10	9.90	9.63	9.05
25	10.86	11.23	11.57	11.78	11.80	11.77	11.80	9.92	10.11	9.93	9.57	9.05
26	10.87	11.24	11.57	11.77	11.79	11.77	11.79	9.88	10.13	9.93	9.51	9.05
27	10.87	11.25	11.58	11.77	11.79	11.78	11.78	9.85	10.14	9.93	9.44	9.06
28	10.88	11.26	11.60	11.78	11.79	11.79	11.73	9.83	10.16	9.94	9.39	9.08
29	10.88	11.27	11.61	11.77		11.81	11.68	9.82	10.16	9.95	9.34	9.12
30	10.90	11.27	11.62	11.77		11.81	11.57	9.82	10.18	9.94	9.29	9.13
31	10.91		11.63	11.78		11.82		9.84		9.95	9.25	

FAIRBANKS NORTH STAR BOROUGH-CONTINUED

645434147385101. Local number, FB00100113DDBC2001 50673.

LOCATION.--Lat 64°54′34″, long 147°38′51″, in NW¹/4 SE¹/4 SE¹/4 sec. 13, T.1 S., R.1 W., (Fairbanks D-2 NE quad), Fairbanks Meridian, Hydrologic Unit, 19040506, in road right-of-way at 2.3 mi McGrath Road, off Farmers' Loop Road near Fairbanks.

Owner: U.S. Geological Survey.

AQUIFER.--Quartz-mica schist of pre-Jurassic age.

WELL CHARACTERISTICS.--Diameter 6-in., depth 100 ft, metal casing to 98.5 ft, perforated openings from 88.5 ft to 98.5 ft, and open hole to 100 ft.

INSTRUMENTATION.--Digital recorder, from October 1983 to June 1995. Electronic data logger from June 1995 to May 1996. Digital recorder, from May 1996 to September 1997. Electronic data logger from October 1997 to present.

DATUM.--Elevation of land-surface datum is 740 ft above sea level (determined from topographic map). Measuring point: top of casing 1.00 ft above land-surface datum.

REMARKS.--Observation well drilled by the U.S. Geological Survey, designated as McGrath Well, replaces old McGrath Estates well, 645429147383801.

PERIOD OF RECORD.--June 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 39.13 ft below land-surface datum, October 28, 1983; lowest, 44.85 ft below land-surface datum, July 3, 1990.

EXTREMES FOR CURRENT YEAR.—Highest water level measured, 42.31 ft below land-surface datum, October 9, 10 and November 1; lowest, 43.94 ft below land-surface datum, June 17.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	42.48	42.31	42.42	42.64	42.90	43.01	43.33	43.29	43.52	43.71	43.27	42.81
2	42.49	42.32	42.44	42.59	42.89	43.08	43.30	43.34	43.47	43.64	43.21	42.86
3	42.56	42.42	42.50	42.59	42.93	43.15	43.28	43.33	43.45	43.50	43.20	42.85
4	42.44	42.46	42.53	42.65	42.88	43.27	43.26	43.32	43.40	43.51	43.25	42.73
5	42.40	42.59	42.49	42.51	42.88	43.17	43.16	43.33	43.44	43.56	43.16	42.69
6	42.40	42.56	42.48	42.50	42.94	43.12	43.15	43.34	43.49	43.59	43.14	42.63
7	42.43	42.51	42.49	42.53	42.91	43.09	43.19	43.29	43.54	43.62	43.11	42.62
8	42.41	42.37	42.51	42.60	42.91	43.09	43.22	43.24	43.53	43.57	43.11	42.66
9	42.31	42.37	42.56	42.64	42.87	43.09	43.18	43.21	43.49	43.56	43.12	42.71
10	42.31	42.39	42.62	42.66	42.77	43.09	43.18	43.21	43.60	43.52	43.14	42.75
11	42.36	42.41	42.50	42.75	42.78	43.07	43.21	43.24	43.57	43.49	43.08	42.69
12	42.41	42.50	42.46	42.84	42.84	43.07	43.27	43.33	43.55	43.49	43.03	42.62
13	42.51	42.47	42.52	42.90	42.81	43.11	43.23	43.26	43.57	43.47	43.04	42.61
14	42.59	42.41	42.60	42.79	42.80	43.17	43.23	43.25	43.52	43.46	43.13	42.58
15	42.54	42.39	42.55	42.79	42.85	43.23	43.24	43.21	43.47	43.49	43.05	42.61
16	42.48	42.40	42.57	42.82	42.96	43.18	43.31	43.21	43.62	43.50	42.99	42.67
17	42.34	42.51	42.63	42.74	42.98	43.18	43.27	43.26	43.79	43.46	42.97	42.68
18	42.34	42.49	42.59	42.68	42.97	43.20	43.27	43.32	43.74	43.42	42.98	42.65
19	42.44	42.49	42.57	42.69	43.01	43.25	43.31	43.32	43.66	43.42	42.95	42.65
20	42.45	42.38	42.40	42.71	43.09	43.23	43.30	43.31	43.60	43.45	42.85	42.73
21	42.39	42.39	42.39	42.82	43.16	43.21	43.32	43.27	43.60	43.45	42.82	42.75
22	42.41	42.46	42.46	42.81	43.15	43.15	43.41	43.32	43.61	43.40	42.85	42.69
23	42.48	42.51	42.55	42.78	43.11	43.14	43.45	43.36	43.64	43.32	42.89	42.66
24	42.52	42.60	42.68	42.80	43.11	43.15	43.40	43.37	43.65	43.29	42.92	42.65
25	42.54	42.58	42.68	42.89	43.07	43.13	43.35	43.36	43.63	43.32	42.99	42.60
26	42.40	42.58	42.62	42.90	43.04	43.13	43.27	43.38	43.59	43.30	42.98	42.49
27	42.34	42.51	42.61	42.87	43.04	43.13	43.27	43.40	43.59	43.29	42.84	42.49
28	42.39	42.41	42.64	42.89	42.99	43.20	43.32	43.47	43.61	43.33	42.78	42.54
29	42.37	42.40	42.68	42.82		43.29	43.37	43.45	43.59	43.38	42.79	42.59
30	42.37	42.43	42.70	42.81		43.34	43.30	43.45	43.62	43.33	42.77	42.53
31	42.33		42.70	42.83		43.34		43.47		43.31	42.76	

Page	Page
Aleknagik, Moody Creek at	Auke BayContinued
Alsek River near Yakutat	Jordan Creek near301
Anaktuvuk Pass, Contact Creek above	Jordan Creek Tributary at Thunder Mtn
Inukpasugruk Creek at	Trailer Park near
Contact Creek at Main St at	Mendenhall River at Brotherhood
Contact Creek below Little Contact Creek at. 335	Bridge at
Inukpasugruk Creek at	Mendenhall River near74
John River below Inukpasugruk Creek at 338	Montana Creek near
John River Tributary at	Montana Creek at mouth near 302
Analyses of samples collected at miscellaneous	Montana Creek at Montana Creek Rd. near 302
sites319	North Fork Peterson Creek below
Anchorage, Municipality of, ground water levels 368	Beaver Slough near
Anchorage, Chester Creek at Arctic Blvd at 308	North Fork Peterson Creek near 289, 305. 326
Ship Creek below Cottonwood	Nugget Creek above diversion near 73
Park near	Peterson Creek below North Fork near 138
Ship Creek near	Peterson Creek below Tributary No 2 near 326
South Branch of South Fork Chester	Peterson Creek below Tributary No 3 near 325
Creek at tank trail near	Peterson Creek below Tributary No 4 near 324
South Branch of South Fork Chester	Peterson Creek below Tributary No 5 near 323
Creek near Brookridge Dr at 308	Peterson Creek below Tributary No 6 near 323
Point, Anchor River near	Peterson Creek below Tributary No 7 near 322
Anchor River near Anchor Point	Peterson Creek Tributary No 2 near 305, 325
Angoon, Favorite Creek near	Peterson Creek Tributary No 3 near 305, 324
Aniak, Kuskokwim River at	Peterson Creek Tributary No 4 near 305, 324
Antler River below Antler Lake near Auke Bay80	Peterson Creek Tributary No 5 near 305, 323
Anvik River near Anvik	Peterson Creek Tributary No 6 near 305, 322
Anvil Creek near Central	Peterson Creek Tributary No 7 near 304, 321
Arctic Creek above tributary near Nome316	Peterson Creek Tributary No 8 near 304, 321
Arctic Slope Alaska, discharge measurement at	Upper Peterson Creek near304, 320
miscellaneous sites in	,
gaging-station records for282	Banner Creek at Richardson
Atigun River Tributary near Pump Station 4 298	Barrow, Nunavak Creek near
Aufeis Creek at Port Access Rd near Kivalina 344	Battle Creek diversion above Bradley Lake
Auke Bay, Antler River below Antler Lake near 80	near Homer168
Duck Creek at Berners Ave near303	Berry Creek near Dot Lake
Duck Creek at Delrae Rd near	Big Delta, Central Creek near251
Duck Creek at Duran St near	Goodpaster River near
Duck Creek at Egan Dr near303	Liese Creek near246
Duck Creek at Mendenhall Mall near 303	Sonora Creek near
Duck Creek at Steven Richards Blvd near302	Sonora Creek above Tributary near 249
Duck Creek at Taku Blvd near	Upper West Creek near
Duck Creek below Cessna Dr near303	Big Lake E of Hearn Island near Wasilla 348
Duck Creek below Nancy St near 79, 302	NE of Petrovich Island near Wasilla 350
Duck Creek Tributary at El Camino St near . 302	NW of Burston Island near Wasilla 347
Jordan Creek above Yandukin Ave near 301	S of Long Island near Wasilla
Jordan Creek at Amalga St near300	SE of Burston Island near Wasilla 347
Jordan Creek at Jennifer St near301	Bonanza Creek tributary near Prospect
Jordan Creek at Juneau Airport near 301	Camp
Jordan Creek at Nancy St near	Boulder Creek (Copper River basin) near
Jordan Creek below Egan Dr near 69, 301	Central
Jordan Creek below Thunder Mtn Trailer	Tiekel
Park near	,

	Page	Page
Boulder Creek (Yukon River basin) near		Deadhorse, Kuparuk River near
Central	. 312	Sagavanirktok River Tributary near 298
Boundary Creek at mouth near Juneau	. 300	Deadman Creek at Port Access Rd near Kivalina 344
		Definition of terms
Bradley River below dam near Homer	. 173	Denali, Raft Creek near
Middle Fork, below North Fork Bradley		Dennison Fork near Tetlin Junction 293, 310
River near Homer	. 176	Dillingham, Nuyakuk River near
Middle Fork, near Homer	. 174	Discontinued surface-water discharge or
near Homer	. 172	stage-only stations xiii
near tidewater near Homer	. 177	Discontinued surface-water-quality stationsxxv
		Dome Creek, King Creek near
Cantwell, Slime Creek near294	, 314	Donnelly, Ruby Creek above Richardson
Central, Anvil Creek near	. 312	Highway near
Boulder Creek near	, 312	Dorothy Creek at mouth near Juneau 300
East Fork Great Unknown Creek near	. 311	near Juneau59
Frying Pan Creek at mouth near	. 311	Dorothy Lake outlet near Juneau57
Great Unknown Creek near	. 311	Dot Lake, Berry Creek near
Harrison Creek near	. 312	Dragonfly Creek near Healy
Ptarmigan Creek near mouth near	. 311	Drain at Airport Approach 2 near Yakutat 289, 306
Quartz Creek near293		Drain at Airport Approach 29 near Yakutat 289, 306
South Fork Harrison Creek near		Dry Creek (Copper River basin) near
Upper Frying Pan Creek near	. 311	Glennallen
Volcano Creek near		Duck Creek at Berners Ave near Auke Bay 303
Central Creek near Big Delta		at Delrae Rd near Auke Bay303
Chena River at Fairbanks		at Duran St near Auke Bay
near Two Rivers		at Eagan Dr near Auke Bay
Chester Creek at Arctic Blvd at Anchorage		at El Camino St near Auke Bay 302
Chinkelyes Creek Tributary near		at Mendenhall Mall Rd near Auke Bay 303
Pedro Bay	. 310	at Steven Richards Blvd near Auke Bay 302
Chiroskey River near Unalakleet 296		at Taku Blvd near Auke Bay302
Chulitna River near Talkeetna		below Cessna Dr near Auke Bay 303
Cold Bay, Frosty Creek near		below Nancy St near Auke Bay 79, 302
Russell Creek near		
Stapp Creek near242		Eagle, Yukon River at
Coldfoot, Slate Creek at		East Alsek River 1.0 mi at mouth near Yakutat 306
Competition Creek near Kivalina		1.4 mi at mouth near Yakutat
Contact Creek above Inukpasugruk Creek at		2.0 mi at mouth near Yakutat
Anaktuvuk Pass	. 336	East Fork Great Unknown Creek near Central 311
at Main St at Anaktuvuk Pass		Eklutna Lake near Palmer
below Little Contact Creek at		Eklutna River above Thunderbird Creek near
Anaktuvuk Pass	. 335	Eklutna
Cooper Creek at mouth near Cooper Landing		at Old Glenn Hwy at Eklutna203
Cooper Landing, Cooper Creek at mouth near		Eldorado Creek near Teller
Kenai River at		Etta Creek near Council
Cordova, Nicolet Creek near		Exit Glacier Channel at mi 0.1 of Harding Trail
Council, Etta Creek near		near Seward
Hugh Rowe Creek near		Exit Glacier Creek Tributary at mi 0.6 of Harding
Colville River at Umiat		Trail near Seward
Crest-stage partial-record stations		Explanation of the records
Crooked Creek, Kuskokwim River at		Zing institution of the records
Cupola Peak Creek at Bear Cove		
near Sitka	. 304	
	,	

Pa	age Page
Fairbanks, Chena River at	Harding River near Wrangell
ground-water levels	Harrison Creek near Central
Little Chena River near	Healy, Dragonfly Creek near
Noyes Slough at Aurora Dr Bridge at314	Lignite Creek above mouth near 263
Noyes Slough at Danby St Bridge at 314	Healy Creek at Suntrana335
Noyes Slough at Goldizen Ave Bridge at 314	Homer, Battle Creek diversion above Bradley
Noyes Slough at Illinois St Bridge at 313	Lake near
Noyes Slough at Indiana Ave at	Bradley River below dam near
Noyes Slough at Isabella Creek at 313	Bradley River near
Noyes Slough at Minnie St Bridge at313	Bradley River near Tidewater near 177
Noyes Slough at O'Conner Rd Bridge at 313	Fritz Creek near
Noyes Slough at West Johansen	Middle Fork Bradley River below North
Expressway Bridge at	Fork Bradley River near176
Tanana River at	Middle Fork Bradley River near 174
Favorite Creek near Angoon128	Upper Bradley River near Nuka Glacier near 170
Fish Creek (on Revillagigedo Island) near	Upper Nuka River near park boundary near . 166
Ketchikan	Hope, Sixmile Creek near
Fort Yukon, Porcupine River near	Hugh Rowe Creek near Council
Fritz Creek near Homer	Hydaburg, Reynolds Creek below Lake
Frosty Creek near Cold Bay	Mellen near
Frying Pan Creek at mouth near Central311	Wichen hear
Trying rain creek at mouth near central	Ikalukrok Creek 0.6 mi below Red Dog Creek
Glennallen, Dry Creek near	near Kivalina
Tazlina River near	4.3 mi below Dudd Creek near Kivalina 317
	above Red Dog Creek near Kivalina 317
Globe Creek near Livengood	below Red Dog Creek near Kivalina 279
near Juneau	
	Iliamna River near Pedro Bay
Gold Creek (South-central), Susitna River at 210	
Gold Creek (Southwest) at Takotna	near Sitka
Goldengate Creek near Nome	Indian River (Yukon) at Utopia
Goodpaster River near Big Delta	International Boundary, Yukon Territory,
Granite Creek at Sitka	Porcupine River near
Great Unknown Creek near Central	International Gaging Station Network,
Green Lake (on Baranof Island) near Sitka 125	records
Greens Creek (on Admiralty Island) at Greens	Inukpasugruk Creek at Anaktuvuk Pass337
Creek Mine near Juneau	
Ground-water level data, selected wells 354	John River below Inukpasugruk Creek at
Juneau	Anaktuvuk Pass
Fairbanks-North Star Borough	John River Tributary at Anaktuvuk Pass
Municipality of Anchorage	Johnson River above Lateral Glacier near
Grouse Creek at Grouse Lake outlet near	Tuxedni Bay
Seward	Jordan Creek above Yandunkin Ave near
Gulkana River at Gulkana	Auke Bay
at Sourdough	at Amalga St near Auke Bay
Gustavus, Kahtaheena River above upper	at Jennifer St near Auke Bay 301
falls near	at Juneau Airport near Auke Bay
	at Nancy St near Auke Bay
Haines, Kakuhan Creek near	below Egan Dr near Auke Bay 69, 301
Halfmile Creek above diversion near Klawock 102	below Thunder Mtn Trailer Park near
Halfmile Creek below Highway near Klawock 304	Auke Bay
Happy Valley Camp, Sagavanirktok River	near Auke Bay
tributary near318	Tributary at Thunder Mtn Trailer Park

Page	Page
Jordan CreekContinued	KivalinaContinued
near Auke Bay	West Fork Upper Ikalukrok near 316
Juneau, Boundary Creek at mouth near300	Wulik River above Ferric Creek near278
Dorothy Creek at mouth near	Wulik River below Tutak Creek near280
Dorothy Creek near57	Klawock, Halfmile Creek above Diversion near 102
Dorothy Lake outlet near	Halfmile Creek below Highway near304
Gold Creek at	North Fork Staney Creek near 93
Gold Creek near	Staney Creek near
Greens Creek at Greens Creek Mine near 126	Threemile Creek below Hwy near 304
Lemon Creek at bridge near	Threemile Creek near
Salmon Creek near	Threemile Tributary Creek below canyon
Taku River near	near304
ground-water levels	Knik River near Palmer
č	Kobuk River near Kiana
Kadashan River (on Chichagof Island) above	Kodiak, Myrtle Creek near
Hook Creek near Tenakee	Terror River at mouth near
Kahtaheena River above upper falls	Kodiak Island, gaging-station records for215
near Gustavus	Kuparuk River near Deadhorse283
Kakuhan Creek near Haines	Kuskokwim River at Aniak
Kandik River near Nation	at Crooked Creek
Kasaan, Old Tom Creek near	at Liskys Crossing near Stony River 229
Kasilof River near Kasilof	,
Kenai River at Cooper Landing	Lawing, Wolverine Creek near
at Soldotna	Lemon Creek at bridge near Juneau
below mouth of Killey River near Sterling 189	Liese Creek near Big Delta246
below Skilak Lake Outlet near Sterling 188	Lignite Creek above mouth near Healy
Ketchikan, Fish Creek near	Little Chena River near Fairbanks
Swan Lake near90	Little Jack Creek near Nabesna
Kiana, Kobuk River near	Little Susitna River near Palmer
King Creek near Dome Creek	Livengood, Globe Creek near
Kivalina, Aufeis Creek at Port Access Rd near 344	21.01.good, 01000 01001 11011 1111 1111 270, 011
Competition Creek near	Matanuska River at Palmer206
Deadman Creek at Port Access Rd near 344	McCarthy Creek at McCarthy289, 307
Ikalukrok Creek 0.6 mi below Red Dog	Mendenhall River at Brotherhood Bridge
Creek near	at Auke Bay
Ikalukrok Creek 4.3 mi below Dudd Creek	Mendenhall River near Auke Bay
near	Middle Basin Creek near Tenakee
Ikalukrok Creek above Red Dog Creek near . 317	Miller House, North Fork 12 Mile Creek near 311
Ikalukrok Creek below Red Dog Creek near . 279	Mineral Creek near Valdez
Mud Lake Creek at Port Access Rd near 343	Miscellaneous sites, discharge at 300
New Heart Creek at Port Access Rd near339	Montana Creek at Montana Creek Rd
North Fork New Heart Creek at Port Access	near Auke Bay
Rd near	at mouth near Auke Bay
North Fork Red Dog Creek near 297, 317	near Auke Bay
Omikviorok River at Port Access Rd near 341	Moody Creek at Aleknagik
Red Dog Mine clean water ditch near	Moose Creek above Wishbone Hill near Sutton331
Red Dog Creek above mouth near	near Palmer
South Fork New Heart Creek at Port Access	Mud Lake Creek at Port Access Rd near
Rd near	Kivalina
Square Creek near	Municipal Reserve Creek at Pilot Station 296, 315
Tutak Creek near	Myrtle Creek near Kodiak
Upper Ikalukrok Creek near	Tryffic Crock fical Roular

Page	Page
Nabesna, Little Jack Creek near	Palmer, Eklutna Lake near
Nancy Lake tributary near Willow	Knik River near
Nation, Kandik River near	Little Susitna River near
Nenana, Tanana River at	Matanuska River near
Nenana River at Park Station	Moose Creek near
New Heart Creek at Port Access Rd near	Wasilla Creek near
Kivalina	Park Station, Nenana River at
Nicolet Creek near Cordova	Partial-record stations
Ninilchik, Ninilchik River at	Pedro Bay, Chinkelyes Creek tributary near 292, 310
Nome, Arctic Creek above tributary near 316	Iliamna River near
Goldengate Creek near298, 316	Peterson Creek below North Fork near Auke Bay . 138
Washington Creek near	below Tributary No 2 near Auke Bay 326
North Fork 12 Mile Creek near Miller House 311	below Tributary No 3 near Auke Bay 325
North Fork New Heart Creek at Port Access Rd	below Tributary No 4 near Auke Bay 324
near Kivalina	below Tributary No 5 near Auke Bay 323
North Fork Peterson Creek below Beaver Slough	below Tributary No 6 near Auke Bay 323
near Auke Bay	below Tributary No 7 near Auke Bay 322
near Auke Bay	Tributary No 2 near Auke Bay
North Fork Red Dog Creek near Kivalina 297, 317	Tributary No 3 near Auke Bay
North Fork Staney Creek near Klawock	Tributary No 4 near Auke Bay 305, 324
(on Prince of Wales Island)93	Tributary No 5 near Auke Bay
Northwest Alaska, crest-stage partial-record	Tributary No 6 near Auke Bay
stations in	Tributary No 7 near Auke Bay 304, 321
discharge measurements at miscellaneous	Tributary No 8 near Auke Bay 304, 321
sites in	Pilot Station, Municipal Reserve Creek at 296, 315
gaging-station records for	Yukon River at
Noyes Slough at Aurora Dr Bridge at Fairbanks 314	Porcupine River near Fort Yukon
at Danby St Bridge at Fairbanks	near International Boundary, Yukon
at Goldizen Ave Bridge at Fairbanks	Territory
at Illinois St Bridge at Fairbanks	Portage, Twentymile River below Glacier
at Indiana Ave at Fairbanks	River near
at Indiana Ave at Fairbanks	Portage Creek at Portage Lake outlet near
at Minnie Street Bridge at Fairbanks	Whittier
	Premier Creek near Sutton
at O'Conner Rd Bridge at Fairbanks 313 at West Johansen Expressway Bridge at	Prospect Camp, Bonanza Creek tributary
Fairbanks	
	near
Nugget Creek (Southeast) above diversion	Prospect Creek near
near Auke Bay	· · · · · · · · · · · · · · · · · · ·
Nugget Creek (Yukon) near Wiseman 295, 315	Ptarmigan Creek near mouth near Central
Nunavak Creek near Barrow	tributary near Valdez
Nuyakuk River near Dillingham	Pump Station 4, Atigun River Tributary near 298
Old Tom Charle (on Drings of Wales Island) near	Pump Station 10, Suzy Q Creek near 294, 313
Old Tom Creek (on Prince of Wales Island) near	Overta Charle man Control 202 212
Kasaan	Quartz Creek near Central293, 312
	D. G. C 1 D 1' 201
Kivalina	Raft Creek near Denali
Ophir Creek above new excavation site	Ray River tributary near Stevens Village 293, 312
near Yakutat	Red Dog Creek above mouth near Kivalina 317
at gravel pit road near Yakutat	Red Dog Mine clean water ditch near Kivalina 317
near Yakutat	Reynolds Creek below Lake Mellen near
Tributary at confluence near Yakutat 306	Hydaburg
Tributary at new excavation near Yakutat 306	Richardson, Banner Creek at

Page	Page
Ruby Creek above Richardson Highway near	South-central Alaska, crest-stage partial-record
Donnelly	stations in
Russell Creek near Cold Bay	discharge measurements at miscellaneous
Russell Lake near Yakutat148	sites in
	gaging-station records for
Sagavanirktok River, tributary near Happy Valley	Southeast Alaska, crest-stage partial-record
Camp	stations in
Salcha River near Salchaket	discharge measurements at miscellaneous
Salchaket, Salcha River near252	sites in
Salmon Creek (Southeast) near Juneau 68	gaging-station records for
Sagavanirktok River Tributary near Deadhorse 298	South Fork Harrison Creek near Central312
Sawmill Creek near Sitka	South Fork New Heart Creek at Port Access Rd
Seward, Exit Glacier channel at mi 0.1 of	near Kivalina
Harding Trail near	Southwest Alaska, crest-stage partial-record
Exit Glacier Creek Tributary at mi 0.6 of	stations in
Harding Trail near	discharge measurements at miscellaneous
Grouse Creek at Grouse Lake outlet near 162	sites in
Snow River near	gaging-station records for
Spruce Creek near	Special networks and programs
Shakespeare Creek at Whittier 290, 307	Spruce Creek near Seward
Ship Creek below Cottonwood Park near	Square Creek near Kivalina
Anchorage	Staney Creek (on Prince of Wales Island) near
near Anchorage	Klawock
Silver Bay Tributary at Bear Cove near Sitka124	Stapp Creek near Cold Bay292, 310
Sitka, Cupola Peak Creek at Bear Cove near . 288, 304	Sterling, Kenai River below mouth of Killey
Granite Creek at	River near
Green Lake near	Kenai River below Skilak Lake outlet near 188
Indian River at116	Stevens Village, Ray River tributary near 293, 312
Indian River near	Yukon River near
Sawmill Creek near	Stikine River near Wrangell
Silver Bay Tributary at Bear Cover near 124	Stony River, Kuskokwim River at Liskys
Situk River near Yakutat	Crossing near
Sixmile Creek near Hope	Summary of hydrologic conditions
Skagway, Taiya River near	Suntrana, Healy Creek at
West Creek near	Susitna River at Gold Creek
Slana River near Tok	Sutton, Moose Creek above Wishbone
Slana Slough near Tok	Hill near
Slate Creek at Coldfoot	Premier Creek near
Slime Creek near Cantwell	Suzy Q Creek near Pump Station 10
Snow River near Seward	Swan Lake (on Revillagigedo Island)
Snowden Creek near Wiseman	near Ketchikan
Soldotna, Kenai River at	Til 4 - Call Carl 4 202 210
Solomon Gulch at top of falls near Valdez 157	Takotna, Gold Creek at
near Valdez	Tatalina River near
tailrace near Valdez	Taku River near Juneau
Solomon Lake near Valdez	Taiya River near Skagway
Sonora Creek near Big Delta	Talkeetna, Chulitna River near
Sonora Creek above Tributary near Big Delta 249 Sourdough, Gulkana River at	Tanana River at Fairbanks
South Branch of South Fork Chester Creek	at Nenana
at tank trail near Anchorage	Tatalina River near Takotna
near Brookridge Dr at Anchorage308	Tazlina River near Glennallen
nom produinge prim rinemonage	Talling 10. of from Grommunon

Page	Page
Teller, Eldorado Creek near	West Fork Upper Ikalukrok near Kivalina 316 Whittier, Portage Creek at Portage Lake
Creek near	outlet near
Middle Creek Basin Creek near	Shakespeare Creek at
Terror River at mouth near Kodiak	Willow, Nancy Lake Tributary near
Tetlin Junction, Dennison Fork near293, 310	Willow Creek near
Threemile Creek below Highway near Klawock 304	Wiseman, Nugget Creek near
near Klawock	Snowden Creek near
Tributary below canyon near Klawock304	Wolverine Creek near Lawing
Tiekel, Boulder Creek near	Wrangell, Harding River near54
Tok, Slana River near	Stikine River near
Slana Slough near307	Tyee Lake outlet near
Tok River near	Wulik River above Ferric Creek near Kivalina 278
Tutak Creek near Kivalina	below Tutak Creek near Kivalina280
Tuxedni Bay, Johnson River above Lateral	
Glacier near	Yakutat, Alsek River near
Twentymile River below Glacier River near	Drain at Airport Approach 2 near 289, 306
Portage	Drain at Airport Approach 29 near 289, 306
Two Rivers, Chena River near	East Alsek River 1.0 mi at mouth near 306
Tyee Lake Outlet near Wrangell	East Alsek River 1.4 mi at mouth near 305
ζ	East Alsek River 2.0 mi at mouth near 305
Umiat, Colville River at	Ophir Creek above new excavation site near . 306
Unalakleet, Chirosky River near296, 315	Ophir Creek at gravel pit road near 306
Unalakleet River above Chirosky	Ophir Creek near
River near	Ophir Creek Tributary at confluence near 306
Upper Bradley River near Nuka Glacier near	Ophir Creek Tributary at new
Homer	excavation near
Upper Frying Pan Creek near Central311	Russell Lake near
Upper Ikalukrok Creek near Kivalina316	Situk River near
Upper Nuka River near park boundary near	Yukon Alaska, crest-stage partial-record
Homer166	stations in
Upper Peterson Creek near Auke Bay 304, 320	discharge measurements at miscellaneous
Upper West Creek near Big Delta248	sites in
Utopia, Indian River at	gaging-station records for
Utopia Creek at	Yukon River at Eagle
,	at Pilot Station
Valdez, Mineral Creek near	near Stevens Village
Ptarmigan Creek tributary near290, 307	
Solomon Gulch at top of falls near157	
Solomon Gulch near	
Solomon Gulch tailrace near	
Solomon Lake near	
Volcano Creek near Central	
Washington Creek near Nome	
Wasilla, Big Lake E of Hearn Island near348	
Big Lake NE of Petrovich Island near 350	
Big Lake NW of Burston Island near347	
Big Lake S of Long Island near	
Big Lake SE of Burston Island near347	
Wasilla Creek near Palmer	
West Creek near Skagway	

CONVERSION FACTORS

Multiply	Ву	To obtain				
	Length					
inch (in.)	2.54x10 ¹ 2.54x10 ⁻²	millimeter				
foot (ft)	3.048×10 ⁻¹	meter meter				
mile (mi)	1.609x10 ⁰	kilometer				
	Area					
acre	4.047×10 ³	square meter				
	4.047×10 ⁻¹	square hectometer				
	4.047x10 ⁻³	square kilometer				
square mile (mi ²)	2.590×10 ⁰	square kilometer				
	Volume					
gallon (gal)	3.785x10 ⁰	liter				
	3.785×10 ⁰	cubic decimeter				
	3.785x10 ⁻³	cubic meter				
million gallons (Mgal)	3.785x10 ³	cubic meter				
	3.785x10 ⁻³	cubic hectometer				
cubic foot (ft ³)	2.832x10 ¹	cubic decimeter				
2	2.832x10 ⁻²	cubic meter				
cubic-foot-per-second day [(ft ³ /s) d]	2.447x10 ³	cubic meter				
	2.447x10 ⁻³	cubic hectometer				
acre-foot (acre-ft)	1.233x10 ³	cubic meter				
	1.233×10 ⁻³	cubic hectometer				
	1.233x10 ⁻⁶	cubic kilometer				
	Flow					
cubic foot per second (ft ³ /s)	2.832x10 ¹	liter per second				
·	2.832x10 ¹	cubic decimeter per second				
	2.832x10 ⁻²	cubic meter per second				
gallon per minute (gal/min)	6.309×10 ⁻²	liter per second				
	6.309x10 ⁻²	cubic decimeter per second				
	6.309x10 ⁻⁵	cubic meter per second				
million gallons per day (Mgal/d)	4.381x10 ¹	cubic decimeter per second				
	4.381x10 ⁻²	cubic meter per second				
	Mass					
ton (short)	9.072x10 ⁻¹	megagram or metric ton				

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows: $^{\circ}F = (1.8 \times ^{\circ}C) + 32$